易瓊,黃旭,張木,黃巧義,逄玉萬,唐拴虎
(廣東省農(nóng)業(yè)科學院農(nóng)業(yè)資源與環(huán)境研究所/農(nóng)業(yè)部南方植物營養(yǎng)與肥料重點實驗室/廣東省養(yǎng)分資源循環(huán)利用與耕地保育重點實驗室,廣州510640)
氮肥施用水平及種類對生菜產(chǎn)量及菜地N2O排放的影響
易瓊,黃旭,張木,黃巧義,逄玉萬,唐拴虎*
(廣東省農(nóng)業(yè)科學院農(nóng)業(yè)資源與環(huán)境研究所/農(nóng)業(yè)部南方植物營養(yǎng)與肥料重點實驗室/廣東省養(yǎng)分資源循環(huán)利用與耕地保育重點實驗室,廣州510640)
采用靜態(tài)箱-氣相色譜法研究了氮肥施用水平及種類對生菜產(chǎn)量和土壤N2O排放的影響。試驗設(shè)7個處理:不施氮肥(N0),施氮112.5 kg N·hm-2(N1),施氮225 kg N·hm-2(N2),施氮337.5 kg N·hm-2(N3),控釋氮肥(CRU-N2),穩(wěn)定性氮肥(SN-N2),有機無機氮肥配施(MN-N2)。對比研究了不同施氮水平和等氮量不同氮種類處理對N2O排放特征和生菜產(chǎn)量的影響。結(jié)果表明,隨著氮肥用量的增加N2O排放通量增加。在試驗條件下,生菜獲得最高產(chǎn)量時的施氮量為125 kg N·hm-2,適量降低生菜施氮水平能有效降低N2O氣體累積排放量。相同氮水平下,SN-N2與MN-N2處理較N2處理分別增產(chǎn)達13.3%和17.2%,但差異未達顯著水平。SN-N2處理N2O排放總量和N2O排放系數(shù)僅為0.80 kg N·hm-2和0.36%,較常規(guī)施肥處理分別降低了84.8%和1.97個百分點。綜上,在不降低生菜產(chǎn)量的前提下,優(yōu)化氮肥施用水平并采用穩(wěn)定性氮肥技術(shù)是菜地N2O減排和減少蔬菜種植氮素損失的重要途徑。
生菜;氧化亞氮;施氮量;減排措施;排放系數(shù)
大氣溫室氣體濃度的持續(xù)增加是全球氣候變暖的重要誘因之一。N2O作為重要溫室氣體之一,因具有在大氣中滯留時間長、增溫潛勢大和對臭氧層的破壞作用等特點而備受人們關(guān)注。由于蔬菜生長周期短、產(chǎn)量高、施肥量大、灌溉頻繁,菜地溫室氣體排放量居高不下[1]。作為N2O的主要排放源之一,菜地土壤N2O排放規(guī)律及其減排技術(shù)研究已成為國內(nèi)外研究的熱點[2-3]。氮肥的施用是導致菜地土壤N2O排放增加的主要原因之一[4]。例如,生菜(Lactuca sativa L.)具有生長周期相對較短、病蟲害較少、經(jīng)濟產(chǎn)值較高等特點,是當?shù)刂饕N植的蔬菜種類之一。生菜生產(chǎn)中氮肥用量隨空間與品種的變化差異較大,總體而言過量施用氮肥是生菜生產(chǎn)過程中普遍存在的現(xiàn)象,施氮量高達207~300 kg·hm-2[5-6],這既是養(yǎng)分資源的浪費,也是對生態(tài)環(huán)境的污染與破壞。N2O的排放是土壤硝化與反硝化綜合作用的結(jié)果,其排放受外界環(huán)境條件和內(nèi)在土壤性質(zhì)的共同制約和影響[7-9]。目前國內(nèi)外有關(guān)N2O等溫室氣體排放通量的研究多集中在大田作物生產(chǎn)過程中,包括耕作制度、水分灌排及秸稈還田等農(nóng)作措施對溫室氣體排放的相關(guān)研究[10-11],而有關(guān)蔬菜生產(chǎn)過程中N2O氣體釋放規(guī)律,尤其是華南地區(qū)有關(guān)科學合理施肥結(jié)合溫室氣體減排技術(shù)措施相關(guān)研究相對較少。綜上,本研究主要從優(yōu)化蔬菜氮肥施用和N2O溫室氣體減排兩方面進行闡述,以期為蔬菜科學合理施肥、評價菜地土壤N2O減排措施提供技術(shù)支持。
1.1 試驗地點
