王 平,LI Chunguang,漆正堂,丁樹哲
?
急性遞增負(fù)荷運(yùn)動(dòng)對(duì)小鼠骨骼肌SOD同工酶活性和mRNA表達(dá)的影響
王 平1,LI Chunguang2,漆正堂3,4,丁樹哲4
目的:通過建立急性遞增負(fù)荷小鼠運(yùn)動(dòng)模型,探討小鼠急性跑臺(tái)運(yùn)動(dòng)后骨骼肌抗氧化防御系統(tǒng)的反應(yīng)。方法:30只6周齡清潔級(jí)雄性ICR小鼠,體重20.81±2.31g,隨機(jī)分為安靜對(duì)照組(C組,6只)、急性遞增負(fù)荷運(yùn)動(dòng)45min組(E1組,6只)、90min組(E2,6只)、120min組(E3組,6只)和150min組(E4組,6只)組。正式運(yùn)動(dòng)按以下程序:第1 級(jí)負(fù)荷:0°,8.2m/min(相當(dāng)于53%VO2max),15min;第2 級(jí)負(fù)荷:5°,15m/min(相當(dāng)于64%VO2max),15min;第3 級(jí)負(fù)荷:10°,19.3m/min(相當(dāng)于76%VO2max)。各組分別運(yùn)動(dòng)至所設(shè)相應(yīng)時(shí)間及安靜對(duì)照組,取出左、右側(cè)腓腸肌,采用硝酸還原酶法測定線粒體NO含量,采用化學(xué)比色法測定eNOS活性,采用黃嘌呤氧化酶法測定線粒體MnSOD、CuZnSOD的活性;實(shí)時(shí)熒光定量PCR(Real-time PCR)檢測骨骼肌MnSOD、CuZnSOD基因表達(dá)水平。結(jié)果:(1)與安靜對(duì)照組相比,小鼠骨骼肌線粒體NO含量在急性遞增負(fù)荷運(yùn)動(dòng)45min、90min、120min和150min均出現(xiàn)顯著增加(P<0.05),且90min達(dá)到峰值(P<0.01);小鼠骨骼肌線粒體eNOS活性在急性遞增負(fù)荷運(yùn)動(dòng)45min、90min和120min均出現(xiàn)顯著增加(P<0.05),且90min達(dá)到峰值(P<0.01),但150min未出現(xiàn)顯著性變化(P>0.05);(2)線粒體MnSOD活性在急性運(yùn)動(dòng)45min后明顯增加(P<0.05),急性運(yùn)動(dòng)90、120min和150min均出現(xiàn)極顯著增加(P<0.01),且在120min達(dá)到峰值;(3)與安靜對(duì)照組相比,MnSODmRNA在急性運(yùn)動(dòng)45min出現(xiàn)顯著性增加(P<0.05),急性運(yùn)動(dòng)90min、120min和150min均出現(xiàn)極顯著性增加(P<0.01),且在150min達(dá)到峰值(P<0.01)。結(jié)論:線粒體MnSOD對(duì)急性遞增負(fù)荷運(yùn)動(dòng)具有較好的應(yīng)答反應(yīng),是運(yùn)動(dòng)刺激-反應(yīng)-適應(yīng)的主要SOD機(jī)制。
急性遞增運(yùn)動(dòng);骨骼肌;NO;eNOS;MnSOD;CuZnSOD
關(guān)于肌肉自由基理論的研究始于20世紀(jì)50年代[1],Koren等人證實(shí)肌肉在反復(fù)收縮時(shí)自由基含量會(huì)顯著增加[2]。Davies等人證實(shí)大鼠進(jìn)行一次性力竭性運(yùn)動(dòng)后,骨骼肌自由基明顯增加[3]。在過去30多年來,國內(nèi)外許多學(xué)者認(rèn)為自由基對(duì)機(jī)體是有害的,但現(xiàn)在越來越多的研究證實(shí)在運(yùn)動(dòng)適應(yīng)過程中肌肉收縮產(chǎn)生的活性氧具有生理性的作用,機(jī)體細(xì)胞在面對(duì)自由基攻擊時(shí),會(huì)做出相應(yīng)的反應(yīng),激發(fā)產(chǎn)生抗氧化防御系統(tǒng)諸如超氧化物歧化酶、過氧化物酶等[4]。因此,對(duì)于活性氧的正常產(chǎn)生機(jī)體細(xì)胞能夠做出很好的應(yīng)對(duì)反應(yīng)。
