Influence of Vibration Training on Bone Mass and Research
Review of Its Mechanism
張娜娜,李世昌,彭海霞
Zhang Nana, Li Shichang, Peng Haixia
振動(dòng)訓(xùn)練對(duì)骨量的影響及其機(jī)制研究進(jìn)展
Influence of Vibration Training on Bone Mass and Research
Review of Its Mechanism
張娜娜,李世昌,彭海霞
Zhang Nana, Li Shichang, Peng Haixia
作者單位:華東師范大學(xué)體育與健康學(xué)院,上海200241
前言
振動(dòng)訓(xùn)練是近20年才出現(xiàn)的一種訓(xùn)練方法,是一種通過(guò)機(jī)械振動(dòng)和外在抗阻負(fù)荷誘發(fā)神經(jīng)肌肉反射,促進(jìn)肌肉收縮,同時(shí)給予骨骼重復(fù)性的應(yīng)力刺激進(jìn)而改善肌肉-骨骼系統(tǒng)結(jié)構(gòu)和功能的康復(fù)訓(xùn)練方法。
根據(jù)振動(dòng)實(shí)施的方法可有準(zhǔn)確性振動(dòng),節(jié)段性振動(dòng)和全身振動(dòng)[1]。其中全身振動(dòng)訓(xùn)練逐步成為訓(xùn)練和康復(fù)領(lǐng)域研究的熱點(diǎn),而且其對(duì)骨量有積極的影響。然而由于振動(dòng)裝置、運(yùn)動(dòng)強(qiáng)度、時(shí)間、頻率等因素的不同,研究結(jié)果存在一定的差異。但其具作用體機(jī)制尚不清楚。本文對(duì)振動(dòng)訓(xùn)練對(duì)骨礦物質(zhì)含量的影響和作用機(jī)制進(jìn)行綜述,以深入探討其對(duì)骨質(zhì)的影響作用。
1振動(dòng)訓(xùn)練對(duì)骨量的影響
近年來(lái),大量動(dòng)物實(shí)驗(yàn)表明振動(dòng)訓(xùn)練對(duì)骨量有積極響。Lynch等[2]對(duì)成年小鼠和老年小鼠分別進(jìn)行5周的振動(dòng)訓(xùn)練,發(fā)現(xiàn)成年小鼠小腿的骨量有所增加。Wenger等人[3]對(duì)大齡雄性大鼠進(jìn)行12周的振動(dòng)訓(xùn)練,發(fā)現(xiàn)有較高的骨密度。這個(gè)結(jié)果與Tezval等人的去卵巢大鼠模型研究結(jié)果一致,Tezval等人[4]對(duì)去卵巢大鼠進(jìn)行了7周的訓(xùn)練,發(fā)現(xiàn)大鼠骨量明顯高于非振動(dòng)訓(xùn)練去卵巢大鼠。然而并非所有的實(shí)驗(yàn)都支持這一觀點(diǎn)。Vander等人[5]對(duì)去卵巢大鼠進(jìn)行10周的振動(dòng)訓(xùn)練,發(fā)現(xiàn)低頻的振動(dòng)不能預(yù)防骨量的減少,只能影響大鼠的體重。
綜上所述,研究結(jié)果存在著差異,是怎樣形成的呢?Judex等[6]指出遺傳基因的不同,其對(duì)骨合成分解代謝刺激的敏感度就不同。例如3-月齡C57BL,BALB/c和C3H小鼠盡管類似的體重,卻表現(xiàn)出不同的骨密度。提示造成動(dòng)物實(shí)驗(yàn)研究結(jié)果不同的原因可能是研究中的小鼠種類不同,對(duì)振動(dòng)刺激的敏感性不同。另一方面,研究中使用的振動(dòng)儀器、振動(dòng)幅度、振動(dòng)頻率等不同也會(huì)影響研究的結(jié)果。由于振動(dòng)訓(xùn)練包括三個(gè)要素即振幅、頻率、加速度,其不同的組合有不同的訓(xùn)練方案,所以這也很難比較不同研究的不同結(jié)果[7]。振動(dòng)頻率和振幅的不同可以解釋不同研究結(jié)果的差異[8]。在此基礎(chǔ)上Pasqualini等[9]探索了加速度固定時(shí),不同頻率的振動(dòng)對(duì)小鼠骨骼的影響,指出90Hz是對(duì)小鼠最有益的頻率,8Hz是最有害的頻率。此外,振動(dòng)訓(xùn)練的加速度也會(huì)影響研究的結(jié)果[10]。這種背景下,不同的頻率、幅度、加速度需要更好地界定。
