龔萬陽,諸葛亦斯,劉德富
(1.三峽大學(xué) 水利與環(huán)境學(xué)院,湖北 宜昌 443002;2.中國水利水電科學(xué)研究院 水環(huán)境研究所,北京 100038)
不同流速對鯽魚推進(jìn)效率影響的數(shù)值研究
龔萬陽1,諸葛亦斯2,劉德富1
(1.三峽大學(xué) 水利與環(huán)境學(xué)院,湖北 宜昌 443002;2.中國水利水電科學(xué)研究院 水環(huán)境研究所,北京 100038)
魚類趨流性的試驗(yàn)和魚類游動的數(shù)值模擬是當(dāng)前研究的兩個熱點(diǎn),大多數(shù)魚類不僅有趨流特性而且還能高效節(jié)能的向前推進(jìn),開展魚類趨流性與推進(jìn)效率關(guān)系的研究既能完善魚類推進(jìn)機(jī)理理論,也能在魚道設(shè)計(jì)時提高其過魚效率。本文以鯽魚在不同恒定流速中的實(shí)測游泳數(shù)據(jù)為依據(jù),利用計(jì)算流體力學(xué)軟件flow-3d對魚類波狀擺動進(jìn)行數(shù)值模擬,建立鯽魚游動的數(shù)值計(jì)算模型,研究在不同流速下鯽魚完成一個運(yùn)動周期后所對應(yīng)的推進(jìn)效率。結(jié)果表明,隨著流速的增大魚的推進(jìn)效率呈現(xiàn)出先增大后減小的變化趨勢,當(dāng)流速條件為0.5m/s時對應(yīng)的魚類推進(jìn)效率值最大,也是推進(jìn)效率隨流速變化的轉(zhuǎn)折點(diǎn)。該研究獲得了鯽魚在頂流運(yùn)動狀態(tài)下魚類推進(jìn)效率與流速條件之間的相關(guān)關(guān)系。
流速;數(shù)值模擬;推進(jìn)效率
魚類為適應(yīng)環(huán)境在長期的自然進(jìn)化過程中形成趨流行為,具體表現(xiàn)為魚類感應(yīng)到流速后產(chǎn)生相應(yīng)的游泳行為,魚類游泳行為與水力學(xué)環(huán)境的關(guān)系一直是魚類行為學(xué)[1-2](Fish Ethology)研究內(nèi)容之一。在魚類趨流性的研究中,目前集中于均勻流場下魚類游泳行為與流速關(guān)系的研究,現(xiàn)已經(jīng)取得了顯著成果[3],積累了水流因子與魚類游泳狀態(tài)以及幾個關(guān)鍵游泳參數(shù)之間關(guān)系的研究[4-5]資料。這些研究成果大部分采用的是水槽試驗(yàn)法,但是由于水槽試驗(yàn)方法本身的局限性和測量儀器本身的限制導(dǎo)致某些水力學(xué)指標(biāo)值不易獲得。目前國內(nèi)外進(jìn)行生態(tài)水力學(xué)研究時通常采用數(shù)值計(jì)算的方法來獲取試驗(yàn)儀器無法測量的水力學(xué)指標(biāo)值,其中董志勇等[6]和曹慶磊等[7]通過數(shù)值計(jì)算獲得了同側(cè)和異側(cè)豎縫魚道模型中流速和紊動能的分布形態(tài)。但是在魚類游泳運(yùn)動方面數(shù)值模擬計(jì)算的研究成果并不多,特別是與生態(tài)學(xué)相關(guān)的研究內(nèi)容更少。
