張英男, 李吉來, 黃旭日
(吉林大學(xué)理論化學(xué)研究所, 長(zhǎng)春 130023)
?
MH+(M=Fe,Co,Ni)催化二氧化碳的氫化反應(yīng)
張英男, 李吉來, 黃旭日
(吉林大學(xué)理論化學(xué)研究所, 長(zhǎng)春 130023)
在密度泛函理論的B3LYP 水平下計(jì)算了MH+(M=Fe, Co, Ni)催化二氧化碳的氫化反應(yīng). 研究表明, 氫轉(zhuǎn)移至C上要比轉(zhuǎn)移至O上容易得多. 探討不同泛函方法對(duì)反應(yīng)的影響, 從CCSD(T)的計(jì)算結(jié)果可見, 與CoH+和NiH+相比, FeH+對(duì)H轉(zhuǎn)移至C上的活性較高. 電子結(jié)構(gòu)分析表明, 反應(yīng)過程中氫轉(zhuǎn)移為氫負(fù)離子轉(zhuǎn)移.
MH+; 二氧化碳; 氫化; 密度泛函理論
二氧化碳是眾所周知的溫室氣體, 也是重要的C1資源. 實(shí)現(xiàn)二氧化碳的直接有效轉(zhuǎn)化是當(dāng)前的研究熱點(diǎn). 而二氧化碳活化的催化劑和機(jī)理呈現(xiàn)多樣性. 如金屬氫化物(Metal Hydride, MH)的反應(yīng)活性和鍵合方式早已引起了廣泛關(guān)注[1]. MH在催化反應(yīng)中可以作為質(zhì)子、 氫原子和氫負(fù)離子的供體(反應(yīng)式見Scheme 1), 并且在表面化學(xué)、 納米尺度催化、 有機(jī)合成及儲(chǔ)能等應(yīng)用領(lǐng)域展現(xiàn)了其多面性. MH是催化活化CO2最有潛力的催化劑[2~7]. MH催化活化CO2的機(jī)理有2種可能的通道: 質(zhì)子轉(zhuǎn)移(Proton transfer, PT)反應(yīng)和氫負(fù)離子轉(zhuǎn)移(Hydride transfer, HT)反應(yīng).
本文研究了第一過渡金屬氫化物離子MH+(M=Fe, Co, Ni)催化CO2的氫化反應(yīng), 對(duì)反應(yīng)機(jī)制進(jìn)行了詳細(xì)的理論探討, 輔以電子結(jié)構(gòu)分析, 以期揭示其反應(yīng)本質(zhì), 對(duì)多種密度泛函理論方法進(jìn)行基準(zhǔn)研究. 探討了不同泛函方法在計(jì)算中對(duì)反應(yīng)的影響. 研究可提供設(shè)計(jì)非常有效的催化劑的探針, 也可應(yīng)用于其它一些反應(yīng)[8].
Scheme 1 Reaction mechanism of NH+-catalyzed hydrogenation of carbon dioxide
采用Gaussian 09程序包[9], 在B3LYP/def2-SVP 理論水平上對(duì)反應(yīng)過程中反應(yīng)物、 過渡態(tài)和產(chǎn)物的幾何結(jié)構(gòu)進(jìn)行了優(yōu)化(在優(yōu)化過程中, 未進(jìn)行對(duì)稱性等束縛), 并在相同水平下進(jìn)行了頻率計(jì)算, 得到熱力學(xué)信息. 本文所有過渡態(tài)都有唯一虛頻, 并通過振動(dòng)模式分析進(jìn)一步確認(rèn)了過渡態(tài)的真實(shí)性. 對(duì)勢(shì)能面上的每一鞍點(diǎn)進(jìn)行內(nèi)稟反應(yīng)坐標(biāo)(IRC)計(jì)算驗(yàn)證[10], 證實(shí)了過渡態(tài)的正確連接. 為了得到更準(zhǔn)確的能量信息, 采用在優(yōu)化幾何結(jié)構(gòu)的基礎(chǔ)上, 進(jìn)一步在B3LYP, BP86, TPSSh, PWPB95, B2PLYP和耦合簇理論CCSD(T)/def2-TZVPP水平下進(jìn)行了單點(diǎn)能(SPE)計(jì)算, 并對(duì)B3LYP的計(jì)算結(jié)果進(jìn)行DFT-D3校正. 單點(diǎn)能計(jì)算采用ORCA 程序包[11]. 為探討電子轉(zhuǎn)移過程, 加深對(duì)反應(yīng)的理解, 對(duì)在最小能量路徑上選擇代表性點(diǎn)進(jìn)行準(zhǔn)束縛分子軌道(QRO)分析[12~18], 分子軌道圖使用 Chimera軟件[19]繪制.
