許友卿,王宏雷,劉永強(qiáng),丁兆坤
( 廣西大學(xué) 水產(chǎn)科學(xué)研究所,廣西高校水生生物健康養(yǎng)殖與營(yíng)養(yǎng)調(diào)控重點(diǎn)實(shí)驗(yàn)室,動(dòng)物科學(xué)科技學(xué)院,廣西 南寧 530004 )
海洋酸化對(duì)水生動(dòng)物骨骼和耳石鈣化、生長(zhǎng)發(fā)育的影響與機(jī)理
許友卿,王宏雷,劉永強(qiáng),丁兆坤
( 廣西大學(xué) 水產(chǎn)科學(xué)研究所,廣西高校水生生物健康養(yǎng)殖與營(yíng)養(yǎng)調(diào)控重點(diǎn)實(shí)驗(yàn)室,動(dòng)物科學(xué)科技學(xué)院,廣西 南寧 530004 )
海洋酸化;骨骼;耳石;鈣化;生長(zhǎng);水生動(dòng)物
20世紀(jì)末,有學(xué)者就開始研究海洋酸化對(duì)海洋生物的影響[4],并取得了可喜進(jìn)展,當(dāng)前主要集中于兩個(gè)方面:(1)海洋酸化對(duì)于鈣化海洋生物,主要是鈣化浮游生物、珊瑚、軟體動(dòng)物、頭足類等[5-8]礦化作用的影響;(2)海洋酸化對(duì)一些海洋生物的行為、生理機(jī)能如呼吸代謝、嗅覺、攝食、游泳等的影響[9-11]。然而,海洋酸化多方面影響海洋生物,且多為負(fù)面[12]。大量研究已證實(shí),海洋酸化顯著影響多種海洋動(dòng)物的受精、發(fā)育、生物鈣化、基因表達(dá)等生命活動(dòng)[13]。水生動(dòng)物的鈣化骨骼系統(tǒng)由內(nèi)骨骼和其他骨質(zhì)結(jié)構(gòu)如耳石等組成。鈣化生物對(duì)海洋酸化最敏感,對(duì)海洋生態(tài)系統(tǒng)和海洋經(jīng)濟(jì)至關(guān)重要,因而研究海洋酸化對(duì)生物鈣化作用的影響及機(jī)理具有重要的現(xiàn)實(shí)意義。
目前關(guān)于生物鈣化的研究主要集中于某些無脊椎動(dòng)物、低等鈣質(zhì)藻類等[14]。鮮見海洋酸化對(duì)海洋魚類的生物礦化作用的影響研究,而海洋魚類對(duì)海洋生態(tài)系統(tǒng)和海洋經(jīng)濟(jì)非常重要。
筆者主要綜述了海洋酸化對(duì)水生動(dòng)物,特別是魚類骨骼和耳石鈣化、生長(zhǎng)發(fā)育的影響與機(jī)理,為全面評(píng)估、深入理解和研究海洋酸化的影響提供信息,為控制、預(yù)防海洋酸化,保護(hù)海洋生態(tài)環(huán)境和海洋生物提供參考。
水生動(dòng)物,尤其是硬骨魚類的骨骼系統(tǒng)是構(gòu)成機(jī)體的重要部分,它可以支撐機(jī)體、運(yùn)動(dòng)、保護(hù)身體,還儲(chǔ)存鈣、磷等礦質(zhì)元素,維持體內(nèi)礦物質(zhì)平衡,具有重要的生長(zhǎng)和存活意義。
海洋酸化影響水生動(dòng)物內(nèi)骨骼的生長(zhǎng)發(fā)育。Campbell[15]發(fā)現(xiàn),海洋酸化導(dǎo)致河鱒(Salmotrutta)尾部生長(zhǎng)畸形,畸形程度與pH變化幾近成正比。Fraser等[16]報(bào)道,George 湖酸化(pH=4.65)使白亞口魚(Catostomuscommersonn)近尾部脊椎骨的平均長(zhǎng)度短于另外3個(gè)pH近中性湖中的同種魚,部分魚的尾鰭畸形。這些異常魚骨的礦物質(zhì)流失,其平均鈣含量(9.44 mg/g干質(zhì)量)顯著低于另外3個(gè)近中性湖的同種魚(11.18 mg/g干質(zhì)量)。Steingraeber等[17]發(fā)現(xiàn),暴露于pH=5.0的美洲紅點(diǎn)鮭(Salvelinusfontinalis)全魚鈣含量下降,骨骼結(jié)構(gòu)骨化延遲,生命早期階段的骨骼異常。Perry等[18]報(bào)道,暴露在二氧化碳分壓為1200 μatm~2600 μatm(1 μatm=0.101325 Pa)環(huán)境中8周,門齒鯛(Stenotomuschrysops)生長(zhǎng)、存活沒有顯著影響,但是其骨骼骨化程度略高于空氣對(duì)照組,耳石也隨著二氧化碳的含量升高而增大。