那么其對(duì)人體骨量的影響效果如何呢?研究發(fā)現(xiàn)[11]6個(gè)月的振動(dòng)訓(xùn)練之后能夠提高絕經(jīng)婦女髖關(guān)節(jié)處的骨密度。Rittweger等[12]發(fā)現(xiàn)振動(dòng)訓(xùn)練可以減少臥床者骨質(zhì)的流失,預(yù)防骨量減少。Reyes等[13]和Wren等人[14]發(fā)現(xiàn)高頻低強(qiáng)度的振動(dòng)訓(xùn)練可以提高殘疾兒童的骨量。然而,另一些人體實(shí)驗(yàn)結(jié)果與上述結(jié)果不一致,沒(méi)有發(fā)現(xiàn)振動(dòng)訓(xùn)練對(duì)老年人的骨量、骨密度有任何積極地影響。Bemben等人[15]對(duì)老年絕經(jīng)婦女分成振動(dòng)訓(xùn)練和抗阻運(yùn)動(dòng)組、抗阻運(yùn)動(dòng)組、控制組,經(jīng)過(guò)8個(gè)月的實(shí)驗(yàn)并沒(méi)有發(fā)現(xiàn)其各組骨密度、堿性磷酸酶有顯著差異。另一項(xiàng)研究[16]發(fā)現(xiàn)短時(shí)間的全身振動(dòng)訓(xùn)練不能改變老年人的骨量和骨密度,只是對(duì)骨結(jié)構(gòu)有輕微的影響。筆者認(rèn)為造成這種差異的原因很可能與動(dòng)物實(shí)驗(yàn)差異的原因相似,不同振幅、頻率都可能影響研究結(jié)果。然而,對(duì)于不同的群體用何種振動(dòng)治療方案,最能達(dá)到我們所期望的效果還需要我們進(jìn)步探索。
2振動(dòng)訓(xùn)練增加骨量的分子機(jī)制研究進(jìn)展
盡管很多研究者已經(jīng)證實(shí)了振動(dòng)訓(xùn)練可以增強(qiáng)骨重建,防止骨丟失。然而對(duì)其介導(dǎo)的分子途徑仍不清楚。
RANKL可促進(jìn)破骨細(xì)胞分化,增強(qiáng)成熟破骨細(xì)胞的活力,阻止破骨細(xì)胞凋亡,是破骨細(xì)胞分化成熟和維持功能所需的重要因子。RANKL和M-CSF是破骨細(xì)胞生成前體分化為成熟和維持功能所需的重要因子。Wu等人[17]發(fā)現(xiàn)振動(dòng)訓(xùn)練可以降低RANKL誘導(dǎo)的抗酒石酸酸性磷酸酶(TRAP)陽(yáng)性多核細(xì)胞(MNCs)的數(shù)量,降低破骨細(xì)胞特異性基因表達(dá)。Lau等人[18]也發(fā)現(xiàn)振動(dòng)訓(xùn)練可以降低RANKL和PGE2水平,雖然不能改變OPG的含量,但是降低了RANKL/OPG的比值。提示振動(dòng)訓(xùn)練通過(guò)降低RANKL水平,阻止RANKL與RANK之間的結(jié)合,抑制破骨的細(xì)胞的分化,進(jìn)而抑制骨吸收。
IL-1和TNF-α可通過(guò)促進(jìn)祖破骨細(xì)胞增生而增強(qiáng)破骨細(xì)胞形成,并激活成熟破骨細(xì)胞。研究[19]指出振動(dòng)訓(xùn)練能夠降低間充質(zhì)細(xì)胞中IL-1和TNF-α的水平,進(jìn)而減少骨質(zhì)流失,預(yù)防骨量減少。此外,Wang等[20]研究指出振動(dòng)訓(xùn)練使血液中TGF-β水平升高。
另外,ERK1/2在骨形成和骨吸收中起重要作用。Zhou等人[21]發(fā)現(xiàn)12周的振動(dòng)訓(xùn)練后成骨細(xì)胞中ERK1/2的磷酸化水平升高,同時(shí)M-CSF和RANKL降低,后者可能是由于ERK1/2的競(jìng)爭(zhēng)抑制作用,進(jìn)而指出振動(dòng)訓(xùn)練可能是通過(guò)ERK1/2信號(hào)上調(diào)成骨細(xì)胞活性和下調(diào)成骨細(xì)胞介導(dǎo)的破骨細(xì)胞的生成,從而增加骨密度的。提示振動(dòng)訓(xùn)練可以通過(guò)ERK1/2信號(hào)促進(jìn)骨形成,抑制骨吸收,進(jìn)而提高骨量。
