王淑輝 王薇 張海廷 程杉 尚延昌 張擁波 李繼梅
?
·論著·
Wnt3a調(diào)控大鼠骨髓間充質(zhì)干細(xì)胞向膽堿能神經(jīng)元分化的實(shí)驗(yàn)研究
王淑輝王薇張海廷程杉尚延昌張擁波李繼梅
目的探討經(jīng)典Wnt/β-catenin通路對(duì)大鼠MSCs在體外分化為神經(jīng)元和膽堿能神經(jīng)元的調(diào)節(jié)作用。方法取SD大鼠股骨和脛骨的骨髓,利用差速貼壁法分離、擴(kuò)增及純化MSCs,繪制生長(zhǎng)曲線;應(yīng)用免疫熒光和Western-Blot的方法檢測(cè)Wnt3a處理后β-catenin蛋白的分布變化;取第4代MSCs分為3組;A組為空白對(duì)照組,用空白DMEM培養(yǎng)基培養(yǎng)細(xì)胞;B組為誘導(dǎo)分化對(duì)照組,用含100 ng/mL堿性成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast grown factor, bFGF)、5 umol/L維甲酸(retinoic acid, RA)的DMEM誘導(dǎo)培養(yǎng)基培養(yǎng)細(xì)胞;C組為Wnt3a誘導(dǎo)分化組,在上述誘導(dǎo)培養(yǎng)基中加入50 ng/mL Wnt3a培養(yǎng)細(xì)胞;用形態(tài)學(xué)觀察和Western-Blot的方法比較各組對(duì)MSCs向神經(jīng)元及膽堿能神經(jīng)元分化的影響;應(yīng)用形態(tài)學(xué)觀察和Western-Blot的方法比較各組對(duì)MSCs向神經(jīng)元及膽堿能神經(jīng)元分化的影響。結(jié)果利用差速貼壁法細(xì)胞傳至P3代時(shí)形態(tài)趨于一致,呈均勻分布生長(zhǎng)。P3代細(xì)胞的生長(zhǎng)曲線顯示,接種后的第1、2 d細(xì)胞處于潛伏期;第3、4 d細(xì)胞進(jìn)入對(duì)數(shù)生長(zhǎng)期;第5 d進(jìn)入平臺(tái)期。P4代細(xì)胞高度表達(dá)CD29和CD44(陽性率分別為99.9%和73.2%)。Wnt3a處理組細(xì)胞的β-catenin在細(xì)胞核的分布較對(duì)照組細(xì)胞顯著增多(P<0.01)。誘導(dǎo)分化細(xì)胞組中A組細(xì)胞可檢測(cè)到少量神經(jīng)元的標(biāo)記物,但未檢測(cè)到膽堿能神經(jīng)元的標(biāo)志物,B組和C組細(xì)胞均可檢測(cè)到神經(jīng)元和膽堿能神經(jīng)元的標(biāo)志物,B組和C組分化為神經(jīng)元的比例較A組顯著增高(P<0.01);C組分化為膽堿能神經(jīng)元的比例較B組顯著增高(P<0.01)。結(jié)論Wnt3a能夠促進(jìn)MSCs內(nèi)的β-catenin的核轉(zhuǎn)移激活經(jīng)典Wnt信號(hào)通路,促進(jìn)體外培養(yǎng)的MSCs向膽堿能神經(jīng)元分化。
骨髓間充質(zhì)干細(xì)胞Wnt3a膽堿能神經(jīng)元阿爾茨海默病
阿爾茨海默病(Alzheimer’s disease, AD)又稱為老年性癡呆,嚴(yán)重影響了老年人的生活能力。流行病學(xué)調(diào)查顯示65歲以上人群中AD的發(fā)病率為5%~10%,85歲以上的老年人中發(fā)病率增長(zhǎng)為25%[1]。隨著我國(guó)人口老齡化的發(fā)展,AD的患病率將逐漸增高,成為威脅人類生命健康的主要疾病之一。
AD的主要病理特征是β淀粉樣蛋白(amyloid-β protein, Aβ)聚集成的老年斑(senile plaque, SP)和過度磷酸化的微管相關(guān)蛋白tau蛋白組成的神經(jīng)纖維纏結(jié)(neurofibrillary tangle, NFT),兩者的存在均會(huì)產(chǎn)生神經(jīng)毒性,最終導(dǎo)致海馬神經(jīng)元的大量缺失。在AD早期內(nèi)源性海馬神經(jīng)前體細(xì)胞分裂、增殖、分化為成熟神經(jīng)元來補(bǔ)充缺失的海馬神經(jīng)元,具有一定的自我修復(fù)作用,可以對(duì)抗疾病進(jìn)展[2]。但疾病后期新生的海馬神經(jīng)元數(shù)量不斷減少,不能得到代償,最終出現(xiàn)臨床癥狀。如果能糾正海馬神經(jīng)元的缺失,恢復(fù)其正常生理結(jié)構(gòu),將對(duì)改善AD癥狀有重要意義[3]。