采用數(shù)值模擬的方法進(jìn)行魚類游泳運(yùn)動研究僅在艦船和仿生等相關(guān)領(lǐng)域[8]中有所涉及。Liu等[9]利用蝌蚪模型分析三維波狀游動模式的水動力和推進(jìn)機(jī)理,得出了魚類波狀運(yùn)動與噴流推進(jìn)的關(guān)系。Borazjani等[10]對鯵科運(yùn)動模式進(jìn)行數(shù)值模擬,結(jié)果表明水流形態(tài)對鯵科類游動的水動力性能有重要影響,叢文超[11]針對波狀擺動模式進(jìn)行的數(shù)值模擬,結(jié)果表明魚體運(yùn)動頻率對魚類推進(jìn)性能也有影響。前人的研究局限于魚體運(yùn)動模式與魚類推進(jìn)性能的關(guān)系,缺乏不同流速中魚類實(shí)際游泳運(yùn)動節(jié)律方面的考慮。本文為探究不同恒定均勻流速環(huán)境中,魚類游泳運(yùn)動的推進(jìn)效率與水流流速之間的關(guān)系,以試驗(yàn)實(shí)測鯽魚運(yùn)動節(jié)律為依據(jù),建立魚體鯵科運(yùn)動模式下的二維幾何運(yùn)動模型來模擬在不同均勻流場中魚體運(yùn)動對水流的作用,獲得相應(yīng)的水力學(xué)指標(biāo)值和魚類運(yùn)動指標(biāo)值,采用相關(guān)的公式計(jì)算推出流速條件-魚類運(yùn)動節(jié)律-推進(jìn)效率之間的關(guān)系。揭示魚類對于不同水流流速條件的響應(yīng)關(guān)系。
試驗(yàn)以鯽魚為研究對象,主要由于鯽魚幾乎遍布我國的各地的江河湖泊等大小水體中,鯽魚對水流的適應(yīng)性強(qiáng),遇流即行,無流即止。自然界中魚類普遍采用鯵科模式向前推進(jìn),鯽魚的游泳方式是典型的鯵科游泳模式,而且在水槽試驗(yàn)中鯽魚的游泳行為易于觀測。在0.2m/s及以下流速,鯽魚的游泳行為并不明顯,而流速大于1.2m/s后,魚的頂流時間太短,綜合考慮試驗(yàn)條件限制以及水流流態(tài)等因素的影響,故試驗(yàn)流速范圍定為0.3~1.2m/s。試驗(yàn)采用斷面沿程不變的環(huán)形水槽為試驗(yàn)裝置(見圖1),電動機(jī)提供動力,帶動轉(zhuǎn)槳推動水流,通過調(diào)節(jié)電動機(jī)功率來調(diào)節(jié)水流流速,使得環(huán)形水槽裝置試驗(yàn)區(qū)內(nèi)的流速分別達(dá)到0.3~1.2m/s共10個固定流速。
試驗(yàn)過程中環(huán)形水槽中水體的日平均溫度維持在20℃左右,溶解氧為7.0 mg/L左右。在每個恒定流速下進(jìn)行適量的放魚試驗(yàn),共10個流速組,每組放魚100次,每次放魚一條。試驗(yàn)魚體長為21± 2 cm,記錄每個試驗(yàn)流速下每條魚的運(yùn)動節(jié)律,主要包括尾鰭的擺動頻率、擺尾幅度和轉(zhuǎn)角值。然后對每個流速組內(nèi)所有魚的運(yùn)動節(jié)律統(tǒng)計(jì)后取平均,得到每個流速對應(yīng)下魚的運(yùn)動節(jié)律值(見表1)。
圖1 矩形斷面環(huán)形試驗(yàn)裝置平面圖(單位:mm)
表1 不同流速下對應(yīng)的鯽魚擺尾頻率、擺尾幅度和轉(zhuǎn)角平均值
實(shí)際觀測過程中魚類趨流行為的具體表現(xiàn)形式為頂流向前,魚通過調(diào)整身體運(yùn)動姿勢以某種特定的運(yùn)動節(jié)奏擺動尾鰭向前推進(jìn)。以往的魚類趨流性研究中常常以魚類游動過程中的頂流時間和趨流率作為數(shù)理統(tǒng)計(jì)指標(biāo),本研究以頂流過程中魚的擺尾頻率和擺尾幅度為統(tǒng)計(jì)指標(biāo)。根據(jù)試驗(yàn)統(tǒng)計(jì)結(jié)果可知魚類在頂流前行的過程中,不同流速條件下對應(yīng)不相同的運(yùn)動節(jié)律,總體上表現(xiàn)為隨著流速條件的增大,魚類運(yùn)動的擺尾幅度和擺尾頻率與流速呈現(xiàn)出正相關(guān)變化趨勢。即水流流速越大,魚的游泳運(yùn)動越劇烈,對周圍水體的作用越強(qiáng)。