田間試驗于2013年9月在廣東省農(nóng)科院試驗基地(23.15°N,113.36°E)進行。該地區(qū)屬于典型的亞熱帶海洋性季風氣候,全年平均氣溫22.5℃,年溫差15~17℃,年平均降水量1517 mm,年平均相對濕度77%。供試土壤為赤紅壤,前茬為甜玉米,玉米收獲后勻地2個月左右。土壤基本理化性狀如表1。供試蔬菜為生菜,品種為“意大利全年耐抽苔抗熱生菜”。
1.2 試驗設(shè)計
試驗共設(shè)7個處理:不施氮肥(N0),施氮112.5 kg N·hm-2(N1),施氮225 kg N·hm-2(N2,常規(guī)施肥),施氮337.5 kg N·hm-2(N3),控釋氮肥(CRU-N2,加陽公司購買,樹脂包膜,施氮量為225 kg N·hm-2,下同),穩(wěn)定性氮肥(SN-N2,由腐植酸和雙氰胺包膜而成),有機無機氮肥配施(MN-N2,有機無機氮肥施用比例為1∶1,供試有機肥為腐熟商品有機肥,原料主要為雞糞,總養(yǎng)分含量≥4%,N∶P2O5∶K2O=1.5∶1∶1.5)。供試氮肥為尿素(控釋氮肥與穩(wěn)定性氮肥除外),供試磷、鉀肥分別為過磷酸鈣和硫酸鉀,每個處理磷鉀肥用量相同,分別為P2O575 kg·hm-2和K2O 165 kg·hm-2。有機肥和磷肥全部作基肥,除控釋尿素處理氮肥全部作基肥一次施用外,其他各處理30%的氮、鉀肥用作基肥施入,70%的按0.15∶0.25∶0.30的比例分別于蔬菜生長中后期作追肥施入。每個小區(qū)面積為10.3 m2,完全隨機排列,重復3次。蔬菜于9月26日播種,10月23日移栽,11月27日收獲。
1.3 測定項目及方法
采用靜態(tài)暗箱-氣相色譜法測定菜地N2O溫室氣體的排放。密閉箱由有機玻璃(5 mm)材料制成,箱體尺寸為40 cm×40 cm×40 cm,箱體內(nèi)壁粘貼錫箔紙隔絕光線,每個小區(qū)填埋一個與密閉箱配套的不銹鋼底座(箱內(nèi)種植4棵生菜),每次氣體收集前,用水密封底座凹槽,使箱內(nèi)空氣與外界環(huán)境無交換。自生菜移栽開始,每隔3~4 d采集一次氣體。每次采氣時間控制在上午8:00—12:00之間,蓋箱后經(jīng)0、10、20、30 min分別用60 mL注射器收集氣體帶回實驗室,當日采用氣相色譜儀(Agilent 7890B,美國)分析測定。收集氣體的同時記錄每個小區(qū)箱內(nèi)溫度、大氣溫度及5 cm土溫。
采氣當天采取0~30 cm土壤樣品,-4℃保存用于測定土壤礦質(zhì)氮()含量。土壤礦質(zhì)氮采用2 mol·L-1KCl溶液提取并用連續(xù)流動分析儀(Futura,法國)進行測定。土壤有機質(zhì)采用重鉻酸鉀外加熱法,堿解氮采用堿解擴散法,速效磷和有效鉀分別采用0.5 mol·L-1NaHCO3浸提-鉬銻抗比色法和NH4OAc浸提法測定,pH值采用電位法測定[12]。1.4數(shù)據(jù)處理與分析
N2O氣體排放通量計算公式為:
表1 供試菜地土壤基本理化性狀Table 1 Physical and chemical properties of test soil
F=ρ×h×dc/dt×273/(273+T),
式中:F為N2O的排放通量,μg·m-2·h-1;ρ為N2O標準狀態(tài)下的密度,ρ=1.25 mg·m-3·h-1;h為箱子高度;dc/ dt為采樣箱內(nèi)N2O氣體濃度變化率;T為采樣時箱內(nèi)的平均溫度。
N2O季節(jié)排放總量由相鄰兩次氣體排放通量的平均值與觀測間隔時間相乘,然后逐次累加而得,以N2O-N計。
N2O排放系數(shù)(Emission factor,EF,%)=(施氮處理N2O-N排放量-不施氮處理N2O-N排放量)/氮肥用量×100%
全球增溫潛勢(GWP,以100年計,t CO2equivalent·hm-2)是基于CO2、CH4和N2O轉(zhuǎn)化為CO2當量進行估算:
GWP=RCO2+25×RCH4+298×RN2O
式中RCO2、RCH4、RN2O分別為生長季CO2、CH4和N2O排放總量,kg·hm-2[13]。
溫室氣體排放強度(GHGI)為單位生菜產(chǎn)量的綜合溫室效應(yīng)CO2當量,即:
GHGI=GWP/單位面積生菜產(chǎn)量
本文采用Microsoft Excel 2007和SAS 9.0軟件進行數(shù)據(jù)計算和圖表制作與方差分析等。
2.1 不同處理N2O排放通量和累積排放量動態(tài)變化
從圖1(a)可以看出,生菜整個生長過程中土壤N2O排放通量變化范圍為6.6~1 781.8 μg·m-2·h-1,各施氮處理土壤N2O氣體排放均較不施氮肥處理高,各處理N2O排放通量隨著氮肥量的增加而增加,表明氮肥施用是促進菜地N2O氣體凈排放的一個非常重要的因素。自生菜移栽后11 d起,N2O排放通量呈明顯增加趨勢,N3處理增幅尤為突出,各施肥處理N2O排放峰出現(xiàn)的時間和規(guī)律并不完全一致,表現(xiàn)為N3>N2>MN-N2,其他各處理并未呈現(xiàn)明顯的排放峰值。
由N2O累積排放量圖1(b)可知,各處理生菜生長前期N2O排放累積相對較小,生菜移栽后11~23 d N2O累積排放量明顯增加,尤其是N3處理最多,N2處理次之。相同施氮水平下,N2O累積排放量表現(xiàn)為N2>MN-N2>CRU-N2>SN-N2,表明穩(wěn)定性氮肥處理較常規(guī)尿素處理能有效控制菜地N2O氣體釋放,CRU-N2處理效果次之。此外,生菜生長前期,MN-N2處理N2O累積排放量高于N2處理,直至生菜移栽后14 d,該趨勢發(fā)生逆轉(zhuǎn),有機無機配施處理也能在一定程度上減少N2O氣體的累積釋放量,其抑制效果主要體現(xiàn)在作物生長后期。
圖1 不同處理生菜地N2O排放通量和累積排放量動態(tài)變化Figure 1 Dynamic changes of different treatments on N2Oemissions fluxes and N2O cumulative fluxes in lettuce
2.2 不同處理蔬菜產(chǎn)量和N2O季節(jié)綜合排放特征
由表2可知,適量增施氮肥可提高生菜地上部商品產(chǎn)量,然而,當?shù)视昧窟_到N3水平時,生菜商品產(chǎn)量急劇下降。與常規(guī)施肥N2處理相比,N3處理顯著減產(chǎn),降幅達23.4%。SN-N2與MN-N2處理較N2處理增幅分別為13.3%和17.2%,但差異未達顯著水平。整個生菜生長季,各處理N2O排放總量在0.23~9.12 kg N·hm-2之間,由氮肥直接引起的N2O-N排放系數(shù)范圍為0.36%~2.71%,且各處理N2O排放總量與N2O排放系數(shù)差異規(guī)律表現(xiàn)一致,均隨氮肥用量的增加而增加。N3處理N2O排放總量和N2O排放系數(shù)分別是N2處理的1.74倍和1.16倍。等氮量條件下,SN-N2處理N2O排放總量僅為0.80 kg N·hm-2,較常規(guī)施肥處理降低了84.8%,且其N2O排放系數(shù)僅為0.36%,較N2處理降低了1.97個百分點。CRU-N2和MN-N2處理也在一定程度上降低了土壤N2O排放總
量和N2O排放系數(shù)。各處理全球增溫潛勢及溫室氣體排放強度與N2O總排放量差異規(guī)律一致。全球增溫潛勢與溫室氣體排放強度隨氮肥用量的增加明顯升高,表明生菜生產(chǎn)過程中過量氮肥的施用可能是導致菜地N2O釋放的主要因素之一。同等施氮水平下,不同氮肥形態(tài)對土壤溫室氣體排放強度影響不同。與N2處理相比,SN-N2處理能明顯降低菜地土壤溫室氣體排放強度及其全球增溫潛勢,降幅分別達21.9%和14.1%。CRU-N2處理也能在一定程度上有效降低菜地土壤溫室氣體排放強度和全球增溫潛勢。2.3不同處理對菜地土壤礦質(zhì)氮含量的影響
如圖2所示,不同施肥措施對0~30 cm土層土壤礦質(zhì)氮(Nmin)含量的影響不同,各施氮處理土壤礦質(zhì)氮(尤其是土壤銨態(tài)氮)殘留量相對較高。生菜收獲期土壤礦質(zhì)氮含量隨氮肥用量的增加明顯增加,N3處理土壤礦質(zhì)氮含量最高,達237.5 mg·kg-1。等氮條件下,MN-N2較N2處理土壤礦質(zhì)氮含量降低了75.1 mg·kg-1,差異達顯著水平。CRU-N2和SN-N2處理較N2處理土壤礦質(zhì)氮含量分別降低了40.8 mg·kg-1和24.2 mg·kg-1,但差異未達顯著水平。