海洋酸化影響水生動(dòng)物內(nèi)骨骼的礦物元素代謝。Ishimatsu等[19]在實(shí)驗(yàn)室條件下,以pCO2=330 μatm為對(duì)照,逐步將pCO2由470 μatm升至1660 μatm養(yǎng)殖135 d,發(fā)現(xiàn)高pCO2下大西洋鮭(Salmosalar)的骨中Ca、P比例較高,還有較高的骨骼重構(gòu)現(xiàn)象,但經(jīng)X射線檢驗(yàn)沒有形態(tài)學(xué)差異。Munday等[20]發(fā)現(xiàn),多刺棘光鰓鯛(Acanthochromispolyacanthus)幼魚在不同pCO2(397、551、741 μatm和1036 μatm)條件下,29種主體骨架結(jié)構(gòu)中有3種(眼骨、尾前脊椎骨、第二尾脊椎骨)長(zhǎng)度不同,但差異不顯著。多重比較檢驗(yàn)表明,這些差異不是由pCO2含量差異引起。James等[21]報(bào)道,直接降低水體pH后,斑點(diǎn)叉尾(Ictaluruspunctatus)血液中pH和升高不顯著,對(duì)Ca2+或含量的影響也不顯著,但骨鈣流出增加。也有研究表明,海水pH降低和溫度升高顯著影響水生動(dòng)物血細(xì)胞免疫學(xué)相關(guān)指標(biāo),具體表現(xiàn)為透明細(xì)胞鈣離子含量增加而顆粒細(xì)胞鈣離子含量降低,間液中游離鈣離子含量增加,表明海洋酸化和溫度升高對(duì)生物礦化有負(fù)調(diào)控作用[22]。Mu等[23]研究表明,二氧化碳導(dǎo)致海水酸化(pH=7.6和7.2)對(duì)黑點(diǎn)青鳉(Oryziasmelastigma)胚胎孵化率無顯著影響,但pH 7.2組的仔魚骨骼畸形率(25%)顯著高于對(duì)照組(10%)。Frommel等[24]研究表明,大西洋鯡(Clupeaharengus)初孵仔魚暴露在高含量CO2(4204.3 μatm)環(huán)境中39 d,與對(duì)照組(380 μatm)相比,鰭軟組織變大,骨骼和軟骨結(jié)構(gòu)異常,甚至畸形;個(gè)體體長(zhǎng)的平均長(zhǎng)度(18 mm)比對(duì)照組(20 mm)縮短10%。Depasquale等[25]發(fā)現(xiàn),海洋酸化(pH=7.4)也會(huì)導(dǎo)致美洲原銀漢魚(Menidiaberyllina)和北美鳉(Cyprinodonvariegatus)體長(zhǎng)比對(duì)照組(pH=7.9)減少15%~45%,這表明海洋酸化可導(dǎo)致水生動(dòng)物內(nèi)骨骼發(fā)育異常。
值得關(guān)注的是,暴露于高pCO2的魚骨礦物質(zhì)和2D骨容量較高。高pCO2導(dǎo)致大西洋鮭鰓和腸道吸收鈣、磷量增加,骨骼其他部分的礦元素代謝增強(qiáng)。腸道吸收是體內(nèi)磷的主要來源,骨是由鈣和磷礦化而來,而CO2觸發(fā)骨代謝增加,以提供足夠的磷酸鹽,防止礦化降低和骨骼畸形[28]。
魚類對(duì)海洋酸化的反應(yīng)不如其他鈣化生物敏感。海洋酸化導(dǎo)致其他海洋鈣化生物的碳酸鈣飽和度下降而嚴(yán)重影響生物鈣化活動(dòng);其他海洋鈣化生物的鈣化結(jié)構(gòu)一般位于體表,直接暴露于海水中的高pCO2環(huán)境中,更易受海洋酸化的影響;其他海洋鈣化生物缺乏海洋魚類那樣高效的酸堿平衡調(diào)節(jié)機(jī)制,因此,對(duì)海洋酸化的影響比魚類敏感得多[20,26]。