有關(guān)研究表明魚在游動過程中,魚尾跡區(qū)域會出現(xiàn)一連串渦街,每個漩渦的轉(zhuǎn)動方向恰好與卡門渦街相反,渦街產(chǎn)生的誘導(dǎo)速度的方向也與卡門渦街相反,被稱為反卡門渦街。魚在游動過程中,尾鰭上擺會在尾部下表面形成一個逆時針方向旋轉(zhuǎn)的尾渦,當(dāng)尾鰭擺動達(dá)到最大擺幅處,并迅速地回?cái)[使得尾渦向后脫落出去。同上擺的過程相似,下擺時形成一個順時針方向旋轉(zhuǎn)的尾渦并在回?cái)[時脫落出去。魚尾反復(fù)擺動會在尾鰭后形成一連串交錯排列、旋向相反的離散渦[12],兩列渦之間就形成向后的射流,產(chǎn)生游動的主要推進(jìn)力[13]。
3.1 尾鰭運(yùn)動模型建立 采用與魚體相似的NACA0012翼型作為基本模型,各運(yùn)動狀態(tài)模擬形成如下:擺幅參數(shù)A的正弦規(guī)律變化實(shí)現(xiàn)了物理模型中魚體尾部按實(shí)測運(yùn)動規(guī)律進(jìn)行擺動[14]。這樣就滿足了物理模型為柔性變形的要求,而且這一運(yùn)動模型基本符合魚類鯵科游泳方式[15]。其中魚體相應(yīng)的運(yùn)動參數(shù)為實(shí)驗(yàn)實(shí)測的運(yùn)動參數(shù)值,與魚體模型中的參數(shù)符號相一致,具體輸入值可見表1。
如圖2所示,魚在游動過程中,尾鰭的運(yùn)動可以被分解為3個分運(yùn)動的合成,沿X(負(fù))方向的平動,沿Y方向的往復(fù)運(yùn)動,以及繞Z軸的擺動。其中,沿X方向和Y方向上的運(yùn)動疊加后使得尾鰭在XY平面上的軌跡為正弦曲線。尾鰭沿Y方向的平動的位移可表示為:
式中:ω為頻率,rad/s;Am為魚擺動幅度的最大絕對值。繞Z軸擺動的角位移可表示為:
式中:θmax為擺尾幅度最大的時候?qū)?yīng)的擺尾角度;Δt為擺動落后于平動的時間。
3.2 尾鰭動力學(xué)特性分析 尾鰭在水中運(yùn)動時,尾鰭對周圍的水體會有力的作用,在數(shù)值模擬的過程中,flow-3d可直接返回流場值和尾鰭所受推進(jìn)力,側(cè)向力以及轉(zhuǎn)矩值。由此可以計(jì)算出魚在推進(jìn)過程中有用功的大小以及總功的大小,進(jìn)而推求出魚在游泳運(yùn)動過程中魚本身推進(jìn)效率的大?。?6]。
從廣義上講,效率為有用功率和總功率之比,由于有用功和總功均隨時間變化而變化,即推進(jìn)效率可表示為:η=PX/P總,PX即為推進(jìn)力功率;P總即為尾鰭的總功率,其中包括3個部分:
推進(jìn)力功率:
式中:FX為推進(jìn)力;UX為X方向上魚的游泳速度。側(cè)向力功率:
式中:FY為側(cè)向推進(jìn)力;UY為側(cè)向平動速度。
轉(zhuǎn)矩功率:
式中:T為轉(zhuǎn)動力矩;θ為繞Z軸擺動的角位移。
由于在游動過程中,速度以及對應(yīng)的力均在不斷的變化,因而所對應(yīng)的功率也隨時間不斷的變化,故計(jì)算時取其平均值,魚的平均推進(jìn)效率可表示為:
3.3 二維幾何建模 基于鯽魚本身的體型相對較小的特點(diǎn),以及鯽魚運(yùn)動時對水體垂向上的作用相對較為均勻,可采用二維模型。對尾鰭擺動的水動力分析采用重整化群(Renormalization Group,RNG)方法,數(shù)值離散方法采用有限差分法(Finite Difference Method,F(xiàn)DM)流場區(qū)域?yàn)椋?000×375)mm,魚體全長210 mm,尾鰭長度63 mm,最大厚度16 mm,尾鰭兩側(cè)面呈流線型,根據(jù)鲹科魚類尾鰭的特點(diǎn)[17],轉(zhuǎn)動軸位于距離后端約三分之一總長處,外圍矩形邊框是墻體邊界,考慮到魚在模擬計(jì)算中運(yùn)動前進(jìn),本次模擬采用正方形動網(wǎng)格(邊長為5 mm)對計(jì)算區(qū)域進(jìn)行劃分,共計(jì)299 980個,如圖3所示。
圖2 鯽魚模型運(yùn)動
圖3 鯽魚流場建模及網(wǎng)格劃分
3.4 控制方程和數(shù)值格式 控制方程的求解基于有限體積法,考慮黏性以及不可壓縮流動,建立如下水流連續(xù)方程和水流動量方程。
水流連續(xù)方程:
水流動量方程:
式中:H=h+z,h為水頭,z為水深;u、v分別表示X,Y方向的流速;Nx、Ny分別表示X、Y方向的紊黏系數(shù);f為科氏力。
3.5 邊界條件的設(shè)定及初始化 圖3中,計(jì)算時魚體表面設(shè)定為物面無滑移,流場左邊界定義為流速入口(Specified velocity),右邊界為出口邊界(Outflow),上下邊界為對稱邊界(Symmetry)。利用flow-3d中的動網(wǎng)格技術(shù)對網(wǎng)格進(jìn)行定義,用運(yùn)動控制模塊選項(xiàng)設(shè)定尾鰭的運(yùn)動參數(shù),使得魚體及尾鰭運(yùn)動滿足要求。
3.6 模型率定 實(shí)驗(yàn)實(shí)測可獲得一個周期內(nèi)魚游泳的絕對距離值為S測,經(jīng)數(shù)值模擬計(jì)算可得魚在一個周期內(nèi)魚游泳的絕對距離值為S模。不同流速下對應(yīng)的S測和S模值可見圖4。S測和S模的變化趨勢一致,而且不同流速對應(yīng)下的S測和S模相近。說明數(shù)值模擬是準(zhǔn)確的、魚的運(yùn)動模型是合適的。該數(shù)值模擬能夠很好的反應(yīng)魚在流場中的運(yùn)動情況。
圖4 不同流速下對應(yīng)的S測和S模值
魚依靠尾鰭的擺動獲得向前的推力克服水流阻力向前運(yùn)動,流速越大對魚向前運(yùn)動造成的阻力越大,所需要的推進(jìn)力也就越大。魚通過調(diào)節(jié)自身的游泳運(yùn)動狀態(tài)可以獲得較大的推進(jìn)力,但是魚在調(diào)節(jié)自身游泳運(yùn)動狀態(tài)獲得較大推進(jìn)力的同時側(cè)向力也隨著變大,而側(cè)向力對魚向前運(yùn)動的作用不大,單純的用推進(jìn)力大小來表征魚對于不同流速的相關(guān)關(guān)系并不全面,為了能夠更加全面的反映流速與魚的游泳行為關(guān)系,用推進(jìn)效率來表征流速與魚游泳運(yùn)動之間的相關(guān)關(guān)系更加合適[18]。