2.1 幾何結(jié)構(gòu)和能量分析
Fig.1 Two mechanisms of MH+(M=Fe, Co, Ni)-catalyzed hydrogenation of carbon dioxide Fe, Co, Ni: orange, C: gray, O: red.
FeH+, CoH+和NiH+的基態(tài)分別為五重態(tài)、 四重態(tài)和三重態(tài)[20], 其它自旋態(tài)的能量都高于基態(tài)(120 kJ/mol以上). 由圖1可見, MH+(M=Fe, Co, Ni)氫化CO2的反應(yīng)存在2種機(jī)制: (1) Path 1, 氫轉(zhuǎn)移至C上, 從RC經(jīng)過過渡態(tài)TSC生成IC; (2) Path 2, 氫轉(zhuǎn)移至氧上, 從RC經(jīng)過渡態(tài)TSO生成IO.
優(yōu)化得到的反應(yīng)復(fù)合物、 過渡態(tài)和中間體的主要幾何參數(shù)列于表1. FeH+, CoH+及NiH+離子的M—H鍵長(zhǎng)分別為0.156, 0.151和0.148 nm. 我們將分離反應(yīng)物MH+和CO2作為初始態(tài)(分離反應(yīng)物SR). 從SR到RC, M—H鍵略有縮短. 在H轉(zhuǎn)移至C的過渡態(tài)TSC中, M—H鍵被拉長(zhǎng), M=Ni時(shí)最長(zhǎng); C—H鍵則是M=Ni時(shí)最短. 所以在TSC中, Fe應(yīng)為早壘過渡態(tài), 而Ni為晚壘過渡態(tài), Co介于中間, 即M=Ni時(shí), TSC接近產(chǎn)物. 而在H轉(zhuǎn)移至O的過渡態(tài)TSO中, M—H鍵在3種金屬中被拉長(zhǎng)的程度相對(duì)較接近, M=Co時(shí)最長(zhǎng), 而O—H鍵相對(duì)TSC中短, 3種金屬體系都是晚壘過渡態(tài). 此外, 在2種氫轉(zhuǎn)移過程中C—O鍵均變長(zhǎng).
Table 1 Key geometric parameters of all the pathways in the title reaction obtained at the B3LYP/def2-SVP level of theory*
* M=Fe, Co, Ni; X=C(MH++CO2, RC, TSC, IC), O(TSO, IO).
表2給出了在B3LYP, BP86, TPSSh, PWPB95, B2PLYP和耦合簇理論CCSD(T)的能量及幾種泛函相對(duì)于CCSD(T)的絕對(duì)平均偏差(MADs). 圖2給出了反應(yīng)在CCSD(T)/def2-TZVPP水平下的勢(shì)能面, 從圖2可見, 氫轉(zhuǎn)移至C上要比轉(zhuǎn)移至O上容易得多. 事實(shí)上MH+活化C—O鍵斷裂的反應(yīng)能壘相當(dāng)高, 在此不予討論. 在表2中, 當(dāng)M=Fe, Co時(shí), B2PLYP的MAD最小; 當(dāng)M=Ni時(shí), B3LYP的MAD最小. 各種泛函的能量對(duì)于中間體的影響很小, 對(duì)過渡態(tài)TSO的影響程度要大于TSC, 在研究H轉(zhuǎn)移至CO2的C上的反應(yīng)過程對(duì)泛函選擇性較小, 而且從Fe到Co和Ni泛函對(duì)能量的影響程度逐漸增大. CCSD(T)計(jì)算得到的過渡態(tài)能量都較高, 可見, TSC的能量從Fe到Co和Ni逐漸升高, TSO的能量則正好相反, 即FeH+的體系中H轉(zhuǎn)移至C上最容易.