2.4 施氮量與生菜產(chǎn)量、N2O排放及土壤礦質(zhì)氮含量的關(guān)系
菜地土壤礦質(zhì)氮含量與氮肥用量之間呈二次函數(shù)關(guān)系(R2=0.999**),隨著施氮量的增加土壤礦質(zhì)氮含量也增加,增幅逐漸趨于平緩(圖3a)。同樣,菜地N2O累積排放量與氮肥用量也能很好地用一元二次方程擬合(R2=0.988 4**),即在本試驗條件下,隨著氮肥用量的增加,N2O累積排放量增加,增幅呈急劇上升趨勢(圖3b)。生菜產(chǎn)量(y)與施氮量(x)的回歸關(guān)系呈拋物線方程:
y=-8E-05x2+0.020x+15.95
根據(jù)該方程可求得生菜獲得最高理論產(chǎn)量對應(yīng)的施氮量為125 kg N·hm-2,該回歸方程對實際生菜生產(chǎn)氮肥施用量具有指導意義(圖3b)。此外,菜地土壤礦質(zhì)氮含量與N2O累積排放量呈指數(shù)相關(guān)關(guān)系(R2= 0.989 7**),表明土壤殘留礦質(zhì)氮越高,N2O累積排放量越大(圖3c)。因此,在高肥力土壤上,綜合考慮土壤礦質(zhì)氮本底值,減少生菜氮肥施用量能有效降低因過量施肥而造成N2O高排放的現(xiàn)狀。
表2 生菜產(chǎn)量和N2O季節(jié)綜合排放特征Table 2 Lettuce yield and comprehensive seasonal emission characteristics of N2O
3.1 優(yōu)化施肥
蔬菜種植是僅次于糧食作物生產(chǎn)的另一重要作物類別,目前廣東省蔬菜種植面積約為123萬hm2,占全省農(nóng)作物總播種面積的26.4%[14]。由于蔬菜生產(chǎn)過程中土地利用強度和復種指數(shù)非常高,單位耕地面積氮素養(yǎng)分投入較水稻高出幾倍甚至十幾倍,以致菜地土壤氮肥利用率極低,養(yǎng)分資源浪費與環(huán)境污染問題凸顯[15]。針對上述問題,優(yōu)化氮肥用量、合理調(diào)控肥
料品種與施肥措施對提高氮肥利用率、減少養(yǎng)分負效應(yīng)顯得尤為重要。本試驗結(jié)果表明,氮肥的施用對蔬菜增產(chǎn)具有促進作用,但過量氮肥投入反而導致減產(chǎn),其原因可能是作物施肥報酬遞減原理與生菜生理病害的產(chǎn)生或加重導致生菜在N3水平出現(xiàn)明顯減產(chǎn)現(xiàn)象。通過回歸分析可知,生菜產(chǎn)量與施氮量呈拋物線方程關(guān)系,生菜獲得最高理論產(chǎn)量時對應(yīng)的施氮量為125 kg N·hm-2,較N2水平氮肥用量降低了30.6%,表明生菜生產(chǎn)中氮肥減施存在很大空間。本試驗中菜地N2O累積排放通量與氮肥用量、菜地土壤礦質(zhì)氮含量與氮肥用量之間均存在顯著的相關(guān)關(guān)系,表明在保證生菜不減產(chǎn)條件下,適度減少氮肥用量不僅能夠有效減少溫室氣體的排放,還能在一定程度上減少土壤中氮的殘留量。相關(guān)研究同樣認為氮肥用量的減少始終是N2O減排的一個有效途徑[16-17]。
圖3 不同施肥措施生菜產(chǎn)量、N2O累積排放、土壤礦質(zhì)氮含量及氮肥用量之間的相關(guān)性Figure 3 Correlation of lettuce yield,N2O accumulation emission fluxes,Nmincontent with N rate under different fertilization practices