糖原合成酶激酶-3(GSK-3)是一種絲氨酸/蘇氨酸激酶,包括兩個(gè)亞型(GSK-3α和GSK-3β),其中主要是GSK-3β參與了細(xì)胞內(nèi)β-catenin蛋白水平的調(diào)控。GSK-3β磷酸化能抑制自身激酶活性,進(jìn)而激活Wnt/β-catenin 信號(hào)通路下,促進(jìn)成骨細(xì)胞分化。Wang等人[22]發(fā)現(xiàn)去卵巢大鼠全身振動(dòng)訓(xùn)練后,骨髓細(xì)胞中p-GSK3β表達(dá)量顯著高于非全身振動(dòng)組。提示全身振動(dòng)訓(xùn)練能激發(fā)大鼠骨髓細(xì)胞GSK3β的磷酸化,進(jìn)而激活Wnt/β-catenin 信號(hào)通路,使成骨細(xì)胞數(shù)量增多,加速骨的重建和骨量的積累。
骨髓間充質(zhì)干細(xì)胞向成骨細(xì)胞、脂肪細(xì)胞和軟骨細(xì)胞分化。近年來(lái)的研究發(fā)現(xiàn),機(jī)械刺激可以直接刺激骨髓間充質(zhì)細(xì)胞數(shù)量增加并且分化為成骨細(xì)胞譜系,進(jìn)而促進(jìn)成骨,使骨量增加。王慧敏等[26]對(duì)去卵巢大鼠振動(dòng)訓(xùn)練后取骨髓細(xì)胞染色,發(fā)現(xiàn)與去卵巢靜止組比較,去卵巢振動(dòng)組骨髓細(xì)胞堿性磷酸酶陽(yáng)性染色細(xì)胞數(shù)目顯著增加,而骨髓細(xì)胞NileRed陽(yáng)性染色細(xì)胞百分比和脛骨骨髓脂肪空泡數(shù)目顯著下降。提示全身垂直振動(dòng)不僅增加去卵巢骨質(zhì)疏松大鼠骨髓細(xì)胞的成骨分化能力,而且降低去卵巢骨質(zhì)疏松大鼠骨髓細(xì)胞的成脂分化能力。進(jìn)一步實(shí)驗(yàn)證明骨髓間充質(zhì)干細(xì)胞通過(guò)Wnt信號(hào)通路的調(diào)控成脂分化和成骨分化過(guò)程,李萍華等人[27]通過(guò)Wnt信號(hào)通路PCR基因芯片觀察大鼠骨髓間充質(zhì)干細(xì)胞分化為脂肪細(xì)胞和成骨細(xì)胞后相關(guān)基因表達(dá)的變化,發(fā)現(xiàn)成骨誘導(dǎo)后,Wnt信號(hào)通路表達(dá)上調(diào)的基因(β-catenin,Wnt11)等6個(gè)。提示W(wǎng)nt信號(hào)通路在骨髓間充質(zhì)干細(xì)胞成脂細(xì)胞分化和成骨細(xì)胞分化中發(fā)揮重要作用。
3小結(jié)與展望
振動(dòng)訓(xùn)練作為一種新興的訓(xùn)練方法以其安全、簡(jiǎn)單、有效的特點(diǎn)已經(jīng)在提高肌肉力量和預(yù)防骨量減少方面顯示了極大的優(yōu)勢(shì)和潛力。但是對(duì)于不同的實(shí)驗(yàn)群體采取何種的振動(dòng)方面的研究還相對(duì)不足,仍需進(jìn)一步深人研究。以期對(duì)不同的群體進(jìn)行振動(dòng)訓(xùn)練,能明確具體的振動(dòng)幅度、頻率、加速度,以便對(duì)骨能達(dá)到最有益的效果。另外振動(dòng)訓(xùn)練對(duì)骨影響的分子學(xué)機(jī)制還尚不十分清楚,需要進(jìn)一步探索。
參考文獻(xiàn):
[1]Matute-Llorente A, Gonzalez-Aguero A, Gomez-Cabello A, et al. Effect of whole-body vibration therapy on health-related physical fitness in children and adolescents with disabilities: a systematic review[J]. J Adolesc Health. 2014, 54(4): 385-396.
[2]Lynch M A, Brodt M D, Silva M J. Skeletal effects of whole-body vibration in adult and aged mice[J]. J Orthop Res. 2010, 28(2): 241-247.
[3]Wenger K H, Freeman J D, Fulzele S, et al. Effect of whole-body vibration on bone properties in aging mice[J]. Bone. 2010, 47(4): 746-755.
[4]Tezval M, Biblis M, Sehmisch S, et al. Improvement of Femoral Bone Quality After Low-Magnitude, High-Frequency Mechanical Stimulation in the Ovariectomized Rat as an Osteopenia Model[J]. Calcified Tissue International. 2011, 88(1): 33-40.