目前越來越多的研究表明,低濃度的活性氧可誘導(dǎo)機(jī)體抗氧化酶和其他防御系統(tǒng)的表達(dá),這種現(xiàn)象可以用毒物興奮效應(yīng)概念解釋,從這一點(diǎn)看,自由基是有益的。最近此理論被延伸到運(yùn)動(dòng)源性活性氧效應(yīng)中[5-6]。在運(yùn)動(dòng)過程中,毒素是活性氧的形成,活性氧觸發(fā)細(xì)胞具體的適應(yīng)反應(yīng),如抗氧化防御系統(tǒng)酶活性的增加,抵抗氧化應(yīng)激,氧化損傷減小[7]。耐力訓(xùn)練可使大鼠線粒體MnSOD和谷胱甘肽過氧化酶顯著增加[8]。但目前關(guān)于急性運(yùn)動(dòng)后機(jī)體的一氧化氮(NO)含量、內(nèi)皮型一氧化氮合酶(eNOS))活性、抗氧化酶活性和其基因的表達(dá)情況如何,研究的還不充分,本研究建立急性遞增負(fù)荷跑臺(tái)運(yùn)動(dòng)小鼠模型,檢測骨骼肌線粒體一氧化氮(NO)含量、內(nèi)皮型一氧化氮合酶(eNOS)活性、CuZnSOD和MnSOD活性和基因表達(dá)的時(shí)相性變化情況,探討急性跑臺(tái)運(yùn)動(dòng)誘導(dǎo)小鼠骨骼肌抗氧化防御系統(tǒng)的分子機(jī)制,也為科學(xué)合理進(jìn)行運(yùn)動(dòng)訓(xùn)練提供一些理論依據(jù)。
1.1 實(shí)驗(yàn)動(dòng)物與分組
清潔級(jí)6周齡雄性ICR小鼠30只,由上海斯萊克實(shí)驗(yàn)動(dòng)物有限責(zé)任公司提供,許可證號(hào)為SCXK(滬)2007-0005,體重20.81±2.31g,所有小鼠進(jìn)行每籠5只的干籠飼養(yǎng),自由進(jìn)食、飲水,以國家標(biāo)準(zhǔn)嚙齒類動(dòng)物常規(guī)飼料喂養(yǎng),飼料和墊料均由上海生工生物技術(shù)有限公司提供,動(dòng)物房溫度維持在18℃-24℃,相對(duì)濕度為45%-55%,自然光照。實(shí)驗(yàn)動(dòng)物隨機(jī)分為安靜對(duì)照組(C),急性遞增負(fù)荷運(yùn)動(dòng)45min組(E1),急性遞增負(fù)荷運(yùn)動(dòng)90min組(E2),急性遞增負(fù)荷運(yùn)動(dòng)120min組(E3)和急性遞增負(fù)荷運(yùn)動(dòng)150min組(E4),共5組,每組6只。
1.2 運(yùn)動(dòng)方案
實(shí)驗(yàn)前所有動(dòng)物均未進(jìn)行過跑臺(tái)運(yùn)動(dòng),小鼠進(jìn)行正式實(shí)驗(yàn)之前進(jìn)行3天適應(yīng)性跑臺(tái)訓(xùn)練,坡度為0°,速度5m/min,持續(xù)時(shí)間5min。正式實(shí)驗(yàn)參照Bedford據(jù)鼠體重/攝氧量回歸方程所建立的遞增運(yùn)動(dòng)負(fù)荷訓(xùn)練方案[9],按以下程序運(yùn)動(dòng):第1 級(jí)負(fù)荷:0°,8.2m/min(相當(dāng)于53%VO2max),15min;第2 級(jí)負(fù)荷:5°,15m/min(相當(dāng)于64%VO2max),15min;第3 級(jí)負(fù)荷:10°,19.3m/min(相當(dāng)于76%VO2max),各組分別運(yùn)動(dòng)至所設(shè)相應(yīng)時(shí)間。
1.3 取材
各組小鼠運(yùn)動(dòng)至對(duì)應(yīng)時(shí)間,即刻斷頭迅速取出左、右側(cè)腓腸肌,稱濕重。左側(cè)腓腸肌加入預(yù)冷的勻漿介質(zhì)抽提線粒體,右側(cè)腓腸肌至于液氮中,然后轉(zhuǎn)入-80°冰箱保存,待測,安靜對(duì)照組與運(yùn)動(dòng)組同時(shí)取材。
1.4 線粒體NO含量和eNOS活性的測定
NO和eNOS試劑盒均購自南京建成生物試劑公司,NO測試方法采用硝酸還原酶法,eNOS測試方法采用化學(xué)比色法,均采用TECAN infinite M200型號(hào)酶標(biāo)儀置于測試版中進(jìn)行測定。
1.5 線粒體CuZnSOD、MnSOD活性的測定
線粒體提取的方法采用差速離心法,其具體制備過程參照[10]。CuZnSOD、MnSOD活性測定采用黃嘌呤氧化酶法,蛋白定量采用BCA法,采用TECAN infinite M200型號(hào)酶標(biāo)儀測定,單位U/mgprot。
1.6 Real time PCR檢測CuZnSOD、MnSOD基因表達(dá)水平
