潘榮楊,張 哲,高 寧,陳贊謀,李加琪,張 豪
(華南農(nóng)業(yè)大學(xué)動物科學(xué)學(xué)院/國家生豬種業(yè)工程技術(shù)研究中心/廣東省農(nóng)業(yè)動物基因組與分子育種重點實驗室,廣東 廣州 510642)
基因組選擇一步法理論及應(yīng)用研究進(jìn)展
潘榮楊,張 哲,高 寧,陳贊謀,李加琪,張 豪
(華南農(nóng)業(yè)大學(xué)動物科學(xué)學(xué)院/國家生豬種業(yè)工程技術(shù)研究中心/廣東省農(nóng)業(yè)動物基因組與分子育種重點實驗室,廣東 廣州510642)
基因組選擇(Genomic selection,GS)是一種新興的畜禽遺傳評定方法,較傳統(tǒng)方法有明顯優(yōu)勢,近十幾年來成為畜禽遺傳評定研究熱點。但基因分型成本較高,實際育種過程中不可能對所有個體進(jìn)行基因型檢測,致使某些經(jīng)濟價值較小物種實施GS受限。一步法(Single step procedure)有效解決了這個問題。一步法既能將全基因組遺傳標(biāo)記用于畜禽遺傳評定,又能將未經(jīng)基因分型的個體全部納入遺傳評定模型,在豬、雞等群體的基因組選擇中應(yīng)用備受關(guān)注。介紹了基因組選擇一步法的原理,綜述了其應(yīng)用效果及相關(guān)問題等。
基因組選擇;遺傳評定;一步法
潘榮楊,張哲,高寧,等. 基因組選擇一步法理論及應(yīng)用研究進(jìn)展[J].廣東農(nóng)業(yè)科學(xué),2016,43(9):124-131.
動物育種的最終目的是提高群體的遺傳水平,這主要是在個體遺傳評定(genetic evaluation)或者育種值估計的基礎(chǔ)上通過選擇遺傳優(yōu)良的種畜來實現(xiàn)的,因此個體遺傳評定是畜禽育種工作的中心任務(wù)之一。隨著計算機及分子遺傳學(xué)相關(guān)技術(shù)的不斷進(jìn)步,遺傳評定的方法在不斷改進(jìn)與發(fā)展。
20世紀(jì)70~80年代,基于表型記錄及系譜登記信息進(jìn)行的選擇指數(shù)理論和最佳線性無偏預(yù)測(best linear unbiased prediction,BLUP)育種值估計理論先后被提出,將畜禽遺傳育種的理論和實踐帶入了一個嶄新的發(fā)展階段[1]。BLUP方法利用的信息為表型和系譜記錄信息,收集表現(xiàn)較晚性狀信息需要花費較長時間,且低遺傳力性狀的精確性較低,活體難以測量的性狀(如胴體性狀)實踐中較難實施。
近年來,隨著分子生物學(xué)技術(shù)的飛速發(fā)展,少量效應(yīng)顯著的遺傳標(biāo)記被用于實施標(biāo)記輔助選擇,即標(biāo)記輔助BLUP法(marker assisted BLUP,MA-BLUP)[2-3]。但是,對畜禽重要經(jīng)濟性狀而言都是數(shù)量性狀,并且受到多個基因座位的影響。而目前發(fā)現(xiàn)并經(jīng)過功能確認(rèn)的影響畜禽重要經(jīng)濟性狀的基因或標(biāo)記數(shù)量有限,標(biāo)記輔助選擇所用標(biāo)記往往只能解釋較小比例的遺傳變異[4-5],因此在育種實踐中應(yīng)用效果不如預(yù)期,限制了標(biāo)記輔助選擇在畜禽育種中的推廣應(yīng)用。2001年Meuwissen等提出了具有劃時代意義的基因組選擇(genomic selection,GS)方法,該方法將全基因組高密度標(biāo)記信息用于畜禽遺傳評定,克服了MA-BLUP的缺陷[6]。隨著高通量測序技術(shù)的不斷發(fā)展,標(biāo)記基因分型成本不斷降低。尤其是Schaeffer等指出GS在奶牛的育種中具有巨大的實用價值[7],許多研究者紛紛投入到基因組選擇的研究中,并提出了一系列估計育種值的計算方法,基因組選擇理論得以飛速發(fā)展,在奶牛等育種實踐中得到了廣泛應(yīng)用。
