劉金立,劉淑閣,熊倩,韓麗,李偉,王萬恒,張昭軍,,4,李全貞
(1.溫州醫(yī)科大學(xué) 檢驗醫(yī)學(xué)院與生命科學(xué)學(xué)院,浙江 溫州 325035;2.中國科學(xué)院北京基因組研究所 中科院基因組科學(xué)與信息重點(diǎn)實驗室,北京 100101;3.山西國信凱爾生物技術(shù)有限公司,山西 太原 030006;4.中國科學(xué)院大學(xué),北京 100049)
·論 著·
急性單核細(xì)胞白血病特異性miRNA分子標(biāo)志物的鑒定
劉金立1,劉淑閣2,熊倩2,韓麗3,李偉1,王萬恒3,張昭軍1,2,4,李全貞1
(1.溫州醫(yī)科大學(xué) 檢驗醫(yī)學(xué)院與生命科學(xué)學(xué)院,浙江 溫州 325035;2.中國科學(xué)院北京基因組研究所 中科院基因組科學(xué)與信息重點(diǎn)實驗室,北京 100101;3.山西國信凱爾生物技術(shù)有限公司,山西 太原 030006;4.中國科學(xué)院大學(xué),北京 100049)
目的:鑒定急性單核細(xì)胞白血病中特異高表達(dá)的microRNA(miRNA)。方法:通過分析急性單核細(xì)胞白血病細(xì)胞系(THP-1)與慢性粒細(xì)胞白血病細(xì)胞系(K562)的miRNA-seq數(shù)據(jù),篩選一批在THP-1細(xì)胞系中顯著高表達(dá)的miRNA,通過實時熒光定量PCR技術(shù)對這些miRNA在THP-1和K562細(xì)胞系中進(jìn)行驗證,獲得在THP-1細(xì)胞系中特異高表達(dá)的miRNA,再通過實時熒光定量PCR技術(shù)在急性單核細(xì)胞白血病患者骨髓樣品中進(jìn)行驗證,鑒定有望應(yīng)用于該類疾病臨床診斷的分子標(biāo)志物。結(jié)果:最終篩選得到了3個在急性單核細(xì)胞白血病中特異高表達(dá)的miRNA分子標(biāo)志物:let-7d-5p、miR-222-3p、miR-221-3p。結(jié)論:通過結(jié)合組學(xué)數(shù)據(jù),利用實時熒光定量PCR技術(shù)在細(xì)胞系及臨床樣本中的驗證,最終鑒定了3個在急性單核細(xì)胞白血病中特異高表達(dá)的miRNA分子標(biāo)志物。
急性單核細(xì)胞白血??;miRNA;實時熒光定量PCR;miRNA-Seq
急性髓系白血病(acute myeloid leukemia,AML)是一種或多種造血干細(xì)胞及祖細(xì)胞發(fā)生克隆性惡變,從而造成正常造血功能紊亂的高度惡性疾病[1-2]。急性單核細(xì)胞白血?。∕5)屬AML形態(tài)學(xué)分型中的一種,除具有其他類型急性白血病常見的臨床癥狀外,其主要特征為皮膚及黏膜病變,腎功能衰竭也較其他白血病多見,起病急驟,病死率較高。目前,急性單核細(xì)胞白血病的臨床診斷方法主要以臨床癥狀為前提,形態(tài)學(xué)檢測為基礎(chǔ),同時結(jié)合免疫學(xué)及細(xì)胞遺傳學(xué)指標(biāo)。形態(tài)學(xué)和免疫學(xué)的方法檢測,需有豐富臨床經(jīng)驗的檢測人員,且由于主觀性偏差的存在易造成誤診;另外,單一的檢測方法也會使診斷效率和準(zhǔn)確率大大降低[3]。近年來,分子診斷技術(shù)在急慢性白血病的臨床診斷中正發(fā)揮著重要作用。