磷是魚類體內(nèi)pH值緩沖系統(tǒng)的重要組成部分,在應(yīng)對(duì)外界pH值變化過程中起重要作用。魚類礦化器官和組織主要沉積磷酸鈣是魚類對(duì)酸化不敏感的原因之一[14]。
海洋魚類不是主要的鈣化者,但膜迷路中的耳石碳酸鈣占99%以上,主要為文石或球文石等亞穩(wěn)定狀態(tài)的碳酸鈣結(jié)晶[29-30]。與魚骨、鱗片和牙齒相比,魚耳石是最容易受到海洋酸化影響的礦化器官[14]。耳石的主要作用是探測(cè)、維持平衡和聽聲音等,還是鑒定魚類年齡、生活史、種屬和生長(zhǎng)的重要依據(jù),研究海洋酸化對(duì)海洋魚類耳石生長(zhǎng)、形態(tài)及相關(guān)功能的影響具有重要意義[30-32]。
當(dāng)前主要發(fā)現(xiàn):(1)海洋酸化增加魚類耳石的鈣化程度,耳石表面積及直徑增加;(2)海洋酸化對(duì)耳石的生長(zhǎng)沒有顯著影響。例如,Munday等[33]發(fā)現(xiàn),小丑魚(Amphiprionpercula)在pH=7.6,pCO2=1721 μatm下耳石面積和直徑比對(duì)照組(pH=8.15,pCO2=404 μatm)有所增加。Bignami等[34-35]報(bào)道,于pCO2=800 μatm下,軍曹魚(Rachycentroncanadum)微耳石、矢耳石面積顯著大于(高至25%)對(duì)照組(300 μatm),耳石相對(duì)質(zhì)量增加14%以上;pCO2=2100 μatm組耳石體積增加49%,相對(duì)質(zhì)量增加58%,耳石密度增加6%。Maneja等[36]發(fā)現(xiàn),大西洋鱈(Gadusmorhua)于pCO21800 μatm和4200 μatm下,耳石平均面積大于對(duì)照組(370 μatm),最大相差83.8%。Clemmesen等[37]研究表明,高CO2含量(1000 mg/kg)下,大西洋鱈稚魚耳石大小和增長(zhǎng)速度明顯高于對(duì)照組,但對(duì)其稚魚的生長(zhǎng)發(fā)育沒有負(fù)面影響。Checkley等[38]研究發(fā)現(xiàn),提高CO2含量的情況下,同規(guī)格的鱸魚(Atractoscionnobilis)仔魚(7~8 日齡)的耳石增大,長(zhǎng)度增加7%~9%;隨著pCO2(430 μatm~2500 μatm)的升高,石首魚(Atractoscionnobilis)的耳石面積也不斷變大,pCO2=2500 μatm最大,比對(duì)照組(430 μatm)增加116%。Hurst等[39]研究表明,在pCO2=450 μatm環(huán)境中6周,黃線狹鱈(Theragrachalcogramma)耳石鈣化速率增加7.2%,但不影響其耳石元素組成;而pCO2=1805 μatm組的耳石長(zhǎng)度比對(duì)照魚增加了50%。Schade等[40]研究表明,暴露在海洋酸化(pCO2=1000 μatm)環(huán)境中90 d,可抑制三刺魚(Gasterosteusaculeatus)的生長(zhǎng)發(fā)育,其體長(zhǎng)比對(duì)照組低53%,但耳石面積比對(duì)照組大20%,耳石比對(duì)照組質(zhì)量增加6%。Bignami等[41]研究表明,在pCO2=2170 μatm暴露21 d的鲯鰍(Coryphaenahippurus)仔魚的耳石面積比對(duì)照組(pCO2=450 μatm)顯著增大,耳石長(zhǎng)度由110 μm增至125 μm,寬度由76 μm增至85 μm,面積由6500 μm2增至7800 μm2。Freeburg等[42]研究表明,克氏雙鋸魚(A.clarkii)和白條雙鋸魚(A.frenatus),暴露于不同的pCO2的條件下,隨著pCO2升高,這兩種魚的圓形矢耳石呈現(xiàn)長(zhǎng)方形變化。