GS利用覆蓋全基因組的高密度SNP標(biāo)記,結(jié)合表型記錄和(或)系譜信息對個體育種值進(jìn)行估計?;蚪M選擇的一個基本假設(shè)是:在高密度的SNP標(biāo)記中,每個基因都至少有1個SNP與其處于連鎖不平衡(linkage disequilibrium,LD)狀態(tài),可用標(biāo)記間接反映基因的效應(yīng)[4,6]。從而通過全基因組遺傳標(biāo)記準(zhǔn)確預(yù)測個體的基因組育種值(genomic estimated breeding values,GEBV)。GEBV能夠提高育種值估計準(zhǔn)確性,加速遺傳進(jìn)展,減少育種投入而受到畜禽育種界的廣泛關(guān)注。目前,GEBV的計算方法主要有通過估計標(biāo)記效應(yīng)間接計算GEBV的間接法[8-9]和通過構(gòu)建基因組關(guān)系矩陣(genomic relationship matrix,G)直接估計得到GEBV的直接法[10-13]。目前,GS已經(jīng)在奶牛育種已經(jīng)得到了廣泛應(yīng)用[14]。
然而,對于實際育種工作中,受到成本、人力、時間等客觀因素的限制,難以對所有個體進(jìn)行基因分型,限制了GS在其他物種中的應(yīng)用。根據(jù)諸多文獻(xiàn)報道,我們總結(jié)了對經(jīng)濟價值低的物種實施GS的可能途徑:(1)低密度SNP策略:采用低密度SNP芯片進(jìn)而降低成本,由于前期全基因組關(guān)聯(lián)分析(GWAS)研究表明大量座位對某些性狀沒有影響,進(jìn)而可根據(jù)GWAS結(jié)果對不同選擇的性狀設(shè)計特定低密度SNP芯片[15];另外,采用基因填充技術(shù)(imputation),把低密度芯片填充成高密度芯片,從而降低高密度芯片基因分型成本[16-17];(2)實施基因組選擇一步法(single step procedure):2010年Misztal、Christensen等先后提出一步法,一步法的核心思想是將傳統(tǒng)的血緣關(guān)系矩陣A矩陣與基因組關(guān)系矩陣G矩陣合并,重新構(gòu)建出新的關(guān)系矩陣H矩陣[13,18-20]。一步法既能將全基因組遺傳標(biāo)記用于畜禽遺傳評定,又能將未經(jīng)基因分型檢測的個體全部納入遺傳評定模型,個體的信息在參考群體中包括了沒有基因型記錄個體的表型信息,同時也運用有基因分型個體的信息和沒有基因分型個體的信息,允許了部分個體測定基因型即可實施GS。因此,不同程度上克服了GBLUP和傳統(tǒng)BLUP的某些缺陷,大大降低對所有個體測定基因分型成本,為豬或家禽育種實施GS提供新的方法。該方法有效地將傳統(tǒng)遺傳評定體系與基因組選擇遺傳評定體系進(jìn)行融合,有研究者將一步法稱作SSGBLUP(single step genomic BLUP,SSGBLUP)[21-22]。近年來,一步法應(yīng)用于豬、雞等群體基因組選擇中而備受關(guān)注(如丹育公司、PIC、Topigs等),但在實際應(yīng)用中也有一些關(guān)鍵問題有待探討。
1.1 基因組選擇GBLUP模型
基因組選擇中GBLUP方法模型實質(zhì)是與傳統(tǒng)BLUP模型一致,其模型表示如下:
式中,y是表型性狀觀察值;b是固定效應(yīng)向量;u是隨機加性遺傳效應(yīng)向量,即育種值向量;X和Z分別為固定效應(yīng)b和隨機效應(yīng)u的關(guān)聯(lián)矩陣;e為隨機殘差效應(yīng)向量,即e~N(0,Iσe2)。