microRNA(miRNA)是一類內(nèi)源性、高度保守的非蛋白編碼的小分子RNA,主要通過抑制蛋白編碼基因的翻譯或降解mRNA來發(fā)揮調(diào)控作用[4]。研 究[5-7]表明:miRNA可廣泛參與發(fā)育周期、細(xì)胞增殖 和分化、細(xì)胞凋亡、新陳代謝、神經(jīng)調(diào)控、腫瘤發(fā)生 等各種生理和病理的調(diào)控過程。已有諸多研究[8-10]結(jié)果證實:miRNA的表達(dá)及功能異常調(diào)控可導(dǎo)致白血病的發(fā)生。目前絕大多數(shù)研究都是針對所有FAB分型的AML進(jìn)行分析,由于AML各個分型在形態(tài)學(xué)及細(xì)胞遺傳學(xué)等方面不盡相同,使得現(xiàn)階段鑒定的miRNA在臨床分子診斷應(yīng)用中受到極大限制,因此,鑒定特定類型的AML中特異性表達(dá)的miRNA分子標(biāo)記物具有重要意義。
1.1 材料 急性單核細(xì)胞白血病細(xì)胞系(THP-1)和 慢性粒細(xì)胞白血病細(xì)胞系(K562)購于ATCC,TRIzol? Reagent購于Life Technologies公司,sRNA sample prep kit購于Illumina公司,E.coli Poly(A)Polymerase和ATP購于New England Biolabs公司,RevertAidTMFirst Strand cDNA Synthesis Kit購于Fermentas公司。
1.2 方法
1.2.1 生物信息技術(shù)篩選在M5型AML細(xì)胞系中特異表達(dá)的miRNA:利用項目組已有的THP-1與K562細(xì)胞系miRNA-Seq數(shù)據(jù)[11-12],根據(jù)miRNA在2種細(xì)胞系中表達(dá)量的差異倍數(shù)進(jìn)行初步篩選。
1.2.2 miRNA在細(xì)胞系中的篩選驗證:THP-1和K562 的細(xì)胞培養(yǎng)參照廠商操作指南,細(xì)胞內(nèi)miRNA表達(dá)檢 測的主要步驟如下:以TRIzol? Reagent提取總RNA, 利用E.coli Poly(A) Polymerase和ATP對RNA進(jìn)行加尾反應(yīng),通過RevertAidTMFirst Strand cDNA Synthesis Kit反轉(zhuǎn)錄獲得cDNA。采用Maxima? SYBR Green/ROX qPCR Master Mix進(jìn)行實時定量PCR 擴(kuò)增。擴(kuò)增體系為18 μL:cDNA 1 μL,SYBR Green 9 μL,上下游引物共6 μL,ddH2O 2 μL。擴(kuò)增條件為:第一步50 ℃,2 min;第二步95 ℃,10 min;第三步95 ℃ 15 s,62 ℃,40 s,40個循環(huán)。內(nèi)參對照標(biāo)準(zhǔn)U6及各miRNA正向及反向引物見表1。miRNA表達(dá)水平分析時,將其在K562細(xì)胞系中的表達(dá)水平標(biāo)準(zhǔn)化為1。
表1 引物序列
1.2.3 miRNA在M5型AML臨床病例骨髓樣品中的篩選驗證:患者行骨髓穿刺采集2 mL樣本后保存在乙二胺四乙酸抗凝管中,加入2 mL Trizol試劑吹打混勻后保存在-80 ℃以提取總RNA。所有病例均按照第3版《血液病診斷及療效標(biāo)準(zhǔn)》AML的診斷標(biāo)準(zhǔn)進(jìn)行診斷。RNA的提取和miRNA的檢測參照1.2.2。以健康捐獻(xiàn)者的骨髓樣本為對照,在進(jìn)行miRNA表達(dá)水平分析時,將其在對照中的表達(dá)水平標(biāo)準(zhǔn)化為1。