Table 2 Relative energies calculated at the DFT and CCSD(T)/def2-TZVPP//B3LYP/def2-SVP levels of theory, mean absolute deviations(MADs) of different methods according to CCSD(T)/def2-TZVPP//B3LYP/def2-SVP level of theory
SpeciesΔE/(kJ·mol-1)BP86TPSShB3LYPPWPB95B2PLYPCCSD(T)D3(B3LYP)5FeH++CO200000005RC-119.2-126.4-123.4-123.8-124.7-102.9-1.55TSO107.1141.0138.9151.0147.3238.9-0.1
Continued
SpeciesΔE/(kJ·mol-1)BP86TPSShB3LYPPWPB95B2PLYPCCSD(T)D3(B3LYP)5IO-65.7-59.0-37.2-36.4-25.9-21.8-0.45TSC-11.7-10.013.48.415.517.205IC-149.0-164.8-143.1-156.9-147.3-158.6-0.2MAD42.338.424.926.121.604CoH++CO200000004RC-95.4-99.2-97.5-101.7-102.1-103.8-1.44TSO59.086.687.4107.9106.7154.8-0.14IO-100.8-99.2-71.5-72.0-66.9-33.9-0.34TSC-36.0-38.5-4.6-2.51.718.804IC-178.2-203.3-166.5-177.8-168.2-165.7-0.2MAD44.444.824.623.319.803NiH++CO200000003RC-103.8-105.4-104.6-105.9-106.3-109.6-1.33TSO80.3119.7110.0110.587.4144.803IO-62.8-46.0-30.5-41.0-50.6-5.0-0.33TSC3.328.952.769.567.476.1-0.13IC-113.8-125.5-97.5-107.1-96.7-109.2-0.2MAD38.725.113.414.219.20
Fig.2 Potential energy surface for MH+[M=Fe(A), Co(B), Ni(C)]-catalyzed CO2
Fig.3 Electronic structure diagrams of the quintet states for reactant complex, transition state and intermediate in FeH+ with CO2 reaction
2.2 電子結(jié)構(gòu)分析
Fig.4 Electronic structure diagrams of the quintet states for reactant complex 4RC and 3RC in CoH+ and NiH+ with CO2 reaction
圖4為CoH+和NiH+與CO2反應(yīng)的復(fù)合物4RC和3RC的電子結(jié)構(gòu),4RC 和3RC前線軌道的電子排布分別為[(Co-3dxz)2(Co-3dyz)2(Co-3dxy)1(Co-3dx2-y2)1(Co-dz2)1(σCo—H)2]和[(Ni-3dx2-y2)2(Ni-3dxz)2(Ni-3dyz)2(Ni-3dxy)1(Co-4s)1(Co-dz2)0(σCo—H)2]. 雖然CoH+和NiH+電子結(jié)構(gòu)與FeH+不同, 但它們氫化CO2的反應(yīng)都是H負(fù)離子轉(zhuǎn)移反應(yīng).
在密度泛函理論B3LYP 水平下研究了MH+(M=Fe, Co, Ni)催化二氧化碳的氫化反應(yīng). 研究表明, 氫轉(zhuǎn)移至C上比轉(zhuǎn)移至O上容易. 各種泛函方法對(duì)中間體的影響很小, 對(duì)H轉(zhuǎn)移至CO2的C上的反應(yīng)過程影響較小, 而且從Fe到Co和Ni泛函對(duì)能量的影響程度逐漸增大.通過對(duì)B3LYP的計(jì)算結(jié)果用DFT-D3方法進(jìn)行色散力校正, 計(jì)算結(jié)果表明, 色散力對(duì)文中體系影響很小. 從CCSD(T)的計(jì)算結(jié)果看出, TSC的能量從Fe到Co和Ni逐漸升高, TSO的能量則正好相反, 即在化學(xué)反應(yīng)動(dòng)力學(xué)方面, FeH+的體系對(duì)H轉(zhuǎn)移至C上最容易進(jìn)行. 研究結(jié)果能為CO2的氫化和金屬氫化物的氫轉(zhuǎn)移反應(yīng)提供有價(jià)值的理論指導(dǎo).