該模型中隨機效應(yīng)u,在傳統(tǒng)動物模型BLUP法中,u~N(0,Aσg2),其中A為由系譜構(gòu)建的分子血緣關(guān)系矩陣,σg2為加性遺傳方差;而在基因組選擇GBLUP法中,u~N(0,Gσg2),其中G為利用全基因組標(biāo)記構(gòu)建的基因組關(guān)系矩陣,兩者的區(qū)別只在于關(guān)系矩陣的不同。VanRaden提出了構(gòu)建G矩陣的策略[12],G矩陣被定義為:G = ZZ′/k,式中,Z陣列元素為:0-2pj、1-2pj、2-2pj分別對應(yīng)SNP基因型A1A1、A1A2、A2A2,而pj為等位基因A2頻率。k定義為:
我們可根據(jù)混合模型方程組(mixed model equation,MME)求解技術(shù)進(jìn)行求解[23],對于如下方程組:
式中,G-1為基因組關(guān)系矩陣G的逆矩陣,而α=σg2/σe2。
1.2基因組選擇一步法理論
基因組選擇中一步法模型是傳統(tǒng)動物模型BLUP法及基因組選擇GBLUP法的合并,其模型形式上與BLUP及GBLUP法模型并無區(qū)別。其模型(1)式相同,三者區(qū)別于u(隨機加性遺傳效應(yīng));在基因組選擇一步法中u~N(0,Hσg2),其中H為合并關(guān)系矩陣[13,19-20],定義為:
式中,A11和A22分別為系譜群體中無基因分型檢測及有基因分型檢測的個體間的分子血緣關(guān)系矩陣,G為有基因分型個體間的基因組關(guān)系矩陣。通過此方式,基因分型記錄的親緣關(guān)系與系譜記錄的親緣關(guān)系信息便合并到了同一個模型中,基因組遺傳評定便可與傳統(tǒng)遺傳評估方式實現(xiàn)有機整合。而對于一步法的求解,同樣可以采用MME方程組求解,只需將G-1矩陣替換為H-1矩陣即可。
如上述所說,通過采用MME即可對一步法模型進(jìn)行求解,但MME的完整構(gòu)建需要先實現(xiàn)對H矩陣的求逆計算。一步法中的H矩陣是由基因組關(guān)系矩陣G和分子血緣關(guān)系矩陣A合并而成,對于龐大的系譜而言,H矩陣的直接求逆計算強度太大。Christensen等和Aguilar等均推導(dǎo)了H-1矩陣的構(gòu)建方法[18,20],可表示為:
由于G有時為奇異矩陣或者幾乎接近奇異矩陣而無法求逆,為此VanRaden提出將G定義為:Gω=(1-ω)G+ωA22,而解決G矩陣無法求逆問題[15]。一步法的H-1則可表示為:
式中,ω為加權(quán)因子,表示多基因遺傳效應(yīng)所占的比例。ω的選取主要取決于對應(yīng)組分所能解釋的遺傳方差比例,可用方差組分估計的方式確定,或嘗試不同的值確定最優(yōu)參數(shù)[24-26]。
此外,一步法中關(guān)系矩陣合并的兼容性也引起了研究者們的重視。根據(jù)VanRaden構(gòu)建G策略中的等位基因頻率應(yīng)為基礎(chǔ)群的頻率,但由于獲得基礎(chǔ)群等位基因頻率非常困難,因此在實際中往往通過對有基因型個體的標(biāo)記數(shù)計算而得。對于分子血緣關(guān)系矩陣A而言,系譜的記錄可以追索到基礎(chǔ)群中,A矩陣能反映所有個體間的血緣關(guān)系;但對于基因組關(guān)系矩陣G而言,考慮到基因分型過程中的客觀問題,往往只選擇部分優(yōu)秀個體(或有代表性個體)進(jìn)行基因分型,因此G矩陣恰恰只是反映有基因型個體間的基因組關(guān)系,這就導(dǎo)致分子血緣關(guān)系矩陣A與基因組關(guān)系矩陣G存在尺度上的差異[25,27]。這種差異對單性狀模型或多性狀模型的育種值估計結(jié)果都產(chǎn)生一定影響,因此需適當(dāng)考慮尺度校正,而不同的校正方式先后被研究者們提出。Christensen等綜合前人研究報道后提出新的尺度校正公式:
式中,G*為校正后的基因組關(guān)系矩陣,而實施的α和β則根據(jù)下列公式求得:
這種校正方法在一個丹麥杜洛克豬群體中得以驗證,Christensen等[26]證實了這種校正方式的有效性,該種校正方式后的一步法準(zhǔn)確性優(yōu)于原始一步法。