許多學(xué)者對魚的推進(jìn)效率和魚的游泳狀態(tài)做了大量研究,并得到了魚的推進(jìn)效率和魚的運(yùn)動時間、轉(zhuǎn)動攻角以及斯特哈爾數(shù)(St)之間的相關(guān)關(guān)系[16],相應(yīng)的成果也表明魚的游泳推進(jìn)效率確實(shí)與魚的運(yùn)動狀態(tài)有關(guān),通過數(shù)值模擬所獲得的水力學(xué)指標(biāo)值更接近試驗(yàn)中的實(shí)際值,根據(jù)公式計(jì)算出相應(yīng)的功率,綜合了推進(jìn)力功率、側(cè)向力功率和轉(zhuǎn)矩功率后所得到的推進(jìn)效率值,能更好的體現(xiàn)出魚對于各個恒定流速的響應(yīng)。
數(shù)值模擬計(jì)算中采用了與試驗(yàn)實(shí)測相同的流速,以及試驗(yàn)流速范圍從0.3~1.2m/s,10個流速組中各個恒定試驗(yàn)流速下對應(yīng)的鯽魚擺尾頻率和擺尾幅度值,在此條件下從計(jì)算軟件中獲取計(jì)算公式中所需的壓力值和流場速度值,再根據(jù)計(jì)算公式計(jì)算出魚運(yùn)動的推進(jìn)效率,計(jì)算結(jié)果見表2,根據(jù)計(jì)算結(jié)果繪制圖5,流速范圍為0.3~1.2m/s時,魚的推進(jìn)效率分布從總體上呈現(xiàn)逐漸減小的趨勢,但是局部上分布表現(xiàn)為相對集中,流速從0.3~0.5m/s和0.6~0.9m/s,對應(yīng)下的推進(jìn)效率的變化幅度相對較小,當(dāng)流速從1.0~1.2 m/s時,對應(yīng)的推進(jìn)效率變小的幅度明顯,在流速為1.2 m/s時,魚的推進(jìn)效率達(dá)到最小,這一結(jié)果表明魚在較小的流速下所需頂流前行的推力較小,然而推進(jìn)效率卻比較高,但是在較大的流速環(huán)境中,魚為了克服較大的流速障礙需要較大的頂流推力,但是在獲得較大推力來克服流速的同時,其推進(jìn)效率往往會降低。
表2 不同流速下對應(yīng)的推進(jìn)效率(η)值
圖5 不同流速下對應(yīng)的推進(jìn)效率值
魚在不同流速環(huán)境中以不同的游泳狀態(tài)向前推進(jìn),針對其推進(jìn)效率與流速之間的變化關(guān)系,對推進(jìn)效率值進(jìn)行擬合可得推進(jìn)效率關(guān)于流速的二次曲線多項(xiàng)式:
對擬合曲線分析可知,當(dāng)流速從0.3~0.5m/s時,推進(jìn)效率先緩慢變大,然后流速從0.6~0.8m/s時,推進(jìn)效率隨后緩慢減小,當(dāng)流速大于0.8m/s后,推進(jìn)效率隨著流速的增加呈現(xiàn)出快速減小的趨勢,推進(jìn)效率隨著流速的變化表現(xiàn)為魚對流速存在某種響應(yīng)關(guān)系,這種關(guān)系用擬合曲線正好能夠給出定量的描述。大量的試驗(yàn)表明魚對于不同流速的刺激做出的反應(yīng)正好與這種變化規(guī)律相似,當(dāng)流速為0.3~1.2m/s時,用推進(jìn)效率來表征魚對流速的刺激所作出的反應(yīng)是合理的。