然而,Munday等[20]報(bào)告,CO2(pCO2450~850 μatm)對(duì)多棘雀鯛(Acanthochromispolyacanthus)稚魚耳石大小、形狀和對(duì)稱性等沒有顯著影響。Mu等[23]研究表明,CO2導(dǎo)致海水酸化(pH=7.6和7.2)抑制了黑點(diǎn)青鳉仔魚耳石的生長(zhǎng),其中pH=7.6組的耳石平均面積(6500 μm2)顯著小于對(duì)照組(7500 μm2);但在極端pH(7.2)情況下,耳石平均面積增加,為6800 μm2。
海洋酸化影響魚類耳石生長(zhǎng)發(fā)育,改變其形態(tài)和大小,進(jìn)而損傷魚類感官和運(yùn)動(dòng)機(jī)能[43]。Simpson等[44]發(fā)現(xiàn),小丑魚幼魚在pCO2600、700、900 μatm下對(duì)珊瑚聲音的響應(yīng)顯著低于對(duì)照組(pCO2390 μatm)。CO2含量提高到700 mg/kg時(shí),4 d后小丑魚仔魚的行為與對(duì)照組顯著不同[45],近50%的仔魚失去攝食和躲避敵害的能力,而在850 mg/kg下,所有仔魚從第2天就失去躲避捕食的能力。Branch等[46]也指出,海水pH的降低能夠損傷某些經(jīng)濟(jì)魚類的感覺器官,降低這些魚類的存活率。pCO2=2100 μatm下軍曹魚聽覺范圍比對(duì)照組(300 μatm)降低了50%[35],這些變化可能會(huì)影響其聽覺的靈敏度,增加二氧化碳分壓,改變軍曹魚對(duì)聽覺信息的感知。
Hamilton等[47]研究表明,海水酸化(pCO2=1125 μatm,pH=7.75)可影響斑馬魚體內(nèi)γ-氨基丁酸A型受體(GABAA受體),抑制其受體功能,影響魚類的嗅覺、捕食,乃至耳石大小。與對(duì)照組相比,斑馬魚腦部GABAA受體含量明顯降低。
海洋酸化導(dǎo)致魚類神經(jīng)遞質(zhì)傳遞障礙而影響其骨骼、耳石的生長(zhǎng)發(fā)育及功能[48]。Mizuno等[49]研究發(fā)現(xiàn),重力感應(yīng)缺陷的青鳉突變體在耳石發(fā)育過程中,囊狀耳石鈣化紊亂。
海洋酸化通過影響海洋動(dòng)物的反饋補(bǔ)償機(jī)制而影響其鈣化。研究表明,耳石增大可能是魚類自身所具有的酸堿調(diào)節(jié)能力,通過反饋補(bǔ)償機(jī)制而增加了耳石內(nèi)淋巴可獲得的碳酸鹽含量,因此,加速了耳石在酸性條件下的礦化過程[52]。
海洋酸化通過改變金屬離子的形態(tài)和分子親和力而影響海洋動(dòng)物鈣化。Réveillac等[53]認(rèn)為,耳石增大是高含量CO2可促進(jìn)耳石的鈣化過程。在酸性條件下,某些化學(xué)元素,如金屬和非金屬都可以代替鈣參與耳石鈣化。二氧化碳增加引起的pH值降低和海水化學(xué)變化可以改變金屬離子的形態(tài)和分子親和力,促進(jìn)水生動(dòng)物對(duì)微量元素的吸收,從而影響其生物利用度,影響耳石的生長(zhǎng)和化學(xué)組成[23]。
海洋酸化正以不同的方式影響著不同物種的鈣化[27,54-56]。然而,海洋酸化對(duì)海洋動(dòng)物尤其是魚類內(nèi)骨骼、耳石生長(zhǎng)發(fā)育及鈣化過程的影響及機(jī)理研究還處于起始階段,許多問題尚待探討。
[1] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682):367-371.