2.1一步法的應(yīng)用效果
一步法能有效解決不同畜種基因組選擇實施中可能存在的一些問題,研究者們對該方法展開了不同物種群體研究及方法可行性研究。對于荷斯坦奶牛群體的體細(xì)胞評分性狀,與傳統(tǒng)BLUP方法比較,一步法準(zhǔn)確性提高了10%;而間接法的準(zhǔn)確性則與一步法接近[18]。Chen等[21-22]的研究結(jié)果顯示,在胸肌重、腿部分?jǐn)?shù)兩個性狀中,一步法與傳統(tǒng)方法和間接法相比的準(zhǔn)確性分別有10%和20%的提高,校正后一步法也明顯高于未校正的一步法。Christensen等[26]的研究性狀為一個杜洛克豬群體分別對日增重和飼料轉(zhuǎn)化率(FCR),結(jié)果多性狀模型的一步法準(zhǔn)確性最高,單性狀一步法次之,一步法與傳統(tǒng)方法比較準(zhǔn)確性提高了16%,而與GBLUP相比較提高得不明顯。Baloche等[28]分析了法國奶山羊的產(chǎn)奶量等性狀,一步法的準(zhǔn)確性為0.47、間接法為0.43、傳統(tǒng)方法為0.32。Lourenco等[29]通過模擬一個肉牛群體,并考慮了加性遺傳效應(yīng)與母體效應(yīng)是否相關(guān),結(jié)果一步法準(zhǔn)確性比傳統(tǒng)方法和間接法分別提高了2%和17%。此外,許多國家地區(qū)也根據(jù)國家遺傳評定方式或者綜合選擇指數(shù)對各自國家物種展開研究,其中對奶牛群體研究有不少報道,例如Su和Gao等基于北歐綜合指數(shù)下的多個性狀,分別對北歐荷斯坦奶牛及北歐紅荷斯坦奶牛群體進(jìn)行了一步法與多種方法的比較[24,30];Tsuruta等[31]選擇美國國家遺傳評定的18個荷斯坦牛性狀,表明一步法的準(zhǔn)確性皆高于傳統(tǒng)方法或間接法等其他方法。Guo等[32]基于丹育公司(DanBred company)大白豬和長白豬群體,對窩產(chǎn)仔數(shù)和仔豬死亡率兩個低遺傳力繁殖性狀進(jìn)行遺傳評估,無論對有基因分型還是沒有基因分型的個體,一步法準(zhǔn)確性相比于傳統(tǒng)方法大大提高,證實了基因組選擇方法對低遺傳力性狀研究的顯著優(yōu)勢。我們匯總了這些研究所使用的物種、性狀、準(zhǔn)確性、標(biāo)記數(shù)、作者等信息,如表1、表2所示??梢姡徊椒ㄒ呀?jīng)在許多動物中展開了深入研究,其可行性與準(zhǔn)確性也得到驗證。
2.2一步法的計算軟件
軟件求解問題常常也是育種者所關(guān)注的,一步法求解計算軟件逐漸被公布,例如,Misztal研究團隊開發(fā)的BLUPF90軟件(BLUPF90 family of program)[36]和丹麥Madsen研究團隊開發(fā)的DMU(Derivative free multivariate)軟件[37]等均可對一步法進(jìn)行求解。雖然這些軟件各有不用的使用方式和功能,但都是服務(wù)于畜禽育種領(lǐng)域。如BLUPF90應(yīng)用于美國荷斯坦奶牛遺傳評定中心,而DMU應(yīng)用于丹麥豬遺傳評定工作等。然而,實際育種工作的數(shù)據(jù)記錄很龐大,如果采用MME的計算方式,則對計算的內(nèi)存和硬件要求很大,對于大數(shù)據(jù)通常采用遞歸算法進(jìn)行求解計算。Fragomeni等對奶牛大規(guī)模數(shù)據(jù)進(jìn)行計算策略探討,提出了一種APY(proven and young animals)遞歸法計算,解決了一步法在數(shù)據(jù)龐大(記錄數(shù)超過10萬)時的計算問題[38-40]。
2.3候選群測定基因型大小及測定個體選擇
