沈文國(guó)
(蘭州工業(yè)學(xué)院基礎(chǔ)學(xué)科部,甘肅 蘭州 730050)
奇異三階積分邊值問(wèn)題正解的全局分歧
沈文國(guó)
(蘭州工業(yè)學(xué)院基礎(chǔ)學(xué)科部,甘肅 蘭州 730050)
研究帶Riemann-Stieltjes積分邊值條件的奇異三階積分邊值問(wèn)題正解的全局分歧結(jié)構(gòu).首先,利用相關(guān)文獻(xiàn),獲得了此類(lèi)問(wèn)題的格林函數(shù)并推證其滿足的性質(zhì),同時(shí)可獲得此類(lèi)問(wèn)題等價(jià)于一個(gè)全連續(xù)算子方程;其次,在滿足所給的條件時(shí),利用Krein-Rutmann定理建立了此類(lèi)問(wèn)題對(duì)應(yīng)的線性問(wèn)題存在簡(jiǎn)單的主特征值;最后,當(dāng)非線性項(xiàng)在零和無(wú)窮遠(yuǎn)處滿足非漸進(jìn)線性增長(zhǎng)條件、參數(shù)滿足不同范圍的值時(shí),利用Dancer全局分歧定理、Zeidler全局分歧定理和序列集取極限的方法,建立了此類(lèi)問(wèn)題正解的全局結(jié)構(gòu),進(jìn)而獲得了正解的存在性.
奇異三階積分邊值問(wèn)題;全局分歧;正解
2009年,文獻(xiàn)[1]研究了下列三階非局部邊值問(wèn)題:
受上述文獻(xiàn)的啟發(fā),本文研究下列奇異三階積分邊值問(wèn)題:
正解的全局分歧結(jié)構(gòu),其中a(t)在t=0和t=1處具有奇異性,r∈(0,∞)是一個(gè)參數(shù),
注 1.1對(duì)于用分歧技巧研究其它的正解和結(jié)點(diǎn)解的存在性和多解性,可參考文獻(xiàn)[10-16].
[1]Graef J R,Webb J R L.Third order boundary value problems with nonlocal boundary conditions[J]. Nonlinear Anal.,2009,71:1542-1551.
[2]Graef J R,Yang B.Positive solutions of a third order nonlocal boundary value problem[J].Discrete Contin. Dyn.Syst.Ser.,2008,1:89-97.
[3]Du Z,Lin X,Ge W.Solvability of a third-order nonlocal boundary value problem at resonance[J].Acta Math.Sinica(Chin.Ser.),2006,49:87-94.
[4]Li S.Positive solutions of nonlinear singular third-order two-point boundary value problem[J].J.Math. Anal.Appl.,2006,323:413-425.
[5]Sun Y.Positive solutions of singular third-order three-point boundary value problem[J].J.Math.Anal. Appl.,2005,306:589-603.
[6]Liu Z,Umeb J S,Kang S M.Positive solutions of a singular nonlinear third order two-point boundary value problem[J].J.Math.Anal.Appl.,2007,326(1):589-601.
[7]Du Z,Ge W,Zhou M.Singular perturbations for third-order nonlinear multi-point boundary value problem[J]. J.Differential Equations,2005,218(1):69-90.
[8]Ma R,An Y.Global structure of positive for superlinear second-order m-point boundary value problems[J]. Nonlinear Anal.,2009,34(2):279-290.
[9]Shen W,He T.Global Structure of Positive Solutions for a Singular Fourth-Order Integral Boundary Value Problem[J].Discrete Dynamics in Nature and Society Volume 2014,Article ID 614376,7 pages.
[10]Rynne B P.Infinitely many solutions of superlinear fourth order boundary value problems[J].Topol. Methods Nonlinear Anal.,2002,19(2):303-312.
[11]Ma R,Nodal Solutions for a fourth-Order two-order boundary value problem[J].J.Math.Anal.Appl.,2006,314(1):254-265.
[12]Shi J,Wang X.On global bifurcation for quasilinear elliptic systems on bounded domains[J].J.Differential Equations,2009,246:2788-2812.
[13]Shen W.Global structure of nodal solutions for a fourth-order two-point boundary value problem[J].Appl. Math.Comput.,2012,219(1):88-98.
[14]Dai G,Ma R.Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian[J].J.Differential Equations,2012,252:2448-2468.
[15]Dai G.Bifurcation and nodal solutions for p-Laplacian problems with non-asymptotic nonlinearity at 0 or∞[J].Appl.Math.Lett.,2013,26:46-50.
[16]Dai G,Ma R.Unilateral global bifurcation for p-Laplacian with non-p-1-lineariza-tion nonlinearity[J]. Discrete contin.dyn.syst.,2015,35(1):99-116.
[17]Krasnosel′skii M A.Positive Solutions of Operator Equations[M].The Netherlands:P.Noordhoff Ltd.,1964.
[18]Zhang G,Sun J.Positive solutions of m-point boundary value problems[J].J.Math.Anal.Appl.,2004,291:406-418.
[19]Guo D,Sun J.Nonlinear Integral Equations[M].Ji′nan:Shandong Science and Technology Press,1987(in Chinese).
[20]Whyburn G T.Topological Analysis[M].Princeton:Princeton University Press,1958.
[21]Dancer E.Global solutions branches for positive maps[J].Arch.Rat.Mech.Anal.,1974,55:207-213.
[22]Zeidler E.Nonlinear Functional Analysis and its Applications:I.Fixed Point Theorems[M].New York:Springer-Verlag,1986.
[23]Ambrosetti A,Calahorrano R M,Dobarro F R.Global branching for discontinuous problems[J].Comment. Math.Univ.Carolin.,1990,31:13-222.
Global bifurcation of positive solutions for singular third order problems involving Stieltjes integral conditions
Shen Wenguo
(Department of Basic Courses,Lanzhou Institute of Technology,Lanzhou 730050,China)
In this paper,we establish global bifurcation structure of positive solutions for a class of singular third-order boundary value problems.Firstly,according to the relevant literature,we obtain that the Green fuction and its property for the above problem.Meanwhile,we can obtain that the above problem is equivalent to the completely continuous operator equation.Secondly,we have that the above linear problem exists simple principal eigenvalue by the Krein-Rutman theorem.Finally,we establish the global bifurcation structure of positive solutions with non-asymptotic nonlinearity at or by Dancer and Zeidler global bifurcation theorems and the approximation of connected components.
third order singular boundary problems,global bifurcation,positive solutions
O175.8
A
1008-5513(2016)03-0221-14
10.3969/j.issn.1008-5513.2016.03.001
2015-05-27.
國(guó)家自然科學(xué)基金(11561038);甘肅省自然科學(xué)基金(145RJZA087).
沈文國(guó)(1963-),博士,教授,研究方向:非線性微分方程與分歧理論.
2010 MSC:34B09,34C10,34C23
純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué)2016年3期