本次是以鯽魚為試驗(yàn)對象,根據(jù)實(shí)測不同均勻流速組下每組鯽魚的運(yùn)動節(jié)律為依據(jù),合理轉(zhuǎn)化為數(shù)值模擬中魚模型的運(yùn)動參數(shù)值,區(qū)別于以往研究中僅僅改變其中一個或某幾個變量而是以實(shí)際情況為準(zhǔn),數(shù)值模型能真實(shí)合理的反映鯽魚在穩(wěn)定均勻流速場中的運(yùn)動情況,獲得對應(yīng)的壓力值和流速值后,并根據(jù)公式計(jì)算推求出推進(jìn)效率值。以推進(jìn)效率作為魚對流速響應(yīng)的重要分析指標(biāo),當(dāng)流速從0.3~0.5m/s,推進(jìn)效率上升,當(dāng)流速從0.6~1.2m/s,推進(jìn)效率下降。推進(jìn)效率總體上呈現(xiàn)先變大后變小的趨勢。因?yàn)轸~對水體的擾動作用,水體反作用于魚體使其產(chǎn)生推進(jìn)力,對推進(jìn)效率作關(guān)于流速的線性擬合可得二次拋物曲線,流速0.5 m/s對應(yīng)的推進(jìn)效率值為其規(guī)律性變化的轉(zhuǎn)折點(diǎn),對應(yīng)的推進(jìn)效率達(dá)到最大。
本文以實(shí)際放魚試驗(yàn)所得資料為依據(jù),以NACA0012翼型作為基本模型,并對魚體運(yùn)動形態(tài)進(jìn)行合理的簡化,經(jīng)模擬獲得魚體經(jīng)過一個運(yùn)動周期后對水體的作用情況,根據(jù)獲得的數(shù)值經(jīng)計(jì)算得到魚的推進(jìn)效率值,得出魚類推進(jìn)效率對于流速呈現(xiàn)先增大后減小的變化規(guī)律,這一規(guī)律與魚對流速的偏好特性相似。本次研究針對的是均勻流場條件下鯽魚的推進(jìn)效率與流速的關(guān)系,然而在天然河流、湖泊中和魚道設(shè)施內(nèi),水流流速條件復(fù)雜多變而且不均勻,不同魚類的推進(jìn)力和推進(jìn)效率也將有所不同,深入研究復(fù)雜流場環(huán)境對魚類推進(jìn)效率的影響,能進(jìn)一步豐富魚類推進(jìn)機(jī)理,也能好的指導(dǎo)魚道設(shè)施建設(shè)。
[1] 何大仁,蔡厚才.魚類行為學(xué)[M].廈門:廈門大學(xué)出版社,1998.
[2] 黃曉榮,莊平.魚類行為學(xué)研究現(xiàn)狀及其在實(shí)踐中的應(yīng)用[J].淡水漁業(yè),2002,32(6):53-56.
[3] Castro-Santos T.Optimal swim speeds for traversing velocity barriers:an analysis of volitional high-speed swimming behavior of migratory fishes[J].Journal of Experimental Biology,2005,208(3):421-432.
[4] 宋波瀾,林小濤,王偉軍,等.不同流速下紅鰭銀鯽趨流行為與耗氧率的變化[J].動物學(xué)報,2008,54(4):686-694.
[5] Merino G E,Piedrahita R H,Conklin D E.Effect of water velocity on the growth of California halibut(Paralichthys californicus)juveniles[J].Aquaculture,2007,271:206-215.
[6] 董志勇,馮玉平,Ervine A.同側(cè)豎縫式魚道水力特性及放魚試驗(yàn)研究[J].水力發(fā)電學(xué)報,2008,27(6):126-130.
[7] 曹慶磊,楊文俊,陳輝.異側(cè)豎縫式魚道水力特性試驗(yàn)研究[J].河海大學(xué)學(xué)報:自然科學(xué)版,2010,38(6):698-703.