實施基因選擇要求個體要基因分型,有了基因分型數(shù)據(jù)才可根據(jù)統(tǒng)計模型準(zhǔn)確地計算個體的基因組育種值(GEBV)。然而對于一些經(jīng)濟價值較小的物種(豬或家禽),候選群測定基因型多少,測定個體如何選擇、實施某種基因選擇方法成為育種者實施基因組選擇育種所關(guān)心的關(guān)鍵問題[4,41]。在一步法遺傳評估理論中,允許了部分個體進(jìn)行基因分型即可實施基因組選擇而大大降低對所有個體基因分型的成本,但是候選群中基因分型大小及測定個體選擇的問題,成為了實施基因選擇一步法探討所在(Danish Pig ResearchCentre,2010)。在丹育公司豬遺傳研究中心(Pig Research Centre,PRC)根據(jù)丹育育種體系結(jié)構(gòu),初步挑選2 000頭最優(yōu)的杜洛克群體開始實施GS,并且探討候選群體中基因分型個體的比例,以及基因分型個體如何挑選等諸多問題進(jìn)行模擬研究。研究結(jié)果表明:根據(jù)傳統(tǒng)EBV挑選出最優(yōu)的2 000頭杜洛克豬群體實施GS,候選群在性能測定后根據(jù)EBV挑選40%個體進(jìn)行基因分型、基因分型個體公母豬比例為1∶3,即可獲得與全群個體基因分型而獲得的進(jìn)展[42]。這也提示我們候選群個體不需要全群測定基因型、只要部分個體基因分型且分型個體按傳統(tǒng)EBV挑選即可獲得GS潛在的最大遺傳進(jìn)展,進(jìn)而育種者大大節(jié)省部分基因分型費用。
表1 一步法在各物種中應(yīng)用情況
表2 一步法與其他方法在各物種中準(zhǔn)確性的比較
2.4一步法在雜種及GWAS應(yīng)用
雜種評估一直是基因組選擇研究領(lǐng)域的熱點與難點[14,43]。Christensen等[43]采用模擬數(shù)據(jù),嘗試將一步法擴展到雜種評估,在不同品系間考慮配子效應(yīng)(gametic effects),并將其合并到關(guān)系矩陣中,驗證了一步法在雜種遺傳評估的有效性。Lourenco等[44]通過模擬數(shù)據(jù)和真實數(shù)據(jù)證實了一步法對雜種群體的遺傳評估效果,并論證了基于雜種群體等位基因頻率構(gòu)建基因組關(guān)系矩陣才能發(fā)揮一步法的優(yōu)勢。隨著高通量測序技術(shù)日益完善、測序費用的逐漸降低,掀起了全基因組關(guān)聯(lián)分析(GWAS)研究的熱潮,而將基因組選擇方法應(yīng)用到GWAS研究也引起研究者們的重視。Wang等[45]將一步法應(yīng)用到GWAS的研究中,并且在一個肉雞群體中驗證了該方法的可行性。由此可見,一步法已不是簡單地對單性狀(或單一品種)進(jìn)行GEBV預(yù)測,一步法的研究已逐漸多元化,擴展到多性模型、雜種遺傳評估甚至GWAS研究中[46-47]。
一步法將基因型信息與系譜信息進(jìn)行合并,有效地將基因組信息運用到遺傳評定中。一步法對于經(jīng)濟價值較低的物種(如豬、雞),更是提供了新的基因組選擇方法途徑,使得這些動物實施GS成為可能。目前,一步法已經(jīng)在國際著名豬育種公司(丹育、PIC、Topigs等)得以應(yīng)用。Zhang等[11,48]根據(jù)前人GWAS的研究,將部分有顯著效應(yīng)的座位信息加入G矩陣中,構(gòu)建出GA矩陣進(jìn)而提出了BLUP|GA法(BLUP approach conditional on the Genetic Architecture),與GBLUP相比提高了遺傳評定的準(zhǔn)確性。根據(jù)BLUP|GA法構(gòu)建的GA矩陣替代G矩陣,生物學(xué)先驗信息是否使一步法包含的信息更豐富,能否提高準(zhǔn)確性有待進(jìn)一步研究。而近期隨著高通量技術(shù)的發(fā)展,測序成本不斷降低,未來基因分型個體數(shù)將更多,實施一步法的效果也將更明顯。通過不斷的改進(jìn)與完善,一步法的優(yōu)勢將得到充分的利用,并將成為畜禽遺傳評估中的主流方法之一。