[2] Kump L R, Bralower T J, Ridgwell A. Ocean acidification in deep time[J]. Oceanography (Washington D.C.), 2009, 22(4):94-107.
[3] Zhai W D, Zheng N, Huo C, et al. Subsurface pH and carbonate saturation state of aragonite on the Chinese side of the North Yellow Sea: seasonal variations and controls[J]. Biogeosciences, 2014, 11(4):1103-1123.
[4] Kleypas K A, Buddemeier R W, Archer D, et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs[J].Science, 1999, 284(5411):118-120.
[5] Hannisdal B, Henderiks J, Liow L H.Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2[J]. Global Change Biology, 2012,18(12):3504-3516.
[6] Comeau S, Carpenter R C C, Edmunds P J.Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate[J]. Proc R Soc B, 2012, 280(1753):2012-2374.
[7] Barton A, Hales B, George G, et al. The Pacific oyster,Crassostreagigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects [J]. Limnol Oceanogr, 2012, 57(3):698-710.
[8] Gutowska M A, P?rtner H O, Melzner F. Growth and calcification in the cephalopodSepiaofficinalisunder elevated seawater pCO2[J]. Mar Ecol Prog Ser, 2008, 373:303-309.
[9] 丁兆坤, 李虹輝, 許友卿. 海洋酸化對(duì)海洋生物呼吸代謝的影響及機(jī)制[J]. 飼料工業(yè), 2012, 23(20):15-17.
[10] Munday P L, Dixson D L, Donelson J M,et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish [J]. PNAS, 2009, 106(6):1848-1852.
[11] Chan K Y K, Grünbaum D, O′Donnell M J. Effects of ocean-acidification-induced morphological changes on larval swimming and feeding [J]. The Journal of Experimental Biology, 2011, 214(4):3857-3867.
[12] Kroeker K J, Kordas R L, Crim R N, et al. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms[J]. Ecol Lett, 2010, 13(11):419-1434.
[13] 趙信國(guó), 劉廣緒. 海洋酸化對(duì)海洋無脊椎動(dòng)物的影響研究進(jìn)展[J]. 生態(tài)學(xué)報(bào), 2015, 7(7):2388-2398.
[14] 劉洪軍, 張振東, 官曙光,等. 海洋酸化效應(yīng)對(duì)海水魚類的綜合影響評(píng)述[J]. 生態(tài)學(xué)報(bào), 2012, 10(10):3233-3239.
[15] Campbell R N B. Tail deformities in brown trout from acid and acidified lochs in Scotland[G]//Mainland P S, Lyle A A, Cample R N B. Acidification and fish in Scottish lochs. Grange-over-Sands. Institute of Terrestrial Ecology, 1987:54-63.
[16] Fraser G A, Harvey H H. Elemental composition of bone from white sucker (Catostomuscommersoni) in relation to lake acidification [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39(9):1289-1296.
[17] Steingraeber M T, Gingerich W H. Hatching, growth, ion accumulation, and skeletal ossification of brook trout (Salvelinusfontinalis) alevins in acidic soft waters [J]. Canadian Journal of Zoology, 1991, 69(8):2266-2276.
[18] Perry D M, Redman D H, Widman J C, et al. Effect of ocean acidification on growth and otolith condition of juvenile scup,Stenotomuschrysops[J]. Ecology & Evolution, 2015, 5(18):4187-4196.
[19] Ishimatsu A, Hayashi M, Kikkawa T. Fishes in high-CO2, acidified oceans [J]. Mar Ecol Prog Ser, 2008(373):295-302.
[20] Munday P L, Gagliano M, Donelson J M. Ocean acidification does not affect the early life history development of a tropical marine fish [J]. Mar Ecol Prog Ser, 2011(423):211-221.
[21] James B Y, Cameron N. The bone compartment in a teleost fish,Ictaluruspunctatus:size, composition and acid-base response to hypercapnia[J]. J Expt Biol, 1985(117):307-318.
[22] 李世國(guó), 劉陽(yáng)嘉, 劉闖,等. 合浦珠母貝血細(xì)胞分類及其對(duì)海洋酸化與暖化的響應(yīng)[G]//中國(guó)海洋湖沼學(xué)會(huì):“全球變化下的海洋與湖沼生態(tài)安全”學(xué)術(shù)交流會(huì)論文摘要集,南京:中國(guó)海洋湖沼學(xué)會(huì), 2014.