N2O排放系數(shù)被認為是評估化肥直接誘導N2O排放的一個重要參數(shù)[18],菜地土壤N2O排放占總合成肥料直接引起的N2O排放量的9%,菜地全球季節(jié)排放系數(shù)占氮肥用量的0.94%[19]。然而,土壤N2O EF并非固定值,不同地區(qū)、不同氮肥品種差異較大[20-21]。Wang等[22]研究表明,肥料誘導的N2O排放量及其背景排放量與測定周期的長短相關(guān),當測定周期小于100 d時EF值降低,而當測定周期在100~200 d之間其背景排放量增加。本研究結(jié)果顯示菜地土壤N2O EF值范圍為0.36%~2.71%,施氮量越高,N2O排放系數(shù)越大。同等施氮量前提下,SN-N2處理與CRU-N2處理EF值較N2處理分別降低了1.97、1.74個百分點。因此,優(yōu)化氮肥施用是緩解菜地N2O排放的重要措施。
3.2 減排措施
硝化作用與反硝化作用是土壤N2O生成的主要途徑。旱地作物生長過程中,土壤N2O的產(chǎn)生和釋放不僅受降雨、灌溉、溫度等氣候條件的影響,而且受養(yǎng)分管理、耕作方式和作物種類的影響[23-24]。有關(guān)溫室氣體減排措施的研究國內(nèi)外已開展了不少工作[25]。氮穩(wěn)定劑和薄膜尿素被認為是減少N2O排放的一個有效緩解策略[20,26]。前人研究報道,硝化抑制劑DCD能夠有效降低農(nóng)田土壤N2O的釋放主要歸因于DCD處理顯著減少了氨氧化細菌amoA基因拷貝數(shù),尤其是在高氮肥用量條件下,DCD對N2O減排效果最顯著[27]。有研究認為,菜地土壤長期高量氮肥施用土壤AOB群體數(shù)量發(fā)現(xiàn)顯著改變,該微生物群體對DCD比較敏感,但反硝化細菌對DCD的影響尚不完全清楚[28]。李香蘭等[29]開展水稻試驗研究認為,硝化抑制劑和緩控釋肥對降低稻田溫室氣體排放效果明顯。本試驗結(jié)果表明,SN-N2和CRU-N2處理N2O排放總量分別為0.80 kg N·hm-2和1.31 kg N·hm-2,較常規(guī)施肥N2處理極顯著地降低了菜地N2O累積排放量,降幅分別達84.8%和75.0%。同樣,SN-N2和CRU-N2處理對降低菜地溫室氣體排放強度和土壤全球增溫潛勢效果也非常明顯。SN-N2處理對菜地N2O減排效果顯著的原因可能主要與SN-N2處理有效降低了土壤礦
質(zhì)氮含量有關(guān),但關(guān)于穩(wěn)定性氮肥處理如何調(diào)節(jié)硝化與反硝化過程的微生物機理還需下一步深入探究。CRU-N2處理則可能是通過延長肥料養(yǎng)分在土壤中的釋放期,防止氮通過硝化與反硝化作用轉(zhuǎn)變?yōu)闅鈶B(tài)氮排放,從而有效降低土壤N2O的排放量[30]。VanderZaag等[31]研究表明,有機肥能有效降低土壤N2O排放達17%。本研究獲得類似結(jié)論,即無機氮配施有機氮肥不僅能增加生菜產(chǎn)量,還能減少52.4%的N2O排放量。然而,K?ster等[32]研究表明,與相同氮量無機化肥相比,有機肥處理反而產(chǎn)生更高的N2O。有機肥的施用對菜地土壤N2O釋放的影響至今存在爭議,因此仍需開展進一步的研究。此外,CRU-N2和MN-N2處理還能顯著降低表層土壤礦質(zhì)氮含量,對降低土壤氮的損失具有重要意義。
(1)本試驗條件下(高肥力菜地),適量優(yōu)化生菜氮肥用量(125 kg N·hm-2),蔬菜產(chǎn)量未降低,土壤N2O排放總量與土壤殘留礦質(zhì)氮含量明顯減少,這為蔬菜生產(chǎn)節(jié)本增效和緩解蔬菜過量施肥造成的環(huán)境負效應(yīng)提供重要支撐。
(2)在保證產(chǎn)量不降低的前提下,穩(wěn)定性氮肥處理能顯著減少生菜季土壤N2O排放量,同時還能明顯降低N2O排放系數(shù),對菜地N2O減排效果非常顯著,可作為緩解菜地N2O氣體排放的有效途徑之一。
[1]Jia J X,Sun LY,Kong X W,et al.Annual N2O and CH4emissions from intensively managed vegetable fields in Nanjing,China[J].Soil Science and Plant Nutrition,2012,58(1):91-103.