1.3 統(tǒng)計學(xué)處理方法 采用SPSS12.0軟件進(jìn)行統(tǒng)計學(xué)分析,所有數(shù)據(jù)使用前均需要進(jìn)行方差齊性檢驗,然后進(jìn)行student’s t-test分析。P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 生物信息技術(shù)篩選在M5型AML細(xì)胞系中特異表達(dá)的miRNA 通過比較THP-1和K562細(xì)胞系的miRNA-seq測序數(shù)據(jù),將miRNA在K562細(xì)胞系中的表達(dá)量標(biāo)準(zhǔn)化為1得到差異倍數(shù),根據(jù)差異倍數(shù)>5.0的標(biāo)準(zhǔn)篩選出16個miRNA作為本實驗進(jìn)行研究的miRNA,見表2。這16個miRNA分別為:has-let-7b-5p、hsalet-7d-5p、hsa-miR-103b、hsa-miR-107、hsa-miR-128-3p、hsa-miR-140-3p、hsa-miR-155-5p、hsa-miR-181a-5p、hsa-miR-181b-5p、hsa-miR-221-3p、hsamiR-222-3p、hsa-miR-23a-3p、hsa-miR-29a-3p、hsamiR-29c-3p、hsa-miR-320a、hsa-miR-877-5p。
2.2 miRNA在細(xì)胞系中的篩選驗證 檢測到其中的8個miRNA在THP-1細(xì)胞中的表達(dá)量顯著高于k562細(xì)胞(P<0.05)。這些miRNA是:hsa-let-7d-5p、hsamiR-103b、hsa-miR-155-5p、hsa-miR-181a-5p、hsamiR-221-3p、hsa-miR-222-3p、hsa-miR-23a-3p、hsamiR-320a,見圖1。
2.3 miRNA在M5型AML臨床病例骨髓樣品中的篩選驗證 8個miRNA在大多數(shù)患者樣品中均存在高表達(dá)現(xiàn)象,見圖2和表3。hsa-let-7d-5p在12個患者樣品中均較正常對照樣本至少高表達(dá)2倍,且其中10個(占83.33%)miRNAs的表達(dá)水平與對照樣本比差異有統(tǒng)計學(xué)意義(P<0.05),見圖2A;hsa-miR-222-3p和hsa-miR-221-3p則在11個患者樣品中高表達(dá)至少2倍,且其中的10個miRNAs表達(dá)水平與對照樣本差異有統(tǒng)計學(xué)意義(P<0.05),見圖2B和2C。
圖1 16個miRNA在THP-1和k562細(xì)胞中的相對表達(dá)量
自1993年首次發(fā)現(xiàn)miRNA以來[13],研究者一直致力于探尋miRNA的重大意義。研究表明miRNA所在基因座的缺失、擴(kuò)增、突變、表觀遺傳修飾沉默等均可引起miRNA的異常表達(dá)從而進(jìn)一步導(dǎo)致腫瘤的發(fā)生[14]。人類大約有50%的已注釋miRNA位于與癌癥相關(guān)的基因組區(qū)域中,這表明miRNA與多種腫瘤密切相關(guān)[15],miRNA也可調(diào)節(jié)造血干細(xì)胞的異常分化,從而促進(jìn)白血病的發(fā)生[15-19]。Calin等[20]報道m(xù)iRNA-15a與miRNA-16-1的表達(dá)水平與慢性淋巴細(xì)胞白血病(chronic lymphoblastic leukemia,CLL)中Bal2呈負(fù)相關(guān),兩者被認(rèn)為是Bal2的反義作用因子。Mi等[3]在2007年篩選出27個在AML和急性淋巴細(xì)胞白血病(acute lymphoblastic leukemia,ALL)中具有差異表達(dá)的miRNA,6個在ALL中上調(diào),21個在AML中上調(diào),其中miR-128-a與miR-128-b在ALL中的表達(dá)明顯升高,而let-7b與miR-223在ALL中明顯降低,4個miRNA中的任意2條組合都可以區(qū)分ALL與AML,診斷精確率>95%。