張維 喬錄新 丁渭 陳德喜 張玉林▲
1.首都醫(yī)科大學(xué)附屬北京佑安醫(yī)院,北京100069;2.北京市肝病研究所,北京100069
核苷類似物對(duì)小鼠肝臟線粒體DNA D-loop區(qū)突變的影響
張維1*喬錄新1,2*丁渭1陳德喜2張玉林1▲
1.首都醫(yī)科大學(xué)附屬北京佑安醫(yī)院,北京100069;2.北京市肝病研究所,北京100069
目的探討長期使用核苷類似物(NA)是否導(dǎo)致肝臟線粒體DNA(mtDNA)D-loop區(qū)損傷。方法選取7周齡Balb/C小鼠25只,將其隨機(jī)分為對(duì)照組和4個(gè)NA實(shí)驗(yàn)組。對(duì)照組腹腔內(nèi)注射雙蒸水,各實(shí)驗(yàn)組分別給予司他夫定(D4T)50mg/kg、齊多夫定(AZT)100mg/kg、拉米夫定(3TC)50mg/kg和去羥肌苷(DDI)50 mg/kg,分別腹腔內(nèi)注射,每周5次,共12周。取各組小鼠肝組織,通過激光捕獲顯微切割獲取肝細(xì)胞,對(duì)mtDNA D-loop區(qū)克隆和測序。結(jié)果DDI組肝組織中mtDNA拷貝數(shù)(0.440±0.040)和肝細(xì)胞中mtDNA拷貝數(shù)(0.464±0.013)均較對(duì)照組[(1.000±0.080)、(1.000±0.058)]顯著減少,差異均有統(tǒng)計(jì)學(xué)意義(均P<0.05)。D4T組肝細(xì)胞D-loop區(qū)與參考序列的平均距離為(0.0037±0.0019),3TC組為(0.0031±0.0017),DDI組為(0.0035±0.0028),與對(duì)照組(0.0018±0.0017)比較差異均有統(tǒng)計(jì)學(xué)意義(均P<0.05)。D4T組肝細(xì)胞D-loop區(qū)平均同義替換率(dS)為(0.0060±0.0010),3TC組為(0.0050±0.0007),與對(duì)照組(0.0030±0.0007)比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。DDI組肝細(xì)胞D-loop區(qū)平均錯(cuò)義替換率(dN)為(0.0020±0.0010),與對(duì)照組(0.0008±0.0003)比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。AZT組肝組織D-loop區(qū)的“A→G”轉(zhuǎn)換率(0.001 90)較對(duì)照組(0.000 62)高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。D4T組肝細(xì)胞D-loop區(qū)的“T→C”轉(zhuǎn)換率為0.001 28,3TC組為0.001 75,較對(duì)照組(0.000 58)顯著增高,差異均有統(tǒng)計(jì)學(xué)意義(均P<0.05)。結(jié)論長期暴露于核苷類似物可導(dǎo)致小鼠肝細(xì)胞mtDNA D-loop區(qū)病變,主要突變類型為轉(zhuǎn)換,主要的轉(zhuǎn)換為“A→G”和“T→C”。
D-loop區(qū);線粒體DNA;肝細(xì)胞;核苷類似物
核苷類似物(NA)用于治療人類免疫缺陷病毒(HIV)和乙型肝炎病毒(HBV)感染[1]。NA可抑制人細(xì)胞DNA聚合酶γ,干擾核DNA修復(fù)及線粒體DNA的合成和修復(fù),導(dǎo)致氧化應(yīng)激和線粒體功能障礙[2],與臨床許多疾病相關(guān),包括肌病、脂肪萎縮、神經(jīng)系統(tǒng)疾病和乳酸酸中毒[3]。這些可能是降低抗HIV藥效和患者依從性的關(guān)鍵因素[4]。長期應(yīng)用NA的HIV感染者可發(fā)生肝脂肪變性,但NA的肝毒性原因尚不明確。筆者前期研究提示,應(yīng)用NA的小鼠和HIV感染患者存在神經(jīng)細(xì)胞線粒體毒性[5-6]。本研究通過觀察肝組織和肝細(xì)胞的線粒體DNA(mtDNA)D-loop區(qū)序列變化,明確NA是否會(huì)誘導(dǎo)小鼠肝細(xì)胞mtDNA病變。
1.1 實(shí)驗(yàn)動(dòng)物
7周齡、體重28~30 g的Balb/C雌性小鼠25只(軍事醫(yī)學(xué)科學(xué)院),按照首都醫(yī)科大學(xué)動(dòng)物保護(hù)和使用規(guī)定進(jìn)行動(dòng)物實(shí)驗(yàn)。
1.2 分組及給藥
將小鼠隨機(jī)分為4個(gè)實(shí)驗(yàn)組[司他夫定(D4T)組、齊多夫定(AZT)組、拉米夫定(3TC)組、去羥肌苷(DDI)組]和對(duì)照組。各實(shí)驗(yàn)組小鼠每天分別給予腹腔內(nèi)注射D4T 50 mg/kg、AZT 100mg/kg、3TC 50mg/kg、DDI 50mg/kg(東北制藥集團(tuán)有限責(zé)任公司惠贈(zèng)),每周5 d,連續(xù)12周。對(duì)照組腹腔內(nèi)注射雙蒸水。
1.3 實(shí)驗(yàn)取材