[1]張沅. 家畜育種學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,2001.
[2]Goddard M E. A mixed model for analyses of data on multiple genetic markers[J]. Theor Appl Genet,1992,83(6-7):878-886.
[3]Fernando R L A M. Grossman marker assisted selection using best linear unbiased prediction[J]. Genet Sel Evol,1989,21(4):467-477.
[4]Goddard M E,Hayes B J. Mapping genes for complex traits in domestic animals and their use in breeding programmes[J]. Nature Reviews Genetics,2009,10(6):381-391.
[5]張哲,張勤,丁向東. 畜禽基因組選擇研究進(jìn)展[J]. 科學(xué)通報,2011(26):2212-2222.
[6]Meuwissen T H E,Hayes B J,Goddard M E. Prediction of total genetic value using genomewide dense marker maps[J]. Genetics,2001,157(4):1819-1829.
[7]Schaeffer L R. Strategy for applying genomewide selection in dairy cattle[J]. J Anim Breed Genet,2006,123(4):218-223.
[8]Gao N,Li J,He J,et al. Improving accuracy of genomic prediction by genetic architecture based priors in a Bayesian model[J]. BMC Genetics,2015,16(1):1-11.
[9]Meuwissen T H,Solberg T R,Shepherd R,et al. A fast algorithm for BayesB type of prediction of genome-wide estimates of genetic value[J]. Genetics Selection Evolution,2009,41(1):2.
[10]Zhang Z,Liu J F,Ding X D,et al. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix.[J]. Plos One,2010,5(9):e12648.
[11]Zhang Z,Ober U,Erbe M,et al. Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies[J]. Plos One,2014,9(3):e93017.
[12]VanRaden P M. Efficient methods to compute genomic predictions[J]. J Dairy Sci,2008,91(11):4414-4423.
[13]Misztal I,Legarra A,Aguilar I. Computing procedures for genetic evaluation including phenotypic,full pedigree,and genomic information[J]. J Dairy Sci,2009,92(9):4648-4655.