本實驗通過高通量測序技術(shù)對K562、THP-1細(xì)胞系miRNA轉(zhuǎn)錄組進(jìn)行了深入研究,不同miRNA在不同細(xì)胞系的差異表達(dá)可為急慢性白血病候選分子診斷物的鑒定提供新的重要信息資源[11]。利用高通量技術(shù)探尋AML miRNA表達(dá)譜的研究雖已有報道[3,21-26],但對于AML不同亞型的miRNA轉(zhuǎn)錄組學(xué)方面還缺乏較為系統(tǒng)、深入的研究,尤其是針對某一特定類型AML的miRNA的研究。本實驗?zāi)康脑谟卺槍ML亞型中的急性單核細(xì)胞白血?。∕5)進(jìn)行研究,希望能夠鑒定出一組可用于M5臨床診斷的miRNA分子診斷標(biāo)志物。
圖2 8個miRNA分別在12例M5樣本中的相對表達(dá)量分析
本實驗最終篩選出3個在M5中特異高表達(dá)的miRNAs:hsa-miR-222-3p、hsa-let-7d-5p、hsa-miR-221-3p,可考慮作為M5的分子標(biāo)志物。miR-222與miR-221高度同源,其基因位于X染色體區(qū)域,二者成簇分布,具有相同的種子序列,在人與小鼠等脊椎動物中高度保守。miR-221的作用靶點(diǎn)位于Kit mRNA的3’UTR區(qū)域,miR-221的表達(dá)升高,可在轉(zhuǎn)錄水平引起mRNA的翻譯抑制,Kit蛋白表達(dá)降低,從而抑制紅細(xì)胞的增殖分化;另外,miR-221可使內(nèi)皮生物學(xué)發(fā)生改變,調(diào)控血管生成相關(guān)調(diào)控因子的表達(dá)。miR-222與腫瘤轉(zhuǎn)移及細(xì)胞增殖相關(guān),上調(diào)miR-222的表達(dá),可促進(jìn)體外細(xì)胞增殖,同時還能促進(jìn)裸鼠荷瘤模型中腫瘤的生長[27-30];下調(diào)miR-222的表達(dá),則可抑制體外腫瘤細(xì)胞增殖[31];miR-221抑制劑經(jīng)膽固醇修飾后,也可抑制體內(nèi)腫瘤的生長[32]。 以上研究表明,miR-222與miR-221有可能成為侵襲性腫瘤的一個重要治療靶點(diǎn)。let-7d屬let-7家族中成員之一,目前報道較多的是let-7與肺癌的關(guān)系,let-7在肺癌組織及細(xì)胞系中的表達(dá)均較低,同時與患者術(shù)后生存期的長短有關(guān)[33]。另有研究發(fā)現(xiàn),let-7d在頭頸部鱗癌細(xì)胞中表達(dá)降低,并且與低生存率有一定關(guān)系[34];let-7d在卵巢癌中缺失同時伴隨HMGA2表達(dá)升高也可預(yù)示預(yù)后不佳[35],這些研究表明let-7d可能與疾病的預(yù)后相關(guān)。多項研究表明,let-7屬抑癌基因,但并非所有研究支持這一論點(diǎn)。Bruecker等[36]發(fā)現(xiàn)let-7a分別在卵巢上皮癌和肺癌中表達(dá)上調(diào);Lawrie等[37]發(fā)現(xiàn)濾泡性淋巴瘤向彌漫性大B細(xì)胞瘤轉(zhuǎn)化與let-7b與let-7i的表達(dá)上調(diào)有關(guān)。本研究中l(wèi)et-7d在AML-M5型中表達(dá)上調(diào),與其他研究報道的AML中miRNAlet-7d表達(dá)下調(diào)不一致,原因可能是本實驗采用骨髓標(biāo)本,且是針對其中某一特定類型進(jìn)行研究,因此尚需進(jìn)一步深入探討。
表2 從高通量測序數(shù)據(jù)中篩選出的16個miRNA
表3 miRNA在M5型臨床病例骨髓樣品中的驗證篩選標(biāo)準(zhǔn)
[1] ESTEY E, D HNER H. Acute myeloid leukaemia[J]. Lancet, 2006, 368(9550): 1894-1907.