冰上取腓腸肌約40mg,采用Invitrogen Trizol法提取總RNA,參照試劑盒說明書進(jìn)行,紫外分光光度法計(jì)算OD260/OD280比值,選取符合Real-time PCR要求的RNA進(jìn)行反轉(zhuǎn)錄(RT);RT使用ReverTra Ace qPCR RT Kit,條件為15℃,5min;37℃,15min;98℃,5min,合成第一鏈cDNA;cDNA的PCR使用2×SYBR green PCR Master Mix反應(yīng)體系,反應(yīng)條件為預(yù)變性(95℃,1min);35個(gè)PCR循環(huán)(95℃,15s;61℃,30s;72℃,45s,收集熒光)。擴(kuò)增反應(yīng)結(jié)束后,建立PCR產(chǎn)物的熔解曲線。當(dāng)熔解曲線只顯示一個(gè)主波峰時(shí),說明PCR擴(kuò)增特異性較高,反應(yīng)結(jié)束后,PCR儀給出各反應(yīng)孔的Ct值,以β-actin基因?yàn)閮?nèi)參,根據(jù)公式2-ΔCt計(jì)算各樣品目的基因的相對(duì)表達(dá)量。
各基因引物序列如下:
CuZnSOD: Forward5’-agatgacttgggcaaaggtg-3’,Reverse 5’-tctccatcagctgtcattgc-3’;
MnSOD: Forward5’-gccccctgagttgttgaata-3’,Reverse5’-gccccctgagttgttgaata-3’;
β-actin: Forward 5’-tgttaccaactgggacgaca-3’, Reverse 5’-ctatgggagaacggcagaag-3’。
上述引物序列查自NCBI數(shù)據(jù)庫,由上海生工生物技術(shù)有限公司合成。
1.7 數(shù)據(jù)統(tǒng)計(jì)處理
2.1 急性遞增負(fù)荷跑臺(tái)運(yùn)動(dòng)對(duì)小鼠骨骼肌線粒體NO含量的影響
從表1顯示,與對(duì)照組相比,小鼠骨骼肌線粒體NO含量在急性遞增負(fù)荷運(yùn)動(dòng)45min、90min、120min和150min均出現(xiàn)顯著增加(P<0.05),且90min達(dá)到峰值(P<0.01)。
表1 急性遞增負(fù)荷跑臺(tái)運(yùn)動(dòng)對(duì)小鼠骨骼肌線粒體NO的影響Table1 Effect of Acute Incremental Treadmill Exercise on Mitochondrial NO Content in Skeletal Muscle of Mice
2.2 急性遞增負(fù)荷跑臺(tái)運(yùn)動(dòng)對(duì)小鼠骨骼肌線粒體eNOS活性的影響
從表2顯示,與對(duì)照組相比,小鼠骨骼肌線粒體eNOS活性在急性遞增負(fù)荷運(yùn)動(dòng)45min、90min和120min均出現(xiàn)顯著增加(P<0.05),且90min達(dá)到峰值(P<0.01),但150min未出現(xiàn)顯著性變化(P>0.05)。
表2 急性遞增負(fù)荷跑臺(tái)運(yùn)動(dòng)對(duì)小鼠骨骼肌線粒體eNOS活性的影響Table2 Effect of Acute Incremental Treadmill Exercise on Mitochondrial eNOS Content in Skeletal Muscle of Mice
2.3 急性遞增負(fù)荷跑臺(tái)運(yùn)動(dòng)對(duì)小鼠骨骼肌線粒體CuZnSOD和MnSOD的影響
從表3顯示,與對(duì)照組相比,小鼠骨骼肌線粒體MnSOD的活性在急性遞增負(fù)荷運(yùn)動(dòng)45min開始顯著增加(P<0.05),運(yùn)動(dòng)至90min、120min和150min出現(xiàn)極顯著增加(P<0.01),且120min達(dá)到峰值;但CuZnSOD活性在急性遞增負(fù)荷運(yùn)動(dòng)45min、90min、120min和150min(P>0.05)。
表3 急性遞增負(fù)荷跑臺(tái)運(yùn)動(dòng)對(duì)小鼠骨骼肌線粒體CuZnSOD和MnSOD的影響Table3 Effect of Acute Incremental Treadmill Exercise on Mitochondrial CuZnSOD and MnSOD in Skeletal Muscle of Mice
2.4 急性遞增負(fù)荷跑臺(tái)運(yùn)動(dòng)對(duì)小鼠骨骼肌CuZnSODmRNA和MnSODmRNA表達(dá)的影響