[2]楊俊剛,張鵬飛,倪小會,等.施用控釋肥對設(shè)施番茄NO-3-N淋洗、N2O排放及產(chǎn)量與品質(zhì)的影響[J].農(nóng)業(yè)環(huán)境科學學報,2014,33(9):1849-1857.
YANG Jun-gang,ZHANG Peng-fei,NI Xiao-hui,et al.Effects of controlled release fertilizer on soil nitrate leaching,N2O emission and fruit yield and quality in greenhouse tomato production system[J].Journal of Agro-Environment Science,2014,33(9):1849-1857.
[3]朱永官,王曉輝,楊小茹,等.農(nóng)田土壤N2O產(chǎn)生的關(guān)鍵微生物過程及減排措施[J].環(huán)境科學,2014,35(2):792-800.
ZHU Yong-guan,WANG Xiao-hui,YANG Xiao-ru,et al.Key microbial processes in nitrous oxide emission of agricultural soil and mitigation strategies[J].Environmental Science,2014,35(2):792-800.
[4]Kim Y,Seo Y,Kraus D,et al.Estimation and mitigation of N2O emission and nitrate leaching from intensive crop cultivation in the Haean catchment,South Korea[J].Science of the Total Environment,2015,529:40-53
[5]楊敏,陳秀虎,陸遠寧,等.清遠市郊生菜最佳營養(yǎng)配方研究[J].廣東農(nóng)業(yè)科學,2010(11):133-136.
YANG Min,CHEN Xiu-hu,LU Yuan-ning,et al.Study on the best nutritional supplements method of lettuce grown in Qingyuan Suburbs[J]. Journal of Guangdong Agricultural Sciences,2010(11):133-136.
[6]孫治強,張楠,趙衛(wèi)星,等.氮肥施用量對生菜產(chǎn)量、硝酸鹽積累及土壤EC值、pH值的影響[J].江西農(nóng)業(yè)學報,2007,19(4):44-45.
SUN Zhi-qiang,ZHANG Nan,ZHAO Wei-xing,et al.Effects of N application rates on yield,nitrate accumulation of lettuce and EC,pH value of soil[J].Acta Agriculturae Jiangxi,2007,19(4):44-45.
[7]Gu J,Nicoullaud B,Rochette P,et al.A regional experiment suggests that soil texture is a major control of N2O emissions from tile-drained winter wheat fields during the fertilization period[J].Soil Biology&Biochemistry,2013,60:134-141.
[8]Hansen M,Clough T J,Elberling B.Flooding-induced N2O emission bursts controled by pH and nitrate in agricultural soils[J].Soil Biology &Biochemistry,2014,69:17-24.
[9]沈宏,曹志洪.溫室氣體及其生態(tài)效應(yīng)[J].中國生態(tài)農(nóng)業(yè)學報,1998,6(3):21-24.
SHEN Hong,CAO Zhi-hong.Greenhouse gases and their ecological effects[J].Chinese Journal of Eco-Agriculture,1998,6(3):21-24.
[10]潘曉健,劉平麗,李露,等.氮肥和秸稈施用對稻麥輪作體系下土壤剖面N2O時空分布的影響[J].土壤學報,2015,52(2):364-371.