[14]Meuwissen T H E,Hayes B J,Goddard M E.Genomic selection:A paradigm shift in animal breeding[J]. Animal Frontiers,2016,1(6):6-14.
[15]張勤. 基因組選擇[A]. 第十五次全國動物遺傳育種學(xué)術(shù)討論會專題報告[C]. 楊凌,2009.
[16]Cleveland M A,Hickey J M. Practical implementation of cost-effective genomic selection in commercial pig breeding using imputation[J]. J Anim Sci,2013,91(8):3583-3592.
[17]Zhao Y,Dai J,Bai J. Genotype Imputation for Genome-wide Association Studies[J]. Chinese Journal of Health Statistics,2011,11(7):1-8.
[18]Aguilar I,Misztal I,Johnson D L,et al. Hot topic:A unified approach to utilize phenotypic,full pedigree,and genomic information for genetic evaluation of Holstein final score1[J]. J Dairy Sci,2010,93(2):743-752.
[19]Legarra A,Ducrocq V. Computational strategies for national integration of phenotypic,genomic,and pedigree data in a single-step best linear unbiased prediction[J]. J Dairy Sci,2012,95(8):4629-4645.
[20]Christensen O F,Lund M S. Genomic prediction when some animals are not genotyped[J]. Genetics Selection Evolution,2010,42(1):1-8.
[21]Chen C Y,Misztal I,Aguilar I,et al. Effect of different genomic relationship matrices on accuracy and scale[J]. J Anim Sci,2011,89(9):2673-2679.
[22]Chen C Y,Misztal I,Aguilar I,et al. Genomewide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step:An example using broiler chickens[J]. J Anim Sci,2010,89(1):23-28.
[23]Henderson C R. Best linear unbiased estimation and prediction under a selection model[J]. Biometrics,1975,31(2):423-447.
[24]Gao H,Christensen O F,Madsen P,et al. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population.[J]. Genetics Selection Evolution,2012,44(1):8.
[25]Forni S,Aguilar I,Misztal I. Different genomic relationship matrices for single-step analysis using phenotypic,pedigree and genomic information[J]. Genetics Selection Evolution,2011,43(1):1-7.
[26]Christensen O F,Madsen P,Nielsen B,et al. Single-step methods for genomic evaluation in pigs[J]. animal,2012,6(10):1565-1571.
[27]Vitezica Z G,Aguilar I,Misztal I,et al. Bias in genomic predictions for populations under selection[J]. Genet Res (Camb),2011,93(5):357-366.
[28]Baloche G,Legarra A,Salle G,et al. Assessment of accuracy of genomic prediction for French Lacaune dairy sheep[J]. J Dairy Sci,2014,97(2):1107-1116.
[29]Lourenco D A L,Misztal I,Wang H,et al. Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models[J]. J Anim Sci,2013,91(9):4090-4098.
[30]Su G,Madsen P,Nielsen U S,et al. Genomic prediction for Nordic Red Cattle using one-step and selection index blending[J]. J Dairy Sci,2012,95(2):909-917.
[31]Tsuruta S,Misztal I,Aguilar I,et al. Multipletrait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins[J]. J Dairy Sci,2011,94(8):4198-4204.
[32]Guo X,Christensen O F,Ostersen T,et al. Improving genetic evaluation of litter size and piglet mortality for both genotyped and nongenotyped individuals using a single-step method[J]. J Anim Sci,2015,93(2):503.
[33]Koivula M,Strandén I,Su G,et al. Different methods to calculate genomic predictions-Comparisons of BLUP at the single nucleotide polymorphism level (SNP-BLUP),BLUP at the individual level (G-BLUP),and the one-step approach (H-BLUP)[J]. J Dairy Sci,2012,95(7):4065-4073.
[34]Gray K A,Cassady J P,Huang Y,et al. Effectiveness of genomic prediction on milk flow traits in dairy cattle[J]. Genetics Selection Evolution,2012,44(1):1-6.