從表4顯示,與對(duì)照組相比,小鼠急性運(yùn)動(dòng)45min時(shí),MnSODmRNA表達(dá)顯著增加(P<0.05),當(dāng)運(yùn)動(dòng)到90min、120min、150min時(shí),出現(xiàn)極顯著增加(P<0.01),且150min達(dá)峰值;但CuZnSOD mRNA表達(dá)在運(yùn)動(dòng)45min、90min、120min和150min均未出現(xiàn)顯著性差異(P>0.05)。
表4 急性遞增負(fù)荷運(yùn)動(dòng)對(duì)小鼠骨骼肌CuZnSODmRNA和MnSODmRNA表達(dá)的影響Table4 Effect of Acute Incremental Treadmill Exercise on Mitochondrial CuZnSODmRNA and MnSODmRNA in Skeletal Muscle of Mice
我們的研究發(fā)現(xiàn),急性運(yùn)動(dòng)明顯增加骨骼肌線粒體NO含量,NO含量的變化基本呈時(shí)間依賴性(45-150min),在運(yùn)動(dòng)90分鐘時(shí)達(dá)到峰值,提示急性運(yùn)動(dòng)引起骨骼肌線粒體NO的形成可能與運(yùn)動(dòng)過程關(guān)系密切。耐力運(yùn)動(dòng)導(dǎo)致老年大鼠骨骼肌NO含量增加[11],90分鐘和150分鐘游泳增加血清NO含量[12],提示運(yùn)動(dòng)源性NO含量的增加有助于心臟輸出量和骨骼肌血流量的增加[13]。
NOS有三種同分異構(gòu)體,分別是神經(jīng)元型NOS(nNOS)、內(nèi)皮型NOS(eNOS)和誘生型NOS(iNOS)[14]。nNOS和eNOS在骨骼肌中含量豐富,nNOS主要存在于肌纖維膜中,eNOS主要存在于線粒體中[15]。iNOS主要在骨骼肌炎癥階段表達(dá)[16]。我們的研究結(jié)果發(fā)現(xiàn),骨骼肌線粒體eNOS活性呈時(shí)間依賴性增加(運(yùn)動(dòng)45min到120min),運(yùn)動(dòng)90分鐘達(dá)到峰值,與NO含量變化趨勢(shì)基本一致,提示適宜運(yùn)動(dòng)可以提高骨骼肌線粒體eNOS活性,推測,NO含量的變化極有可能與eNOS活性增加有關(guān)。我們的研究結(jié)果與以前的研究結(jié)果報(bào)道一致,他們研究發(fā)現(xiàn),耐力運(yùn)動(dòng)明顯提高骨骼肌eNOS的表達(dá)和活性[17]。也有人報(bào)道運(yùn)動(dòng)通過增加骨骼肌血流量、剪切力甚至某種特定的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)途徑諸如磷脂酶C、鈣離子等使血管內(nèi)皮細(xì)胞eNOS表達(dá)和活性明顯增加[18]。
N0可調(diào)控運(yùn)動(dòng)性線粒體生物發(fā)生、抗氧化還原等生物學(xué)作用[19]。已有研究證實(shí),NO的產(chǎn)生可調(diào)控骨骼肌靶基因轉(zhuǎn)錄水平和翻譯水平的表達(dá),也可改變細(xì)胞內(nèi)氧化還原信號(hào)狀態(tài)[20]。NO信號(hào)途徑的變化與運(yùn)動(dòng)性骨骼肌內(nèi)皮功能的適應(yīng)密切相關(guān)[21]。耐力運(yùn)動(dòng)通過NO信號(hào)途徑增加老年大鼠骨骼肌GPx-1和SOD的含量,減少血管緊張素II的釋放[22]。NO也可調(diào)控骨骼肌PI3K/Akt和MnSOD信號(hào)途徑[21]。因此,NO也有可能作為信號(hào)分子調(diào)節(jié)骨骼肌運(yùn)動(dòng)性氧化應(yīng)激[23]。
細(xì)胞抗氧化防御系統(tǒng)對(duì)于需氧生物的生存至關(guān)重要。針對(duì)哺乳動(dòng)物,SOD在清除體內(nèi)自由基,維護(hù)骨骼肌功能方面起著決定性作用[24]。SOD按其所含金屬輔基不同,其同工酶主要分為兩種,一種是CuZnSOD(含Cu、Zn金屬輔基),特性非常穩(wěn)定,以前認(rèn)為主要存在于細(xì)胞漿,目前有研究證實(shí)線粒體中也有CuZnSOD[25];另一種是MnSOD(含錳Mn金屬輔基),主要存在于線粒體基質(zhì)中[24]。重組人SOD研究發(fā)現(xiàn),CuZnSOD半衰期較短,只有6-10分鐘,而MnSOD半衰期較長,約5-6小時(shí)[26]。兩種類型的SOD活性和基因相對(duì)表達(dá)量與骨骼肌的抗氧化能力密切相關(guān)[27]。