PAN Xiao-jian,LIU Ping-li,LI Lu,et al.Spatial and temporal distributions of soil profile N2O as affected by N fertilization and straw incurporation in the rice-wheat rotation system[J].Acta Pedologica Sinica,2015,52(2):364-371.
[11]秦曉波,李玉娥,萬運帆,等.耕作方式和稻草還田對雙季稻田CH4和N2O排放的影響[J].農(nóng)業(yè)工程學報,2014,30(11):216-224.
QIN Xiao-bo,LI Yu-e,WAN Yun-fan,et al.Effects of tillage and rice residue return on CH4and N2O emission from double rice field[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(11):216-224.
[12]魯如坤.土壤農(nóng)業(yè)化學分析方法[M].北京:中國農(nóng)業(yè)科技出版社,2000:39-114.
LU Ru-kun.Analysis methods of soil agricultural chemistry[M].Beijing:Chinese Agricultural Science Technology Press,2000:39-114.
[13]Zhang A F,Bian R J,Pan G X,et al.Effects of biochar amendment on soil quality,crop yield and greenhouse gas emission in a Chinese rice paddy:A field study of 2 consecutive rice growing cycles[J].Field Crops Research,2012,127:153-160.
[14]中華人民共和國國家統(tǒng)計局.廣東統(tǒng)計年鑒[M]北京:中國統(tǒng)計出版社,2012:281-286.
National Bureau of Statistics of the People′s Republic of China.Statistical yearbook of Guangdong[M].Beijing:China Statistics Press,2012:281-286.
[15]Marie B,Josette G,Gilles B,et al.Nitrous oxide emissions and nitrate leaching in an organic and a conventional cropping system(Seine basin,F(xiàn)rance)[J].Agriculture,Ecosystems and Environment,2015,213:131-141.
[16]Nayak D,Saetnan E,Cheng K,et al.Management opportunities to miti-
gate greenhouse gas emissions from Chinese agriculture[J].Agriculture,Ecosystems and Environment,2015,209:108-124.
[17]Wang W J,Reeves S H,Salter B,et al.Effects of urea formulations,application rates and crop residue retention on N2O emissions from sugarcane fields in Australia[J].Agriculture,Ecosystems and Environment,2016,216:137-146.
[18]Velthof G L,Mosquera J.The impact of slurry application technique on nitrous oxide emission from agricultural soils[J].Agriculture,Ecosystems and Environment,2011,140:298-308.
[19]Rashti M R,Wang W J,Moody P,et al.Fertilizer-induced nitrous oxide emissions from vegetable production in the world and the regulating factors:A review[J].Atmospheric Environment,2015,112:225-233.
[20]Bell M J,Hinton N,Cloy J M,et al.Nitrous oxide emissions from fertilised UK arable soils:Fluxes,emission factors and mitigation[J].A-griculture,Ecosystems and Environment,2015,212:134-147.
[21]Diao T T,Xie L Y,Guo L P,et al.Measurements of N2O emissions from different vegetable fields on the North China Plain[J].Atmospheric Environment,2013,72:70-76.
[22]Wang J Y,Xiong Z Q,Yan X Y.Fertilizer induced emission factors and background emissions of N2O from vegetable fields in China[J].Atmospheric Environment,2011,45(38):6923-6929.
[23]Robert L M.Understanding greenhouse gas emissions from agricultural management[M]//Fertilizer nitrogen management to reduce nitrous oxide emissions in the U.S.ACS Symposium Series,2011:135-147.
[24]Xiong Z Q,Xie Y X,Xing G X,et al.Measurements of nitrous oxide emissions from vegetable production in China[J].Atmospheric Environment,2006,40(12):2225-2234.
[25]He F F,Chen Q,Jiang R F,et al.Yield and nitrogen balance of greenhouse tomato(Lyco persicum esculentum Mill.)with conventional and site-specific nitrogen management in Northern China[J].Nutrient Cycling in Agroecosystems,2007,77(1):1-14.
[26]Tian Z,Wang J J,Liu S,et al.Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region[J].Science of the Total Environment,2015,533:329-338
[27]Dai Y,Di H J,Cameron K C,et al.Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil[J].Science of the Total Environment,2013,465:125-135.