12周結(jié)束時(shí),頸椎脫臼處死小鼠,迅速分離小鼠肝組織于液氮中速凍。最佳切片溫度復(fù)合物包埋肝組織,-20℃將組織切為6μm薄片,置于聚乙烯包被的玻片上。行HE染色。晾干5min,2 h內(nèi)由有經(jīng)驗(yàn)的病理醫(yī)師應(yīng)用P.A.L.MRobot-Microbeam系統(tǒng)(Oberkochen,德國)對(duì)切片行激光捕獲顯微切割(LCM)獲取肝細(xì)胞[7]。
1.4 DNA提取和實(shí)時(shí)定量PCR
據(jù)DNA提取試劑盒(QIAGEN中國有限公司)說明書提取肝組織和肝細(xì)胞DNA。TaqMan 7900HT系統(tǒng)行定量PCR。細(xì)胞色素氧化酶亞基Ⅱ(COXⅡ)作為mtDNA的靶基因,核基因甘油醛-3-磷酸脫氫酶(GAPDH)作為內(nèi)參。CoxⅡ正向引物:5'-CGACCTAAAACCTGGTGAACTA-3',反向引物:5'-TTGG AAGTTCTATTGGCAGAAC-3',探針:5'-FAM-ACTGCTAGAAGTTGATAACCGAGTC-TAMRA-3'[5]。引物和探針由Invitrogen公司合成。每個(gè)樣本重復(fù)3次qPCR反應(yīng)。雙蒸水作為陰性對(duì)照。2-ΔΔCt方法即ΔΔCt=(CtCOXⅡ-CtGAPDH)測試組-(CtCOXⅡ-CtGAPDH)對(duì)照組分析數(shù)據(jù)。
1.5 m tDNA D-loop區(qū)的克隆和測序
PCR擴(kuò)增肝組織和肝細(xì)胞DNA的mtDNA區(qū)。每個(gè)反應(yīng)用10 ng基因組DNA作為模板。mtDNA D-loop區(qū)PCR引物對(duì):F1:5'-CTAATACCTTTCCTTCATACCTCAA-3';R1:5'-ATTTTGGGAACTACTAGAATTGATC-3';F2:5'-CAACCAGTAGAACACCCATTTATTA-3';R2:5'-TGTCTTTCAAGTTCTTAGTGTTTTT-3'。雙蒸水為陰性對(duì)照。PCR產(chǎn)物克隆于pGEM-18T載體。ABI3730基因分析儀器對(duì)每個(gè)樣本隨機(jī)選擇的10個(gè)克隆測序。
1.6 序列分析
Vector NTI套件7.0 Contig Express軟件包對(duì)每個(gè)克隆的核苷酸序列組裝并糾錯(cuò)[8]。ClustalW多序列比對(duì)程序比對(duì)序列與參考序列(NC_005089.1,Gen-Bank)。Mega 5.0 Kimura雙參數(shù)模型計(jì)算每組序列的序列多樣性,包括平均核苷酸距離、同義替換率(dS)、錯(cuò)義替換率(dN)。運(yùn)用Tamura3參數(shù)模型計(jì)算平均核苷酸距離、dS和dN。
1.7 統(tǒng)計(jì)學(xué)方法
應(yīng)用SPSS 18.0統(tǒng)計(jì)軟件。采用Mann-Whitney非參數(shù)檢驗(yàn)比較組間mtDNA拷貝數(shù)差異,采用X2檢驗(yàn)或Fisher精確檢驗(yàn)比較組間dS和dN差異。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 各組肝組織和肝細(xì)胞m tDNA拷貝數(shù)比較
肝組織mtDNA拷貝數(shù):AZT組為(0.660±0.040),D4T組為(0.560±0.070),3TC組為(0.670±0.020),DDI組為(0.440±0.040),其中DDI組小鼠肝組織mtDNA拷貝數(shù)較對(duì)照組(1.000±0.080)明顯減少,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖1A)。肝細(xì)胞mtDNA拷貝數(shù):AZT組為(0.666±0.024),D4T組為(0.634±0.024),3TC組為(0.708±0.031),DDI組為(0.464±0.013),其中DDI組小鼠細(xì)胞m tDNA拷貝數(shù)較對(duì)照組(1.000±0.058)明顯減少,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖1B)。
圖1 各組肝組織和肝細(xì)胞m tDNA拷貝數(shù)比較
2.2 各組肝組織和肝細(xì)胞m tDNA D-loop區(qū)序列變化比較
肝組織D-loop區(qū)與參考序列的平均距離:AZT組為(0.0026±0.0014),D4T組為(0.0018±0.0015),3TC組為(0.0015±0.0013),DDI組為(0.0016±0.0008)。各實(shí)驗(yàn)組與對(duì)照組(0.0021±0.0020)比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)(圖2A)。肝細(xì)胞D-loop區(qū)與參考序列的平均距離:AZT組為(0.0015±0.0022),D4T組為(0.0037±0.0019),3TC組為(0.0031±0.0017),DDI組為(0.0035±0.0028)。除AZT組外,余各實(shí)驗(yàn)組與對(duì)照組(0.0018±0.0017)比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖2B)。