目前比較一致的觀點(diǎn)是耐力運(yùn)動(dòng)明顯增加骨骼肌MnSOD活性[28-29]。但關(guān)于急性運(yùn)動(dòng)對(duì)CuZnSOD和MnSOD活性和基因相對(duì)表達(dá)的報(bào)道還不是很一致,本研究結(jié)果顯示,MnSOD活性在急性運(yùn)動(dòng)45分鐘開始明顯增加,隨后90min、120min、150min均出現(xiàn)極顯著增加,在120min達(dá)到峰值,但CuZnSOD活性在急性運(yùn)動(dòng)45min、90min、120min和150min均未發(fā)生明顯變化。與Higuchiet al 等人[30]的研究結(jié)果一致,他們的研究發(fā)現(xiàn),運(yùn)動(dòng)訓(xùn)練使MnSOD活性增加,CuZnSOD活性沒有發(fā)生顯著變化。
但也有不一致的報(bào)道,HollanderJ等人報(bào)道,一次性力竭運(yùn)動(dòng)(25 m/min,5% grade,力竭時(shí)間大約1hr)并沒有使大鼠股外側(cè)深肌和股外側(cè)淺肌的CuZnSOD和MnSOD活性發(fā)生顯著變化[31]。Ishi OS等人也報(bào)道急性運(yùn)動(dòng)(15-20 m/min, 10 min/day for 3 days)對(duì)大鼠比目魚肌CuZnSOD和MnSOD活性均未發(fā)生顯著變化,而9周耐力運(yùn)動(dòng)顯著增加大鼠比目魚肌MnSOD和CuZnSOD的活性。分析其原因可能與鼠齡、鼠的飲食、運(yùn)動(dòng)方式、運(yùn)動(dòng)強(qiáng)度、運(yùn)動(dòng)持續(xù)時(shí)間、肌纖維類型、試劑盒使用的方法不同等因素[29],當(dāng)然最重要的可能與此酶的基因調(diào)控復(fù)雜性有關(guān),并且骨骼肌屬于高度異質(zhì)性組織,每種肌纖維類型各自的新陳代謝特性、氧化能力和抗氧化防御能等因素力有關(guān),但是具體作用機(jī)制仍然需要進(jìn)一步深入研究。
為了進(jìn)一步了解急性運(yùn)動(dòng)對(duì)抗氧化防御系統(tǒng)影響涉及到的分子機(jī)制,我們還檢測了MnSODmRNA和CuZnSODmRNA表達(dá),結(jié)果發(fā)現(xiàn),MnSODmRNA和CuZnSODmRNA表達(dá)變化趨勢(shì)與活性變化基本一致,MnSODmRNA在急性運(yùn)動(dòng)45分鐘開始明顯增加,隨后90min、120min、150min均出現(xiàn)極顯著增加,且在150min達(dá)到峰值,但CuZnSODmRNA在急性運(yùn)動(dòng)45min、90min、120min和150min均未發(fā)生明顯變化。與Hollander J等人的報(bào)道一致,他們發(fā)現(xiàn)急性運(yùn)動(dòng)使大鼠股外側(cè)深肌MnSOD mRNA表達(dá)顯著增加,這種狀態(tài)一直持續(xù)到運(yùn)動(dòng)后2小時(shí),而CuZnSODmRNA表達(dá)未見明顯變化[31]。分析其原因可能是由于MnSOD主要位于線粒體,MnSOD基因的啟動(dòng)子上具有活性氧(包括過氧化氫)的結(jié)合位點(diǎn),前期研究結(jié)果已經(jīng)證實(shí)急性運(yùn)動(dòng)引起小鼠腓腸肌線粒體過氧化氫含量顯著增加[32],過氧化氫的增加激活轉(zhuǎn)錄因子NF-kB和轉(zhuǎn)錄激活因子AP-1的結(jié)合,然后通過順式作用元件(cis-acting element)影響基因表達(dá)活性的DNA序列,從而增加MnSOD基因轉(zhuǎn)錄水平[31]。的確,在哺乳動(dòng)物MnSOD基因的啟動(dòng)子上具有NF-kB 和AP-1的結(jié)合位點(diǎn),且氧化應(yīng)激可上調(diào)MnSOD的基因表達(dá)[30,33],也可能與NO含量的增加有關(guān),它作為信號(hào)分子激活MnSOD的表達(dá)和增加酶的活性。而CuZnSOD基因啟動(dòng)子上沒有上述結(jié)合位點(diǎn),它在運(yùn)動(dòng)過程中的基因表達(dá)水平不能通過NF-kB或AP-1途徑活化。故不同的啟動(dòng)子序列也許是導(dǎo)致運(yùn)動(dòng)引起2種SOD同工酶不同反應(yīng)的真正原因[30]。
