亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        奇異三階積分邊值問(wèn)題正解的全局分歧

        2016-12-21 09:23:32沈文國(guó)
        關(guān)鍵詞:基礎(chǔ)學(xué)科三階邊值問(wèn)題

        沈文國(guó)

        (蘭州工業(yè)學(xué)院基礎(chǔ)學(xué)科部,甘肅 蘭州 730050)

        奇異三階積分邊值問(wèn)題正解的全局分歧

        沈文國(guó)

        (蘭州工業(yè)學(xué)院基礎(chǔ)學(xué)科部,甘肅 蘭州 730050)

        研究帶Riemann-Stieltjes積分邊值條件的奇異三階積分邊值問(wèn)題正解的全局分歧結(jié)構(gòu).首先,利用相關(guān)文獻(xiàn),獲得了此類(lèi)問(wèn)題的格林函數(shù)并推證其滿足的性質(zhì),同時(shí)可獲得此類(lèi)問(wèn)題等價(jià)于一個(gè)全連續(xù)算子方程;其次,在滿足所給的條件時(shí),利用Krein-Rutmann定理建立了此類(lèi)問(wèn)題對(duì)應(yīng)的線性問(wèn)題存在簡(jiǎn)單的主特征值;最后,當(dāng)非線性項(xiàng)在零和無(wú)窮遠(yuǎn)處滿足非漸進(jìn)線性增長(zhǎng)條件、參數(shù)滿足不同范圍的值時(shí),利用Dancer全局分歧定理、Zeidler全局分歧定理和序列集取極限的方法,建立了此類(lèi)問(wèn)題正解的全局結(jié)構(gòu),進(jìn)而獲得了正解的存在性.

        奇異三階積分邊值問(wèn)題;全局分歧;正解

        1 引言

        2009年,文獻(xiàn)[1]研究了下列三階非局部邊值問(wèn)題:

        受上述文獻(xiàn)的啟發(fā),本文研究下列奇異三階積分邊值問(wèn)題:

        正解的全局分歧結(jié)構(gòu),其中a(t)在t=0和t=1處具有奇異性,r∈(0,∞)是一個(gè)參數(shù),

        注 1.1對(duì)于用分歧技巧研究其它的正解和結(jié)點(diǎn)解的存在性和多解性,可參考文獻(xiàn)[10-16].

        2 格林函數(shù)的性質(zhì)及推論

        3 預(yù)備知識(shí)

        4 主要結(jié)果

        [1]Graef J R,Webb J R L.Third order boundary value problems with nonlocal boundary conditions[J]. Nonlinear Anal.,2009,71:1542-1551.

        [2]Graef J R,Yang B.Positive solutions of a third order nonlocal boundary value problem[J].Discrete Contin. Dyn.Syst.Ser.,2008,1:89-97.

        [3]Du Z,Lin X,Ge W.Solvability of a third-order nonlocal boundary value problem at resonance[J].Acta Math.Sinica(Chin.Ser.),2006,49:87-94.

        [4]Li S.Positive solutions of nonlinear singular third-order two-point boundary value problem[J].J.Math. Anal.Appl.,2006,323:413-425.

        [5]Sun Y.Positive solutions of singular third-order three-point boundary value problem[J].J.Math.Anal. Appl.,2005,306:589-603.

        [6]Liu Z,Umeb J S,Kang S M.Positive solutions of a singular nonlinear third order two-point boundary value problem[J].J.Math.Anal.Appl.,2007,326(1):589-601.

        [7]Du Z,Ge W,Zhou M.Singular perturbations for third-order nonlinear multi-point boundary value problem[J]. J.Differential Equations,2005,218(1):69-90.

        [8]Ma R,An Y.Global structure of positive for superlinear second-order m-point boundary value problems[J]. Nonlinear Anal.,2009,34(2):279-290.

        [9]Shen W,He T.Global Structure of Positive Solutions for a Singular Fourth-Order Integral Boundary Value Problem[J].Discrete Dynamics in Nature and Society Volume 2014,Article ID 614376,7 pages.

        [10]Rynne B P.Infinitely many solutions of superlinear fourth order boundary value problems[J].Topol. Methods Nonlinear Anal.,2002,19(2):303-312.

        [11]Ma R,Nodal Solutions for a fourth-Order two-order boundary value problem[J].J.Math.Anal.Appl.,2006,314(1):254-265.

        [12]Shi J,Wang X.On global bifurcation for quasilinear elliptic systems on bounded domains[J].J.Differential Equations,2009,246:2788-2812.

        [13]Shen W.Global structure of nodal solutions for a fourth-order two-point boundary value problem[J].Appl. Math.Comput.,2012,219(1):88-98.

        [14]Dai G,Ma R.Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian[J].J.Differential Equations,2012,252:2448-2468.

        [15]Dai G.Bifurcation and nodal solutions for p-Laplacian problems with non-asymptotic nonlinearity at 0 or∞[J].Appl.Math.Lett.,2013,26:46-50.