[2] LOWENBERG B, DOWNING J R, BURNETT A. Acute myeloid leukemia[J]. N Engl J Med, 1999, 341(14): 1051-1062.
[3] MI S, LU J, SUN M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia[J]. Proc Natl Acad Sci U S A, 2007, 104(50): 19971-19976.
[4] BARTEL D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
[5] CHENG A M, BYROM M W, SHELTON J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J]. Nucleic Acids Res, 2005, 33(4): 1290-1297.
[6] CALIN G A, CROCE C M. MicroRNA signatures in human cancers[J]. Nat Rev Cancer, 2006, 6(11): 857-866.
[7] ESQUELA-KERSCHER A, SLACK F J. Oncomirs-microRNAs with a role in cancer[J]. Nat Rev Cancer, 2006, 6(4):259-269.
[8] MARTON S, GARCIA M, ROBELLO C, et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis[J]. Leukemia, 2008, 22(2): 330-338.
[9] TAKADA S, YAMASHITA Y, BEREZIKOV E, et al. MicroRNA expression profiles of human leukemias[J]. Leukemia, 2008, 22(6): 1274-1278.
[10] KUCHENBAUER F, MORIN R D, ARGIROPOULOS B, et al. In-depth characterization of the microRNA transcriptome in a leukemia progression model[J]. Genome Res, 2008, 18(11): 1787-1797.
[11] XIONG Q, YANG Y, WANG H, et al. Characterization of miRNomes in acute and chronic myeloid leukemia cell lines [J]. Genomics Proteomics Bioinformatics, 2014, 12(2): 79-91.
[12] WANG H, HU H, ZHANG Q, et al. Dynamic transcriptomes of human myeloid leukemia cells[J]. Genomics, 2013, 102(4): 250-256.
[13] LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
[14] CALIN G A, CROCE C M. MicroRNA-cancer connection:the beginning of a new tale[J]. Cancer Res, 2006, 66(15): 7390-7394.
[15] CALIN G A, SEVIGNANI C, DUMITRU C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. Proc Natl Acad Sci U S A, 2004, 101(9): 2999-3004.
[16] FABBRI M, GARZON R, ANDREEFF M, et al. MicroRNAs and noncoding RNAs in hematological malignancies:molecular, clinical and therapeutic implications[J]. Leukemia, 2008, 22(6): 1095-1105.
[17] GARZON R, CROCE C M. MicroRNAs in normal and malignant hematopoiesis[J]. Curr Opin Hematol, 2008, 15(4):352-358.
[18] VASILATOU D, PAPAGEORGIOU S, PAPPA V, et al. The role of microRNAs in normal and malignant hematopoiesis [J]. Eur J Haematol, 2010, 84(1): 1-16.
[19] YENDAMURI S, CALIN G. The role of microRNA in human leukemia: a review[J]. Leukemia, 2009, 23(7): 1257-1263.
[20] CALIN G A, DUMITRU C D, SHIMIZU M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A, 2002, 99(24): 15524-15529.
[21] FAYYAD-KAZAN H, BITAR N, NAJAR M, et al. Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia[J]. J Transl Med, 2013, 11(31): 1-10.
[22] MARCUCCI G, RADMACHER M D, MAHARRY K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia[J]. N Engl J Med, 2008, 358(18): 1919-1928.
[23] ZHU Y D, WANG L, SUN C, et al. Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia[J]. Med Oncol, 2012, 29(4): 2323-2331.
[24] ZHI F, CAO X, XIE X, et al. Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia[J]. PLoS One, 2013, 8(2): e56718.
[25] MARCUCCI G, MAHARRY K S, METZELER K H, et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients[J]. J Clin Oncol, 2013, 31(17):2086-2093.
[26] CAMMARATA G, AUGUGLIARO L, SALEMI D, et al. Differential expression of specific microRNA and their targets in acute myeloid leukemia[J]. Am J Hematol, 2010, 85(5): 331-339.