[23] Mu J, Jin F, Wang J, et al. Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryziasmelastigma)[J]. Biogeosciences Discussions, 2015, 12(1):1-20.
[24] Frommel A Y, Rommel M, David L, et al. Organ damage in Atlantic herring larvae as a result of ocean acidification[J]. Ecological Applications A Publication of the Ecological Society of America, 2014, 24(5):1131-1143.
[25] Depasquale E, Baumann H, Gobler C. Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen [J]. Marine Ecology Progress, 2015(523):145-156.
[26] Witten P E, Huysseune A, Hall B K. A practical approach for the identification of the many cartilaginous tissues in teleost fish [J]. J Appl Ichthyology, 2011(26):257-262.
[27] Edmunds P J, Brown D, Moriarty V. Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia[J]. Global Change Biology, 2012, 18(7):2173-2183.
[28] Gil-Martens L, Witten P, Fivelstad S, et al. Impact of high water carbon dioxide levels on Atlantic salmon smolts (SalmosalarL.): effects on fish performance, vertebrae composition and structure[J]. Aquaculture, 2006, 261(1):80-88.
[29] 史方, 孫軍, 林小濤,等. 唐魚仔魚耳石的形態(tài)發(fā)育及日輪[J]. 動(dòng)物學(xué)雜志, 2006, 41(4):10-16.
[30] Payan P, Pontua H D, Boeuf G, et al. Endolymph chemistry and otolith growth in fish [J]. C R Palevo, 2004(3):535-547.
[31] Tohse H, Mugiya Y. Sources of otolith carbonate: experimental determination of carbon incorporation rates from water and metabolic CO2, and their diel variations [J]. Aquat Biol, 2008(1):259-268.
[32] Maneja R H. Influence of ocean acidification on otolith calcification and behavior in fish larvae [D]. Published PhD dissertation, Kiel: Kiel University, 2012.
[33] Munday P L, Hernaman V, Dixson D L, et al. Effect of ocean acidification on otolith development in larvae of a tropical marine fish [J]. Biogeosciences, 2011(8):1631-1641.
[34] Bignami S, Sponaugle S, Cowen R K. Response to ocean acidification in larvae of a large tropical marine fish,Rachycentroncanadum[J]. Global Change Biology, 2013, 19(4):996-1006.
[35] Sean B, Enochs I C, Manzello D P, et al. Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function[J]. Proceedings of the National Academy of Science, 2013, 110(18):7366-7370.
[36] Maneja R H, Frommel A Y, Geffen A J, et al. Effects of ocean acidification on the calcification of otoliths of larval Atlantic codGadusmorhua[J]. Marine Ecology Progress, 2013, 477(1):251-258.
[37] Clemmesen C, Stiasny M, Sswat M, et al. Ocean acidification and warming afect survival and growth of Atlantic cod (Gadusmorhua) larvae [G]//Aalto E, Aarestrup K, Aas-Hansen, et al. Quebec, Canada:American Fisheries Society 144th Annual Meeting, 2014.
[38] Checkley D M Jr,Dickson A G,Takahashi M,et al. Elevated CO2enhances otolith growth in young fish [J].Science,2009,324(5935):1683.
[39] Hurst T P, Fernandez E R, Mathis J T, et al. Resiliency of juvenile walleye pollock to projected levels of ocean acidification [J]. Aquatic Biology, 2012, 17(3):247-259.
[40] Schade F M, Clemmesen C, Wegner K M. Within- and transgenerational effects of ocean acidification on life history of marine three-spined stickleback (Gasterosteusaculeatus)[J]. Marine Biology, 2014, 161(7):1667-1676.
[41] Bignami S, Su S, Cowen R K. Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahiCoryphaenahippurus[J]. Aquatic Biology, 2014(21):249-260.
[42] Freeburg W, Eric D. Exploring the link between otolith growth and function along the biological continuum in the context of ocean acidification [D]. Boston, USA:University of Massachusetts Boston,2014.
[43] 許友卿, 張仁珍, 丁兆坤. pH對(duì)魚類繁育及生長(zhǎng)發(fā)育的影響[J]. 水產(chǎn)科學(xué), 2014, 33(2):133-136.