[5]van der Jagt O P, van der Linden J C, Waarsing J H, et al. Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats[J]. J Bone Miner Metab. 2012, 30(1): 40-46.
[6]Judex S, Donahue L R, Rubin C. Genetic predisposition to low bone mass is paralleled by an enhanced sensitivity to signals anabolic to the skeleton[J]. FASEB J. 2002, 16(10): 1280-1282.
[7]Prisby R D, Lafage-Proust M, Malaval L, et al. Effects of whole body vibration on the skeleton and other organ systems in man and animal models: What we know and what we need to know[J]. Ageing Research Reviews. 2008, 7(4): 319-329.
[8]Matute-Llorente , González-Agüero A, Gómez-Cabello A, et al. Effect of Whole-Body Vibration Therapy on Health-Related Physical Fitness in Children and Adolescents With Disabilities: A Systematic Review[J]. Journal of Adolescent Health. 2014, 54(4): 385-396.
[9]Pasqualini M, Lavet C, Elbadaoui M, et al. Skeletal site-specific effects of whole body vibration in mature rats: From deleterious to beneficial frequency-dependent effects[J]. Bone. 2013, 55(1): 69-77.
[10]Christiansen B A, Silva M J. The Effect of Varying Magnitudes of Whole-Body Vibration on Several Skeletal Sites in Mice[J]. Annals of Biomedical Engineering. 2006, 34(7): 1149-1156.
[11]Slatkovska L, Alibhai S M, Beyene J, et al. Effect of whole-body vibration on BMD: a systematic review and meta-analysis[J]. Osteoporos Int. 2010, 21(12): 1969-1980.
[12]Rittweger J, Beller G, Armbrecht G, et al. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise ☆[J]. Bone. 2010, 46(1): 137-147.
[13]Reyes M L, Hernández M, Holmgren L J. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children[J]. Journal of Bone and Mineral Research. 2011, 26(8): 1759-1766.
[14]Wren T A, Lee D C, Hara R, et al. Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy[J]. J Pediatr Orthop. 2010, 30(7): 732-738.