但也有相反的報(bào)道,Ishi SO等人報(bào)道,一次性力竭運(yùn)動(dòng)并沒有使大鼠比目魚肌MnSOD mRNA和CuZnSODmRNA[34]。HollanderJ報(bào)道耐力運(yùn)動(dòng)(27 m/min ,12% grade for 2 h/day, 5 days/w for 10 w)未見大鼠比目魚肌、股外側(cè)深肌和股外側(cè)淺肌MnSODmRNA和CuZnSODmRNA的表達(dá)發(fā)生顯著變化,一次性運(yùn)動(dòng)也未見大鼠股外側(cè)淺肌MnSODmRNA發(fā)生變化。因此,這也是急性運(yùn)動(dòng)對(duì)MnSOD和CuZnSOD基因表達(dá)進(jìn)行深入研究的原因之一。
急性運(yùn)動(dòng)沒有引起小鼠骨骼肌線粒體CuZnSOD含量和CuZnSODmRNA表達(dá)的顯著變化,提示CuZnSOD基因可能不含有能夠使自由基激活的轉(zhuǎn)錄因子和轉(zhuǎn)錄激活因子相結(jié)合的位點(diǎn),而急性運(yùn)動(dòng)引起的MnSOD含量和MnSOD mRNA表達(dá)的增加,可能是急性運(yùn)動(dòng)引起NO、過氧化氫增加激活MnSOD基因上的啟動(dòng)子促進(jìn)基因轉(zhuǎn)錄,增加MnSOD的活性,從而增強(qiáng)骨骼肌抗氧化防御能力。
[1] Commoner B, Townsend J, Pake GE. Free radicals in biological materials [J]. Nature, 1954,174(4432) :689-691.
[2] Koren A, Sauber C, Sentjurc M, Et AL.Free radicals in tetanic activity of isolated skeletal muscle[J].Comp BiochemPhysiol B, 1983,74(3):633-635.
[3] Davies KJ, Quintanilha AT, Brooks GA, Et AL.Free radicals and tissue damage produced by exercise[J]. BiochemBiophys Res Commun, 1982,107(4):1198-1205.
[4] Zsolt R, Hae YC, Sataro G, Et AL.Systemic adaptation to oxidative challenge induced by regular exercise [J].Free Radical Biology & Medicine, 2008,44(1):153-159.
[5] Radak Z, Chung HY, Goto S. Exercise and hormesis: oxidative stress related adaptation for successful aging [J]. Biogerontology,2005,6(1):71-75.
[6] Ji LL, Gomez MC, Vina J. Exercise and hormesis: activation of cellular antioxidant signaling pathway [J]. Ann N Y Acad Sci,2006,1067(5):425-435.
[7] Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise [J].Free Radical Biology & Medicine, 2008, 44(2) :153-159.
[8] Salminen A, Vihko V. Lipid peroxidation in exercise myopathy [J]. ExpMolPathol, 1983,38(3):380-388.
[9] Bedford TG, Tipton CM, Wilson NC,Et AL.Maximum Oxygen Consumption of Rats and Its Changes with Various Experimental Procedures [J]. J Appl Physiol Respir Environ Exerc Physiol, 1979, 47(6): 1278-1283.
[10] Fernández VE, Ferrín G, Pérez MA, Et AL.Isolation of Mitochondri for Biogenetical Studies: an Update [J]. Mitochondrion, 2010,10(3):253-262.