[27] VEERLA S, LINDGREN D, KVIST A, et al. MiRNA expression in urothelial carcinomas: Important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31[J]. Int J Cancer, 2009, 124(9): 2236-2242.[28] GALARDI S, MERCATELLI N, GIORDA E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1[J]. J Biol Chem, 2007, 282(32): 23716-23724.
[29] LE SAGE C, NAGEL R, EGAN D A, et al. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation[J]. EMBO J, 2007, 26 (15): 3699-3708.
[30] MERCATELLI N, COPPOLA V, BONCI D, et al. The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice[J]. PLoS One, 2008, 3(12): e4029.
[31] ZHANG C, KANG C, YOU Y, et al. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo[J]. Int J Oncol, 2009, 34(6): 1653-1660.
[32] PARK J K, KOGURE T, NUOVO G J, et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival[J]. Cancer Res, 2011, 71(24): 7608-7616.
[33] TAKAMIZAWA J, KONISHI H, YANAGISAWA K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival [J]. Cancer Res, 2004, 64(11): 3753-3756.
[34] PARK S M, SHELL S, RADJABI A R, et al. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2[J]. Cell Cycle, 2007, 6(21): 2585-2590.
[35] SHELL S, PARK S M, RADJABI A R, et al. Let-7 expression defines two differentiation stages of cancer[J]. Proc Natl Acad Sci USA, 2007, 104(27): 11400-11405.
[36] BRUECKNER B, STRESEMANN C, KUNER R, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function[J]. Cancer Res, 2007, 67(4): 1419-1423.
[37] LAWRIE C H, CHI J, TAYLOR S, et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma[J]. J Cell Mol Med, 2009, 13(7): 1248-1260.
(本文編輯:吳彬)
Characterization of specific miRNAs in acute monocytic leukemia
LIU Jinli1, LIU Shuge2, XIONG Qian2,
HAN Li3, LI Wei1, WANG Wanheng3, ZHANG Zhaojun1,2,4, LI Quanzhen1. 1.School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035; 2.CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101; 3.Guoxinkaier Biotechnology of Shanxi, Taiyuan, 030006; 4.University of Chinese Academy of Sciences, Beijing, 100049
Objective: To characterize the molecular markers of microRNA (miRNA) with specifically high expression in acute monocytic leukemia. Methods: A batch of miRNAs was firstly screened out for their significantly higher expression in THP-1 (acute monocytic leukemia cell line) by analyzing high-throughput miRNA transcriptome sequencing data of THP-1 and K562 (chronic myeloid leukemia cell line). These miRNAs were further tested in the THP-1 and K562 cell line by quantitative real-time PCR (qRT-PCR) to obtain the specifically high expressed miRNAs in THP-1 cell line. Finally, these screened miNRAs were verified in bone marrow samples of acute monocytic leukemia patients by qRT-PCR. The finally verified miRNAs could serve the candidates for clinical diagnosis of this disease in the future. Results: Three miRNAs that are specifically highly expressed in acute monocytic leukemia including let-7d-5p, miR-221-3p and miR-222-3p were characteried. Conclusion: By integrating the bioinformatics analysis and verification in cell lines and patient bone marrow samples, we finally characterized 3 miRNAs as potential molecular diagnostic markers in acute monocytic leukemia.
acute monocytic leukemia; microRNA; quantitative real-time PCR; miRNA-Seq
R557
A
10.3969/j.issn.2095-9400.2016.10.001
2016-02-26
國家重大科學(xué)儀器設(shè)備開發(fā)專項(2011YQ03013404);國家高技術(shù)研究發(fā)展計劃(863計劃)(2015AA020108)。
劉金立(1988-),女,山東德州人,碩士生。
共同通信作 者:李全貞,教授,Email:Quan.Li@UTSouthwestern.edu;張昭軍,教授,Email:Zhangzhaojun@big.ac.cn。