[35]Aguilar I,Misztal I,Legarra A,et al. Efficient computation of the genomic relationship matrix and other matrices usedin single-step evaluation[J]. J Anim Breed Genet,2011,128(6):422-428.
[36]Misztal I. Tsuruta S. Strabel. BLUPF90 and related programs (BGF90):In:Proceedings of the 7th World Congress on Genetics Applied to Livestock Production,Montpellier,F(xiàn)rance,2002[C].
[37]Madsen P. Jensen J. A user's guide to DMU. A Package for analysing multivariate mixed models[Z]. 2000.
[38]Fragomeni B O,Lourenco D A,Tsuruta S,et al. Hot topic:Use of genomic recursions in singlestep genomic best linear unbiasedpredictor(BLUP) with a large number of genotypes[J]. J Dairy Sci,2015,98(6):4090-4094.
[39]Misztal I. Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size[J]. Genetics,2016,202(2):401-409.
[40]Misztal I,Legarra A,Aguilar I. Using recursion to compute the inverse of the genomic relationship matrix[J]. J Dairy Sci,2014,97(6):3943-3952.
[41]Wolc A,Stricker C,Arango J,et al. Breeding value prediction for production traits in layer chickens using pedigreeor genomic relationships in a reduced animal model[J]. Genet Sel Evol,2011,43:5.
[42]Centre Danish Pig Research. annual report[Z]. 2010:15-17.
[43]Christensen O F,Madsen P,Nielsen B,et al. Genomic evaluation of both purebred and crossbred performances[J]. Genetics Selection Evolution,2013,46(1):1-9.
[44]Lourenco D A,Tsuruta S,F(xiàn)ragomeni B O,et al. Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices[J]. J Anim Sci,2016,94(3):909-919.
[45]Wang H,Misztal I,Aguilar I,et al. Genomewide association mapping including phenotypes from relatives without genotypes in a single-step(ssGWAS) for 6-week body weight in broiler chickens[J]. Frontiers in Genetics,2014,5:134.
[46]Legarra A,Christensen O F,Aguilar I,et al. Single Step,a general approach for genomic selection ☆[J]. Livestock Science,2014,166(1):54-65.
[47]Misztal I,Aggrey S E,Muir W M. Experiences with a single-step genome evaluation[J]. Poult Sci,2013,92(9):2530-2534.
[48]Zhang Z,Erbe M,He J,et al. Accuracy of wholegenome prediction using a genetic architectureenhanced variance-covariance matrix[J]. G3-Genes Genomes Genetics,2015,5(4):615-27.
(責(zé)任編輯 崔建勛)
Research progress in Single step procedure theory and application in genomic selection
PAN Rong-yang,ZHANG Zhe,GAO Ning,CHEN Zan-mou,LI Jia-qi,ZHANG Hao
(College of Animal Science,South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Provincial Key Lab. of Agro-Animal Genomics and Molecular Breeding,Guangzhou 510642,China)
Genomic selection is an emerging technology of genetic evaluation in livestock and poultry. Studies have reported that genomic selection has more advantages than traditional methods,which make it a hot topic in the field of animal genetic evaluation. However,for species with lower economic importance such as poultry and swine,it is difficult to genotype all individuals. Single-step procedure integrates not only phenotypes and genetic markers of genotyped individuals into genomic evaluation,but also field records of non-genotyped individuals through the pedigree of the population,which is an ideal alternative for genomic evaluation. The application of single step procedure in pig (or poultry) genomic selection has attracted much attention,but there are some key issues to be discussed in practical application. In this paper,the principle of single step procedure,the current status of implementation and related issues of single step method in livestock were reviewed.
genomic selection;genetic evaluation;single step procedure
S813.3
A
1004-874X(2016)09-0124-08
2016-06-15
國家自然科學(xué)基金(31200925);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(CARS-36)
潘榮楊(1989-),男,在讀碩士生,E-mail:panrongyang@126.com
張豪(1965-),男,博士,教授,E-mail:zhanghao@scau.edu.cn