[11] Pan SY, Wang R.Effect of Nitric Oxide (NO) Content and Nitric Oxide Synthase (NOS)Activity on Serum Rats of Chronic Hypoxia and Exercise[J]. Journal of Xi’an Institute of Physical Education,2005,22(1): 83-85.
[12] Djordjevic D, Jakovljevic V, Cubrilo D, Et AL.Coordination Between Nitric Oxide and Superoxide Anion Radical during Progressive Exercise in Elite Soccer Players[J].Open Biochem J, 2010, 4(1): 100-106.
[13] 任文君,張斌南,宇文展,等.不同運(yùn)動(dòng)方式對(duì)大鼠骨骼肌NO含量及NOS活性的影響[J].2009,29(1):66-71.
[14] 徐飛.運(yùn)動(dòng)時(shí)骨骼肌內(nèi)一氧化氮信號(hào)傳遞途徑及一氧化氮對(duì)骨骼肌攝取葡萄糖的調(diào)節(jié)作用[J].首都體育學(xué)院學(xué)報(bào), 2008,20(3):48-51.
[15] Jackson MJ. Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise[J].Philos Trans R Soc Lond B Biol Sci, 2005, 360(1464):2285-2291.
[16] Tell G,Damante G, Caldwell D, Et AL.The Intracellular localization of APE1/Ref-1: more than a Passive Phenomenon[J]. Antioxid Redox Signal, 2005 7 (3-4):367-384.
[17] Stamler JS, Meissner G. Physiology of Nitric Oxide in Skeletal Muscle[J].Physiol Rev, 2001,81(1):209-237.
[18] Zou GM, Luo M, Reed HA, Et AL.Ape1 Regulates Hematopoietic Differentiation of Embryonic Stem Cells through its Redox Functional Domain[J]. Blood, 2007, 109( 5):1917-1922.
[19] Park Y, Prisby RD, Behnke BJ, Et AL. Effects of aging, TNF-alpha, and Exercise Training on Angiotensin II-induced Vasoconstriction of Rat Skeletal Muscle Arterioles[J].J Appl Physiol 2012,113(7):1091-1100.
[20] Jackson MJ, Jones DA, Edwards RH. Vitamin E and skeletal muscle[J].Ciba Found Symp, 1983, 101(2)224-239.
[21] Spier SA, Delp MD, Meininger CJ, Et AL. Effects of ageing and exercise training on endothelium-dependent vasodilatation and structure of rat skeletal muscle arterioles[J].J Physiol, 2004, 556( Pt 3):947-95.
[22] Sakellariou GK,Jackson MJ, Vasilaki A.Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases[J].Free Radic Res, 2014, 48(1):12-29.
[23] Shen W,Zhang X,Zhao G,Et AL. Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise.Med Sci Sports Exerc, 1995, 27(8):1125-1134.
[24] Ji LL.Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling [J]. Free Radical Biology & Medicine,2008, 44(2):142-152.
[25] Fridovich I. Superoxide radical and superoxide dismutases[J].Annu Rev Biochem, 1995,64(1): 97-112.
[26] Gorecki M, Beck Y, Hartman JR.,EtAL.Recombinant human superoxide dismutases: production and potential therapeuticuses [J]. Free Radic Res Commun,1991,12-13(Pt 1):401-410.
[27] Ji LL. Antioxidantenzymeresponse to exercise and aging [J].Med Sci Sports Exerc,1993, 25(2):225-231.
[28] Ji LL, Stratman FW, Lardy HA.Antioxidant enzyme systems in rat liver and skeletal muscle: influences of selenium deficiency, acute exercise and chronic training[J]. Arch. Biochem.Biophys, 1988,263(1): 150-160.
[29] Powers SK, Criswell D, Lawler J, Et AL. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle [J].Am J Physiol,1994,266(2 Pt 2):R375-380.
[30] Higuchi M, Cartier LJ, Chen M, Holloszy JO.Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise [J]. J Gerontol,1985,40(3):281-286.
[31] Hollander J, Fiebig R, Gore M, Et AL. Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle [J]. Pflugers Arch,2001,442(3):426-434.
[32] Wang P, Li CG,Qi Z, Et AL.Acute exercise induced mitochondrial H2O2 production in mouse skeletal muscle: association with p(66Shc) and FOXO3a signaling and antioxidant enzymes [J].Oxid Med Cell Longev, 2015;2015:536456.
[33] Ho YS, Howard AJ, Crapo JD.Molecular structure of a functional rat gene for manganese-containing superoxide dismutase [J]. Am J Respir Cell MolBiol ,1991,4(3):278-286.