        [16]Dai G,Ma R.Unilateral global bifurcation for p-Laplacian with non-p-1-lineariza-tion nonlinearity[J]. Discrete contin.dyn.syst.,2015,35(1):99-116.

        [17]Krasnosel′skii M A.Positive Solutions of Operator Equations[M].The Netherlands:P.Noordhoff Ltd.,1964.

        [18]Zhang G,Sun J.Positive solutions of m-point boundary value problems[J].J.Math.Anal.Appl.,2004,291:406-418.

        [19]Guo D,Sun J.Nonlinear Integral Equations[M].Ji′nan:Shandong Science and Technology Press,1987(in Chinese).

        [20]Whyburn G T.Topological Analysis[M].Princeton:Princeton University Press,1958.

        [21]Dancer E.Global solutions branches for positive maps[J].Arch.Rat.Mech.Anal.,1974,55:207-213.

        [22]Zeidler E.Nonlinear Functional Analysis and its Applications:I.Fixed Point Theorems[M].New York:Springer-Verlag,1986.

        [23]Ambrosetti A,Calahorrano R M,Dobarro F R.Global branching for discontinuous problems[J].Comment. Math.Univ.Carolin.,1990,31:13-222.

        Global bifurcation of positive solutions for singular third order problems involving Stieltjes integral conditions

        Shen Wenguo
        (Department of Basic Courses,Lanzhou Institute of Technology,Lanzhou 730050,China)

        In this paper,we establish global bifurcation structure of positive solutions for a class of singular third-order boundary value problems.Firstly,according to the relevant literature,we obtain that the Green fuction and its property for the above problem.Meanwhile,we can obtain that the above problem is equivalent to the completely continuous operator equation.Secondly,we have that the above linear problem exists simple principal eigenvalue by the Krein-Rutman theorem.Finally,we establish the global bifurcation structure of positive solutions with non-asymptotic nonlinearity at or by Dancer and Zeidler global bifurcation theorems and the approximation of connected components.

        third order singular boundary problems,global bifurcation,positive solutions

        O175.8

        A

        1008-5513(2016)03-0221-14

        10.3969/j.issn.1008-5513.2016.03.001

        2015-05-27.

        國(guó)家自然科學(xué)基金(11561038);甘肅省自然科學(xué)基金(145RJZA087).

        沈文國(guó)(1963-),博士,教授,研究方向:非線性微分方程與分歧理論.

        2010 MSC:34B09,34C10,34C23

        猜你喜歡
        基礎(chǔ)學(xué)科三階邊值問(wèn)題
        非線性n 階m 點(diǎn)邊值問(wèn)題正解的存在性
        三階非線性微分方程周期解的非退化和存在唯一性
        以戰(zhàn)略遠(yuǎn)見(jiàn)促進(jìn)基礎(chǔ)學(xué)科人才培養(yǎng)
        帶有積分邊界條件的奇異攝動(dòng)邊值問(wèn)題的漸近解
        三類(lèi)可降階的三階非線性微分方程
        臨床醫(yī)院培養(yǎng)基礎(chǔ)學(xué)科研究生的探索與思考
        三階微分方程理論
        非線性m點(diǎn)邊值問(wèn)題的多重正解
        對(duì)中醫(yī)臨床基礎(chǔ)學(xué)科屬性的認(rèn)識(shí)
        一類(lèi)非線性向量微分方程無(wú)窮邊值問(wèn)題的奇攝動(dòng)
        婷婷四房播播| 亚洲av成人片色在线观看| 无码视频在线观看| 久热在线播放中文字幕| 熟妇人妻不卡中文字幕| 青青草免费视频一区二区| 亚洲最新无码中文字幕久久| 五十路丰满中年熟女中出| 亚洲成av人片天堂网九九| 最新国产av网址大全| 无码人妻丰满熟妇精品区| 人妻无码一区二区19P| 国产精品又爽又粗又猛又黄 | 日本黑人乱偷人妻在线播放| 国产乱人伦av在线a麻豆| 无码中文字幕人妻在线一区二区三区| 国产免费资源高清小视频在线观看| 精品999无码在线观看| 男女调情视频在线观看| 国产无套乱子伦精彩是白视频| 怡红院a∨人人爰人人爽| 亚洲自拍愉拍| 日韩av在线不卡观看| 国产在线91精品观看| 欧美精品黑人粗大免费| 999久久久免费精品国产| 亚洲伦理一区二区三区| 亚洲女同免费在线观看| 亚洲国产av无码精品| 中文字幕久久久人妻无码| 国产熟妇搡bbbb搡bb七区| 国产福利片无码区在线观看| 国产午夜在线观看视频| 最新欧美精品一区二区三区| 日韩少妇激情一区二区| 亚洲VR永久无码一区| 青青草好吊色在线观看| 777精品久无码人妻蜜桃| 真实国产乱视频国语| 蜜桃av夺取一区二区三区| 亚洲国产性夜夜综合另类 |