[8] 王亮,王明,付強(qiáng).串列仿生魚自主游動的數(shù)值模擬研究[J].計(jì)算力學(xué)學(xué)報,2013:727-732,748.
[9] Liu H,Kawachi K.A numerical study of undulatory swimming[J].Journal of Computational Physics,1999,155(2):223-247.
[10] Borazjani Isotiropoulos F.Numerical investigation of the hydrodynamics of carangiform of swimming in the transitional and inertial flow regimes[J].Journal of Experimental Biology,2008,211:1541-1558.
[11] 叢文超,王志東,李力軍.波狀擺動式魚類的推進(jìn)性能研究[J].中國艦船研究,2010,5(4):1-5.
[12] Chen Z,Doi Y.Numerical study on relaminariantion in fish-like locomotion[J].Journal of the Society of Naval Architects of Japan,2002,191:9-16.
[13] 焦予秦,喬志德.有側(cè)壁干擾的機(jī)翼半模型風(fēng)洞實(shí)驗(yàn)的N-S方程數(shù)值模擬[J].航空學(xué)報,2001,22(2):140-143.
[14] 喬曉冬,焦予秦.魚類游動的N-S方程數(shù)值模擬[J].科學(xué)技術(shù)與工程,2007,7(8):1536-1540.
[15] 曹慶明.魚類游動的水動力學(xué)研究綜述[C]//第二十一屆全國水動力學(xué)研討會暨第八屆全國水動力學(xué)學(xué)術(shù)會議暨兩岸船舶與海洋工程水動力學(xué)研討會.濟(jì)南,2008.
[16] 韓路輝,陳維山,劉軍考,等.基于FLUENT的擺動尾鰭水動力特性研究[J].機(jī)械設(shè)計(jì)與制造,2010(5):204-206.
[17] YAN Hui,SU Yu-min,YANG Liang.Experimentation of fish swimming based on tracking locomotion locus[J]. Journal of Bionic Engineering,2008,5(3):258-263.
[18] Hover F S,Haugsdalφ,Triantafyllou M S.Effect of angle of attack profiles in flapping foil propulsion[J].Journal of Fluids and Structures,2004,19(1):37-47.
Numerical study on the influence of different flow velocity on crucian propulsion efficiency
GONG Wanyang1,ZHUGE Yisi2,LIU Defu1
(1.College Hydraulic&Environmental Engineering,China Three Gorges University,Yichang 443002,China 2.China Institute of Water Resources and Hydropower Research,Beijing 100038,China)
The experiment of fish’s trend and numerical simulation of fish swimming are two hot spots in the current research.Most fish not only have the trend of the flow characteristics,but also can effectively promote energy efficiency,Carrying out fish rheotaxis and promoting efficiency of study can not only improve the fish propulsion mechanism theory,but also improve the efficiency of fish in the fishway design. Based on the measured data of crucian swimming at different constant velocity,using CFD software flow-3d to simulate the fish undulating,a numerical model of crucian swimming is established to study the efficiency of the crucian at different velocity.The results show that with the increase of the flow rate,the propulsion efficiency of fish increases firstly and then decreases;when the flow velocity is 0.5m/s,the propulsion efficiency of the fish is the maximum,and it is also the turning point of the change of the efficiency with the velocity of the flow.In this study,the relationship between the propulsion efficiency and the flow velocity of the crucian in the flow movement state was studied.
velocity;numerical simulation;propulsion efficiency
X174
A
10.13244/j.cnki.jiwhr.2016.01.001
1672-3031(2016)01-0001-06
(責(zé)任編輯:韓 昆)
2015-09-30
國家自然科學(xué)青年基金項(xiàng)目(51209229)
龔萬陽(1990-),男,湖北宜昌人,碩士生,主要從事生態(tài)水利研究。E-mail:602915662@qq.com
諸葛亦斯(1981-)男,北京人,博士,高級工程師,主要從事生態(tài)水利研究。E-mail:zhugeys@iwhr.com