肝組織D-loop區(qū)平均dS:對(duì)照組為(0.0030± 0.0012),AZT組為(0.0038±0.0008),D4T組為(0.0024± 0.0005),3TC組為(0.0022±0.0008),DDI組為(0.0026± 0.0005),各組肝組織dS與對(duì)照組比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)(圖2C)。肝細(xì)胞D-loop區(qū)平均dS對(duì)照組為(0.0030±0.0007),AZT組為(0.0030±0.0010),D4T組為(0.0060±0.0010),3TC組為(0.0050±0.0007),DDI組為(0.0038±0.0016)。D4T組和3TC組與對(duì)照組比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖2D)。
肝組織D-loop區(qū)平均dN:對(duì)照組為(0.0010±0.0007),AZT組為(0.0014±0.0009),D4T組為(0.0006±0.0003),3TC組為(0.0006±0.0002),DDI組為(0.0006±0.0004)。各組肝組織dN與對(duì)照組比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)(圖2E)。肝細(xì)胞D-loop區(qū)平均dN:對(duì)照組為(0.0008±0.0003),AZT組為(0.0006±0.0005),D4T組為(0.0006±0.0005),3TC組為(0.0010±0.0007),DDI組為(0.0020±0.0010)。僅DDI組存在相對(duì)高的dN值,與對(duì)照組比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖2F)。
2.3 各組肝組織和肝細(xì)胞m tDNA D-loop基因突變
肝組織D-loop區(qū)序列單堿基的轉(zhuǎn)換率:AZT組為0.0023,D4T組為0.0017,3TC組為0.0004,DDI組為0.0008,各實(shí)驗(yàn)組與對(duì)照組(0.0017)比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)(圖3A)?!癆→G”轉(zhuǎn)換率:AZT組為0.001 90,D4T組為0.000 93,3TC組為0.000 00,DDI組為0.000 28,AZT組較對(duì)照組(0.000 62)顯著升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖3B)。肝細(xì)胞D-loop區(qū)序列單堿基的轉(zhuǎn)換率:AZT組為0.0015,D4T組為0.0027,3TC組為0.0022,DDI組為0.0021,D4T組較對(duì)照組(0.0016)明顯升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖3C)?!癟→C”轉(zhuǎn)換率:AZT組為0.000 64,D4T組為0.00128,3TC組為0.00175,DDI組為0.00058,D4T組和3TC組較對(duì)照組(0.000 48)顯著增高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖3D)。
圖2 各組肝組織和肝細(xì)胞m tDNA D-loop區(qū)序列變化比較
研究表明,<20%的接受抗逆轉(zhuǎn)錄病毒治療的患者出現(xiàn)肝損傷[9];12%接受干擾素+利巴韋林聯(lián)合抗逆轉(zhuǎn)錄病毒治療的HIV/HCV混合感染患者,表現(xiàn)出無癥狀的線粒體毒性[10]??鼓孓D(zhuǎn)錄病毒藥物的肝毒性可能會(huì)促進(jìn)HIV/HCV混合感染患者的肝纖維化。此外,抗病毒治療相關(guān)的免疫重建可能會(huì)減輕患者HCV相關(guān)的肝臟損害[11]。NA能否對(duì)肝臟產(chǎn)生線粒體毒性尚不清楚。
NA可通過與自然脫氧核苷三磷酸競爭,抑制核或m tDNA多聚酶和DNA復(fù)制的鏈終止[12]。最近研究表明,非NA逆轉(zhuǎn)錄酶抑制劑導(dǎo)致的肝毒性涉及內(nèi)質(zhì)網(wǎng)(ER)應(yīng)激/未折疊蛋白,通過線粒體相關(guān)的ER膜(MAMs)介導(dǎo)的Ca2+交換和能量代謝障礙[13]。本研究提示小鼠暴露于NA 3個(gè)月后肝細(xì)胞存在線粒體毒性。mtDNA D-loop區(qū)位于線粒體基因組非編碼區(qū),具有許多重要的轉(zhuǎn)錄和復(fù)制元素,極易發(fā)生突變[14]。D-loop區(qū)突變可能先于腫瘤發(fā)生,并可能在腫瘤發(fā)生過程中累積[15]。mtDNA D-loop區(qū)與年齡、物種進(jìn)化和各種退行性疾病相關(guān)[16]。本研究通過分析各NA組肝組織和肝細(xì)胞D-loop區(qū)的突變,提示NA,特別是D4T和DDI,能夠?qū)е滦∈蟾渭?xì)胞m tDNA D-loop區(qū)序列多樣性和咖突變的發(fā)生,NA誘導(dǎo)的小鼠肝細(xì)胞D-loop區(qū)最常見的堿基突變類型為轉(zhuǎn)換。