[44] Simpson S D, Munday P L, Wittenrich M L, et al. Ocean acidification erodes crucial auditory behaviour in a marine fish[J]. Biol Lett, 2011(7):917-920.
[45] Munday P L,Dixson D L,Donelson J M,et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish (Plectropomusleopardus)[J].Proceedings of the National Academy of Sciences of the United Stated of America,2009,106(6):1848-1852.
[46] Branch T A, Dejoseph B M. Impacts of ocean acidification on marine seafood [J]. Trends in Ecology & Evolution, 2013, 28(3):178-186.
[47] Hamilton T J, Holcombe A, Tresguerres M. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning [J]. Proceedings of the Royal Society of London B Biological Sciences, 2014, 281(1775):536.
[48] Nilsson G E, Dixson D L, Domenici P, et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function[J]. Nature Climate Change, 2012(2):201-204.
[49] Mizuno R, Jiri K. Otolith formation in a mutant medaka with a deficiency in gravity-sensing [J]. Adv Pace Res, 2003, 32(8):1513-1520.
[50] Jokiel P L. Ocean acidification and control of reef coral calcification by boundary layer limitation of proton flux[J]. Bull Mar Sci, 2011, 87(3):639-657.
[51] Tohse H, Murayama E, Ohira T, et al. Localization and diurnal variations of carbonic anhydrase mRNA expression in the inner ear of the rainbow trout,Oncorhynchusmykiss[J]. Comparative Biochemistry and Physiology Part B, 2006(145):257-264.
[52] Moya A, Tambutté S, Bertucci A, et al. Carbonic anhydrase in the scleractinian coralStylophorapistillata[J]. Journal of Biological Chemistry, 2008(283):25475-25484.
[53] Réveillac E, Lacoue-Labarthe T, Oberh?nsli F, et al. Ocean acidification reshapes the otolith-body allometry of growth in juvenile sea bream[J]. Journal of Experimental Marine Biology & Ecology, 2015(463):87-94.
[54] Saderne V, Wahl M. Effect of ocean acidification on growth, calcification and recruitment of calcifying and non-calcifying epibionts of brown alga[J]. Biogeosciences Discuss, 2012, 9(3):3739-3766.
[55] Catarino A L, Ridder C D, Gonzalez M, et al. Sea urchinArbaciadufresnei(Blainville 1825) larvae response to ocean acidification[J]. Polar Biology, 2012, 35(3):455-461.
[56] Bednar?ek N, Tarling G A, Bakker D C E, et al. Description and quantification of pteropod shell dissolution: a sensitive bioindicator of ocean acidification [J]. Global Change Biology, 2012, 18(7):2378-2388.
EffectofOceanAcidificationonCalcificationandGrowthofEndoskeletonandOtolithinAquaticAnimals
XU Youqing, WANG Honglei,LIU Yongqiang, DING Zhaokun
( Institute for Fishery Sciences, Key Laboratory of Healthy Breeding and Nutritional Regulation of Aquatic Animals, Faculty of Animal Sciences and Technology, Guangxi University, Nanning 530004, China )
ocean acidification; endoskeleton; otolith; calcification; growth; aquatic animal
10.16378/j.cnki.1003-1111.2016.06.025
S917
A
1003-1111(2016)06-0741-06
2015-11-09;
2016-01-08.
國(guó)家自然科學(xué)基金資助項(xiàng)目(31360639);廣西生物學(xué)博士點(diǎn)建設(shè)項(xiàng)目(P11900116,P11900117);廣西自然科學(xué)基金資助項(xiàng)目(2012GXNSFAA053182,2013GXNSFAA019274,2014GXNSFAA118286,2014GXNSFAA118292);廣西科技項(xiàng)目(1298007-3).
許友卿(1958—),女,教授,博士生導(dǎo)師;研究方向:環(huán)境生物學(xué)、水生動(dòng)物營(yíng)養(yǎng)、生理、生化和分子生物學(xué).E-mail:zhaokund@hotmail.com.通訊作者:丁兆坤(1956—),男,教授,博士生導(dǎo)師;研究方向:環(huán)境生物學(xué)、水生動(dòng)物營(yíng)養(yǎng)、生理、生化和分子生物學(xué).E-mail:youqing.xu@hotmail.com.