[34] Ohishi S, Kizaki T, Nagasawa, J, Et AL. Effects of endurance training on superoxide dismutase content and mRNA expression in rat muscle [J]. Clinical and Experimental Pharmacology and Physiology, 1997, 24(5):326-332.
(編輯 孫君志)
Effect of Acute Incremental Load Exercise on SOD activity and mRNA in Skeletal Muscle of Mice
WANG Ping1, LI Chunguang2, QI Zhengtang3,4, DING Shuzhe4
To investigate the changes of the content of NO and activity of eNOS,the mRNA expression and the activity changes of MnSOD and CuZnSOD on acute incremental exercisein skeletal muscle of mice and explore the effects of antioxidant defense system. Methods: thirty male ICR mice were randomly divided into control group (C), 45min exercise group (E1,n=6), 90min exercise group (E2,n=6), 120min exercise group (E3,n=6) and 150min exercise group (E4,n= 6). Mice in exercise groups were trained through treadmill exercise (0°grade, 5m/min, 5min/day) for 3 days. After adaptation, mice in exercise groups underwent treadmill exercise to the corresponding time set up. Exercise patterns are as follows: First, 8.2m/min, 0 grade, 15min; second, 15m/min, 5% grade, 15min; third, 19.3m/min,10% grade. At the end of exercise, all mice were killed and their gastrocnemius muscle were obtained. Left one was used as mitochondria extraction, right one was measured by Real-time PCR. Results: (1) Compared with control group,NO content significantly increased after 45min exercise (P<0.05), 90min((P<0.01)), 120min and 150min (P<0.05) and reached the peak at 90 min. eNOS activity significantly increased after 45min exercise (P<0.05), 90min(P<0.01), 120min (P<0.05) and reached the peak at 90min.But the eNOS activity didn’t increase in 150min group significantly (P<0.05);(2) MnSOD activity was significantly increased after 45min exercise (P<0.05), 90min, 120min and 150min (P<0.01) and reached the peak at 120min.But the CuZnSOD activity didn’t increase in all exercise groups significantly (P<0.05); (3) Compared with control group, MnSOD mRNA significantly increased after 45min exercise (P<0.05), 90min, 120min and 150min (P<0.01) and reached the peak at 150min.But the CuZnSOD mRNA didn’t increase in all exercise groups significantly (P<0.05).Conclusion: MnSOD is the key SOD enzyme in response to the acute incremental exercise, which forms a protective cycling mechanism in acuteskeletal muscle exercise.
AcuteIncrementalExercise;SkeletalMuscle;NO;eNOS;MnSOD;CuZnSOD
G804.7 Document code:A Article ID:1001-9154(2016)03-0111-05
國家自然科學(xué)基金資助項(xiàng)目“線粒體蛋白輸入(PIM)的運(yùn)動(dòng)適應(yīng)與調(diào)控機(jī)制研究”(31171142);浙江省教育廳資助項(xiàng)目“運(yùn)動(dòng)誘導(dǎo)自噬信號(hào)通路調(diào)控骨骼肌質(zhì)量變化研究”(Y201328990);杭州師范大學(xué)博士啟動(dòng)金“運(yùn)動(dòng)誘導(dǎo)自噬信號(hào)通路調(diào)控骨骼肌質(zhì)量變化研究”(PE13002004028)。
王平,副教授,博士后,主要研究方向:骨骼肌運(yùn)動(dòng)適應(yīng)與信號(hào)調(diào)控。E-mail:wppa7476@163.com。
1.杭州師范大學(xué)體育與健康學(xué)院,浙江 杭州 311121;2. National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales 2751, Australia;3.華東師范大學(xué)青少年健康評(píng)價(jià)與運(yùn)動(dòng)干預(yù)教育部重點(diǎn)實(shí)驗(yàn)室,上海 200241;4.華東師范大學(xué)體育與健康學(xué)院,上海 200241 1. School of Physical Education and Health,Hangzhou Normal University,Hangzhou Zhejiang 311121;2. National Institute of Complementary Medicine, University of Western Sydney, Penrith, New South Wales 2751, Australia;3.Key Laboratory of Adolescent Health Assessment and Exercise Intervention Ministry of Education,East China Normal University,Shanghai 200241;4.School of Physical Education and Health,East China Normal University, Shanghai 200241
2015-09-24
2016-03-11
G804.7
A
1001-9154(2016)03-0116-06
成都體育學(xué)院學(xué)報(bào)2016年3期