[28]Liu Y,Yang Y,Qin H L,et al.Differential responses of nitrifier and denitrifier to dicyandiamide in short-and long-term intensive vegetable cultivation soils[J].Journal of Integrative Agriculture,2014,13(5):1090-1098.
[29]李香蘭,徐華,蔡祖聰.稻田CH4和N2O排放消長關(guān)系及其減排措施[J].農(nóng)業(yè)環(huán)境科學學報,2008,27(6):2123-2130.
LI Xiang-lan,XU Hua,CAI Zu-cong.Trade off relationship and mitigation options of methane and nitrous oxide emissions from rice paddy field[J].Journal of Agro-Environment Science,2008,27(6):2123-2130.
[30]李方敏,于廣超,櫻井雄二.控釋肥料的環(huán)境效應(yīng)研究進展[J].河南農(nóng)業(yè)科學,2008(8):8-13.
LI Fang-min,YU Guang-chao,YING Jing-xiong er.Study on the environment effective of controlled release fertilizer[J].Journal of Henan Agricultural Sciences,2008(8):8-13.
[31]VanderZaag A C,Jayasundara S,Wagner-Riddle C.Strategies to mitigate nitrous oxide emissions from land applied manure[J].Animal Feed Science and Technology,2011,166/167:464-479.
[32]K?ster J R,Cárdenas L M,Bol R,et al.Anaerobic digestates lower N2O emissions compared to cattle slurry by affecting rate and product stoichiometry of denitrification:An N2O isotopomer case study[J].Soil Biology and Biochemistry,2015,84:65-74.
Effects of nitrogen aPPlication rate and sources on yield of lettuce and nitrous oxide emission in vegetable soil
YI Qiong,HUANG Xu,ZHANG Mu,HUANG Qiao-yi,PANG Yu-wan,TANG Shuan-hu*
(Institute of Agricultural Resources and Environment,Guangdong Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer in South Region,Ministry of Agriculture/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation,Guangzhou 510640,China)
Closed-chamber technology with gas chromatography method was used to study the effects of different nitrogen(N)application rates and sources on the yield of lettuce and nitrous oxide(N2O)emissions from vegetable soil.Seven treatments were including zero N fertilization(N0),112.5 kg N·hm-2(N1),225 kg N·hm-2(N2,conventional fertilization),337.5 kg N·hm-2(N3),controlled release urea(CRUN2),stability N fertilizer(SN-N2),integrate chemical and manure N fertilizer(MN-N2).The effects of different N levels and N sources with the same amount of N on characteristics of N2O emission,yield of lettuce were comparatively studied.Results showed that the N2O emission fluxes increased with the increasing of nitrogen fertilizer application.The optimum N rate to obtain the maximum yield of lettuce was 125 kg N·hm-2.Reasonable reduction of N application rate could effectively reduced N2O accumulative emission.Under the same N level condition,yield of lettuce increased by 13.3%and 17.2%with SN-N2 and MN-N2 compared with N2,however,there were not significant differences(P>0.05)for yield of lettuce between SN-N2,MN-N2 and N2.The total seasonal emission of N2O and N2O emission factor(EF)of SN-N2 only was 0.80 kg N·hm-2and 0.36%,which was 84.8%and 1.97 percent point reduction compared to N2.In conclusion,optimized N fertilization rate along with stability N fertilization technology without sacrificing vegetable output is an important approach for N2O reduction emission and reducing on N loss in vegetable field.
lettuce;nitrous oxide;nitrogen application rate;emission reduction measure;emission factor
X511
A
1672-2043(2016)10-2019-07
10.11654/jaes.2016-0471
易瓊,黃旭,張木,等.氮肥施用水平及種類對生菜產(chǎn)量及菜地N2O排放的影響[J].農(nóng)業(yè)環(huán)境科學學報,2016,35(10):2019-2025.
YI Qiong,HUANG Xu,ZHANG Mu,et al.Effects of nitrogen application rate and sources on yield of lettuce and nitrous oxide emission in vegetable soil[J]. Journal of Agro-Environment Science,2016,35(10):2019-2025.
2016-04-07
廣東省科技計劃項目(2014A020208051,2014B090904068)
易瓊(1985—),女,博士研究生,助研,主要研究方向為肥料與養(yǎng)分綜合管理。E-mail:yiq100@126.com
*通信作者:唐拴虎E-mail:tfstshu@aliyun.com.cn