[15]Bemben D A, Palmer I J, Bemben M G, et al. Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women[J]. Bone. 2010, 47(3): 650-656.
[16]Gomez-Cabello A, Gonzalez-Aguero A, Morales S, et al. Effects of a short-term whole body vibration intervention on bone mass and structure in elderly people[J]. J Sci Med Sport. 2014, 17(2): 160-164.
[17]Wu S H, Zhong Z M, Chen J T. Low-magnitude high-frequency vibration inhibits RANKL-induced osteoclast differentiation of RAW264.7 cells[J]. Int J Med Sci. 2012, 9(9): 801-807.
[18]Lau E, Al-Dujaili S, Guenther A, et al. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts[J]. Bone. 2010, 46(6): 1508-1515.
[19]Kim I S, Lee B, Yoo S J, et al. Whole Body Vibration Reduces Inflammatory Bone Loss in a Lipopolysaccharide Murine Model[J]. J Dent Res. 2014, 93(7): 704-710.
[20]Wang H, Wan Y, Tam K F, et al. Resistive vibration exercise retards bone loss in weight-bearing skeletons during 60 days bed rest[J]. Osteoporos Int. 2012, 23(8): 2169-2178.
[21]Zhou Y, Guan X, Liu T, et al. Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway[J]. Bone. 2015, 71: 17-24.
[22]Wang Y H, Bu S M, Wang J H.[Regulating effects of whole-body vibration on protein expression of p-GSK3beta in bone marrow cells of ovariectomized osteoporosis rats][J]. Sheng Li Xue Bao. 2013, 65(2): 165-170.
[23]王慧彬,卜淑敏,文思敏. 全身垂直振動(dòng)對(duì)去卵巢骨質(zhì)疏松大鼠骨髓細(xì)胞分化的調(diào)節(jié)作用[J]. 中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志. 2013,(6): 501-506.
School of Sports and Health, East China Normal University, Shanghai 200241, China.
摘要:振動(dòng)訓(xùn)練是一種新型的訓(xùn)練方式,逐漸被應(yīng)用到多個(gè)領(lǐng)域。近年來(lái)振動(dòng)訓(xùn)練對(duì)骨的影響的研究也逐漸深入,本文在查閱近年來(lái)相關(guān)資料的基礎(chǔ)上,對(duì)振動(dòng)訓(xùn)練對(duì)骨量的影響及其機(jī)制進(jìn)行綜述。結(jié)果表明振動(dòng)訓(xùn)練能增加動(dòng)物和人的骨量,但由于具體的振動(dòng)方案不同,也有不同的結(jié)果。究竟不同的群體采取何種的振動(dòng)方案,才能對(duì)骨產(chǎn)生最優(yōu)的效果,還是今后研究的重點(diǎn)。另外其具體生物學(xué)機(jī)制不甚清楚,因此還探討了振動(dòng)運(yùn)動(dòng)影響骨的生物機(jī)制。
關(guān)鍵詞:振動(dòng)訓(xùn)練;骨礦物質(zhì)含量;分子機(jī)制;進(jìn)展
Abstract:Vibration training, a new way of training, is gradually applied to many fields. Recent years have seen deepening research on influence of vibration training on bones. On the basis of consulting relevant materials of recent years, the paper reviews the influence of vibration training on bone mass and its mechanism. Results show that vibration training can increase bone mass in animals and people; but different results also exist due to different vibration program. Future research focus would still be: taking which kind of vibration program on different groups can produce optimal effect on bones. Given the still unclear specific biological mechanism, the paper also probes into the biological mechanism that vibration training exerts on bones.
Key words:vibration training; bone mineral content; molecular mechanism; progress
doi:10.3969/ j.issn.1005-0256.2016.01.025
中圖分類號(hào):G804
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1005-0256(2016)01-0055-3
作者簡(jiǎn)介:第一張娜娜(1989-),女,河南商丘人,在讀碩士研究生,研究方向:運(yùn)動(dòng)和適應(yīng)。