[1] Harrison J. F.,Chem.Rev., 2000, 100, 679—716
[2] Yin X., Moss J. R.,Coord.Chem.Rev., 1999, 181, 27—59
[3] Musashi Y., Sakaki S.,J.Am.Chem.Soc., 2000, 122, 3867—3877
[4] Darensbourg D. J.,Inorg.Chem., 2010, 49, 10765—10780
[5] Roberts J. A., Appel A. M., DuBois D. L., Bullock R. M.,J.Am.Chem.Soc., 2011, 133, 14604—14613
[6] Tate B. K., Wyss C. M., Bacsa J., Kluge K., Gelbaum L., Sadighi J. P.,Chem.Sci., 2013, 4, 3068—3074
[7] Jiang Y. F., Blacque O., Fox T., Berke H.,J.Am.Chem.Soc., 2013, 135, 7751—7160
[8] Alapati S. V., Karl J. J., Sholl D. S.,Phys.Chem.Chem.Phys., 2007, 9, 1438—1452
[9] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas ., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J.,Gaussian09, Gaussian Inc., Wallingford CT, 2009
[10] Fukui K.,J.Phys.Chem., 1970, 74, 4161—4163
[11] Neese F.,ORCA-anabinitio,DensityFunctionalandSemiempiricalProgramPackage2010,Version2.8, Bonn University, Bonn, 2010
[12] Neese F.,J.Am.Chem.Soc., 2006, 128, 10213—10222
[13] Sun X. L., Huang X. R., Li J. L., Huo R. P., Sun C. C.,J.Phys.Chem.A, 2012, 116, 1475—1485
[14] Sun X. L., Geng C. Y., Huo R. P., Ryde U., Bu Y. X., Li J. L.,J.Phys.Chem.B, 2014, 118, 1493—1500
[15] Sun X. H., Sun X. L., Geng C. Y., Zhao H. T., Li J. L.,J.Phys.Chem.A, 2014, 118, 7146—7158
[16] Huo R. P., Zhang X., Huang X. R., Li J. L., Sun C. C.J.Mol.Model., 2013, 19, 1009—1018
[17] Sun X. L., Li J. L., Huang X. R., Sun C. C.,ActaChim.Sinica, 2012, 70, 1245—1249(孫小麗, 李吉來, 黃旭日, 孫家鍾. 化學(xué)學(xué)報(bào), 2012, 70, 1245—1249)
[18] Huo R. P., Zhang X., Huang X. R., Li J. L., Sun C. C.,J.Phys.Chem.A, 2011, 115, 3576—3582
[19] Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.,J.Comput.Chem., 2004, 25, 1605—1612
[20] Liu S., Geng Z., Wang Y., Yan Y.,J.Phys.Chem.A, 2012, 116, 4560—4568
[21] Zhang Q., Bowers M. T.,J.Phys.Chem.A, 2004, 108, 9755—9761
(Ed.: Y, Z )
? Supported by the National Basic Research Program of China(No.2012CB932800) and the National Natural Science Foundation of China(Nos.21103064, 21473070).
MH+(M=Fe, Co, Ni)-catalyzed Hydrogenation of Carbon Dioxide?
ZHANG Yingnan, LI Jilai, HUANG Xuri*
(InstituteofTheoreticalChemistry,JilinUniversity,Changchun130023,China)
Density functional theory(DFT) method at B3LYP level was conducted on the reaction of MH+(M=Fe, Co, Ni)-catalyzed hydrogenation of carbon dioxide. The results show that hydrogen transfer to C is much easier than to O. The effect of DFT methods was also explored. FeH+has higher reactivity than CoH+and NiH+on hydrogen transfer to C according to the coupled cluster theory CCSD(T) calculations. Electronic structure analysis demonstrates hydrogen transfer reaction process is hydride transfer.
MH+; Carbon dioxide; Hydrogenation; Density functional theory
10.7503/cjcu20150680
2015-08-28.
日期: 2016-01-04.
國(guó)家“九七三”計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): 2012CB932800)和國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 21103064, 21473070)資助.
O641
A
聯(lián)系人簡(jiǎn)介:黃旭日, 男, 博士, 教授, 博士生導(dǎo)師, 主要從事功能材料設(shè)計(jì)和化學(xué)微觀反應(yīng)機(jī)理研究.
E-mail: huangxr@jlu.edu.cn