圖3 各組肝組織和肝細(xì)胞m tDNA D-loop基因突變
綜上所述,長期暴露于NA可導(dǎo)致小鼠肝細(xì)胞mtDNA D-loop區(qū)突變,主要突變類型為轉(zhuǎn)換,主要為“A→G”和“T→C”,部分揭示了長期應(yīng)用NA出現(xiàn)肝臟病變的原因。
[1]Seto WK,Liu K,Wong DK,et al.Patterns of hepatitis B surface antigen decline and HBV DNA suppression in Asian treatment-experienced chronic hepatitis B patients after three years of tenofovir treatment[J].J Hepatol,2013,59(4):709-716.
[2]Dragovic G,Jevtovic D.The role of nucleoside reverse transcriptase inhibitors usage in the incidence of hyperlactatemia and lactic acidosis in HIV/AIDS patients[J]. Bio Pharm,2012,66(4):308-311.
[3]Dagan T,Sable C,Bray J.Mitochondrial dysfunction and antiretroviral nucleoside analog toxicities:what is the evidence?[J].Mitochondrion,2002,1(5):397-412.
[4]Lapinski TW,Parfieniuk-Kowerda A,Trzos A,et al.HBV mutations associated with lamivudine therapy[J].Przegl Epidemiol,2013,67(4):611-616,705-708.
[5]Zhang Y,Song F,Gao Z,et al.Long-term exposure ofmice tonucleosideanaloguesdisruptsmitochondrialDNAmaintenance in corticalneurons[J].PLoSOne,2014,9(1):e85637.
[6]Zhang Y,Wang M,Li H,et al.Accumulation of nuclear and mitochondrial DNA damage in the frontal cortex cells ofpatientswith HIV-associated neurocognitive disorders[J]. Brain Res,2012,1458(6):1-11.
[7]Rook MS,Delach SM,Deyneko G,etal.Whole genome amplification of DNA from laser capture-microdissected tissue for high-throughput single nucleotide polymorphism and short tandem repeat genotyping[J].Am JPathol,2004,164(1):23-33.
[8]Liu F,Yu DM,Huang SY,et al.Clinical implications of evolutionary patterns of homologous,full-length hepatitis B virus quasispecies in different hosts after perinatal infection[J].JClin Microbiol,2014,52(5):1556-1565.
[9]Antoniades C,Macdonald C,Knisely A,et al.Mitochondrial toxicity associated with HAART following liver transplantation in an HIV-infected recipient[J].Liver Transpl,2004,10(3):699-702.
[10]Laguno M,Milinkovic A,de Lazzari E,et al.Incidence and risk factors formitochondrial toxicity in treated HIV/ HCV-coinfected patients[J].Antivir Ther,2005,10(3):423-429.
[11]Macias J,Castellano V,Merchante N,et al.Effect of antiretroviral drugs on liver fibrosis in HIV-infected patients with chronic hepatitis C:harm ful impact of nevirapine[J].AIDS,2004,18(5):767-774.
[12]Wester CW,Eden SK,Shepherd BE,et al.Risk factors for symptomatic hyperlactatemia and lactic acidosis among combination antiretroviral therapy-treated adults in Botswana:results from a clinical trial[J].AIDSRes Hum Retroviruses,2012,28(8):759-765.
[13]Apostolova N,Gomez-Sucerquia LJ,Alegre F,et al.ER stress in human hepatic cells treated with Efavirenz:mitochondria again[J].JHepatol,2013,59(4):780-789.
[14]Chang SC,Lin PC,Yang SH,et al.Mitochondrial D-loop mutation is a common event in colorectal can cers with p53 mutations[J].Int J Colorectal Dis,2009,24(6):623-628.
[15]Alhomidi MA,Vedicherla B,Movva S,et al.Mitochondrial D310 instability in Asian Indian breast cancer patients[J].Tumour Biol,2013,34(4):2427-2432.
[16]Abdullaev SA,Anishchenko ES,Gaziev AI.Mutant copies ofmitochondrial DNA in tissues and plasma of X-rays exposed mice[J].Radiats Biol Radioecol,2010,50(3):318-328.
Effect of nucleoside analogue for m itochondrial DNA D-loop mutation in liver ofm ice
ZHANGWei1*QIAO Luxin1,2*DINGWei1CHEN Dexi2ZHANG Yulin1▲
1.Beijing You'an Hospital,Capital Medical University,Beijing 100069,China;2.Beijing Institute of Hepatology,Beijing 100069,China
Objective To identify whether long term use of nucleoside analogue(NA)can induce liver mitochondrial DNA(mtDNA)D-loop lesions.Methods Twenty five 7-weeks Balb/c mice were selected and randomly divided into control group and 4 NA experimental groups.The control group was given double-distilled water by intraperitoneal injection,each experimental group was respectively given Stavudine(D4T)50 mg/kg,Zidovudine(AZT)100 mg/kg,Lamivudine(3TC)50 mg/kg,Didanosine(DDI)50 mg/kg by intraperitoneal injection,5 times per week,total for 12 weeks.Then,the hepatic tissues of all groups were taken,and the hepatic cells were captured by laser capture microdissection.ThemtDNA D-loop region was taken cloning and sequencing.Results ThemtDNA copy number in both liver tissues(0.440±0.040)and hepatic cells(0.464±0.013)of DDI group was less than those of control group[(1.000± 0.080),(1.000±0.058)],the differences were all statistically significant(all P<0.05).Themean distances between D-loop mutation in hepatic cells and
equence were(0.0037±0.0019)in the D4T group,(0.0031±0.0017)in the 3TC group,(0.0035±0.0028)in the DDI group,all ofwhich had statistically significant differences compared with that in the control group(0.0018±0.0017)(all P<0.05).Themean synonymous substitution rate(dS)of D-loop region in hepatic cells of D4T group was(0.0060±0.0010),which of 3TC group was(0.0050±0.0007),both of which had statistically significant differences compared with that in the control group(0.0030±0.0007)(P<0.05).Themean non-synonymous substitution rate(dN)of D-loop regionin hepatic cells of DDIgroup was(0.0020±0.0010),which had statistically significant difference compared with that in the control group(0.0008±0.0003)(P<0.05).The rate of“A→G”transition of D-loop region in the hepatic tissues of AZT group was(0.001 90),which were higher than that of control group(0.000 62)(P<0.05).The rate of“T→C”transition of D-loop region in the hepatic cells was 0.001 28 in the D4T group and 0.001 75 in the 3TC group,which was higher than that of control group(0.000 58),the differences were all statistically significant(all P<0.05).Conclusion Long-term exposure to nucleoside analogue can result in the lesions ofmtDNA D-loop region in hepatic cells ofmice,themajormutation type is transition,and themajor transition subtypes are“A→G”and“T→C”.
D-loop region;Mitochondrial DNA;Hepatic cells;Nucleoside analogue
R978.7;R512.6
A
1673-7210(2016)05(c)-0009-04
2016-02-03本文編輯:張瑜杰)
國家自然科學(xué)基金資助項(xiàng)目(81371399、81571178、81272266、81361120401);首都衛(wèi)生發(fā)展科研專項(xiàng)批準(zhǔn)項(xiàng)目(首發(fā)2014-1-1151)。
*共同第一作者
▲通訊作者