骨髓間充質(zhì)干細(xì)胞(mesenchymal stem cells, MSCs)是一類來源于骨髓的多能干細(xì)胞,具有自我更新及多向分化的潛能,目前已成為研究干細(xì)胞移植治療多種疾病的種子細(xì)胞。已有研究表明MSCs在特定微環(huán)境下能分化為神經(jīng)干細(xì)胞及多種有功能的神經(jīng)元,并能通過移植改善AD大鼠模型的認(rèn)知功能。如何調(diào)控MSCs向神經(jīng)干細(xì)胞及特定神經(jīng)元分化成為了研究的難點(diǎn)[4]。相關(guān)研究表明Wnt信號(hào)通路在神經(jīng)發(fā)生中起著重要的作用[5]。
本實(shí)驗(yàn)通過體外分離及培養(yǎng)SD大鼠的MSCs,利用Wnt3a蛋白及其他誘導(dǎo)分子對(duì)MSCs進(jìn)行干預(yù),觀察Wnt3a對(duì)MSCs向神經(jīng)元及膽堿能神經(jīng)元分化的影響,為干細(xì)胞移植治療阿爾茨海默病提供一定的實(shí)驗(yàn)及理論依據(jù)。
1.1SD大鼠MSCs的培養(yǎng)、擴(kuò)增
5周健康雄性SD大鼠購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司;引頸處死大鼠,無菌條件下分離出大鼠的股骨和脛骨,顯露骨髓腔;用10 mL注射器吸取含10%胎牛血清的DMEM培養(yǎng)基,沖出骨髓腔中的細(xì)胞,制成單細(xì)胞懸液,接種于底面積為25 cm2的培養(yǎng)瓶中,置于37℃,5%CO2飽和濕度培養(yǎng)箱中培養(yǎng);48 h后首次全量換液,以后每3 d全量換液1次,7 d左右細(xì)胞生長(zhǎng)至融合;融合后按1∶2或1∶3比例進(jìn)行傳代培養(yǎng);其后一般3 d傳代1次。
1.2細(xì)胞生長(zhǎng)曲線的繪制
取生長(zhǎng)良好的P3代MSCs,消化后按3×104/孔接種于24孔板中,分7組,每組各3個(gè)孔;37℃,5%CO2飽和濕度培養(yǎng)箱中培養(yǎng)7 d,其間逐日計(jì)數(shù)一組細(xì)胞,取均值,將7 d所得數(shù)值繪制成細(xì)胞的生長(zhǎng)曲線。
1.3流式細(xì)胞儀檢測(cè)細(xì)胞的表面標(biāo)志物
取生長(zhǎng)良好的P4代MSCs,用0.25%胰酶+0.03%EDTA消化后離心,PBS洗3次,MSCs中加入飽和濃度FITC標(biāo)記的CD11b、CD29、CD44、CD45抗體,室溫下避光孵育30 min,再用PBS清洗去除未結(jié)合抗體,10 g/L多聚甲醛固定15 min,流式細(xì)胞儀檢測(cè)細(xì)胞表面抗原表達(dá)。
1.4β-catenin蛋白細(xì)胞內(nèi)分布檢測(cè)
取生長(zhǎng)良好的P4代MSCs分為2組,1組為空白對(duì)照組,含10%FBS的DMEM培養(yǎng)基培養(yǎng)細(xì)胞;2組為Wnt3a組,用含50 ng/ml Wnt3a蛋白和10%FBS的DMEM培養(yǎng)基培養(yǎng)細(xì)胞,用間接免疫熒光和Western-Blot檢測(cè)β-catenin蛋白的分布變化。抗β-catenin抗體購(gòu)于英國(guó)Abcam公司。
1.5MSCs向神經(jīng)元及膽堿能神經(jīng)元細(xì)胞的誘導(dǎo)分化檢測(cè)
取生長(zhǎng)良好的P4代MSCs分為3組,A組為空白對(duì)照組,用空白DMEM培養(yǎng)基培養(yǎng)細(xì)胞;B組為誘導(dǎo)分化對(duì)照組,用含100 ng/ml bFGF、5 umol/L RA的DMEM誘導(dǎo)培養(yǎng)基培養(yǎng)細(xì)胞;C組為Wnt3a誘導(dǎo)分化組,在上述誘導(dǎo)培養(yǎng)基中加入50 ng/mLWnt3a蛋白培養(yǎng)細(xì)胞。上述3組細(xì)胞培養(yǎng)過程中每3 d換液1次,每天于倒置顯微鏡下觀察各組細(xì)胞形態(tài)的變化并照相;應(yīng)用Western-Blot方法鑒定神經(jīng)元特異性核蛋白(neuron-specific nuclear protein, NeuN)和膽堿乙酰基轉(zhuǎn)移酶(choline acetyltransferase, ChAT)的表達(dá);抗ChAT抗體和抗NeuN抗體均購(gòu)于英國(guó)Abcam公司。
1.6 統(tǒng)計(jì)學(xué)處理
采用SPSS 18.0進(jìn)行統(tǒng)計(jì)學(xué)分析,對(duì)于正態(tài)分布資料使用均數(shù)±標(biāo)準(zhǔn)差表示其平均水平。2組均數(shù)的比較采用兩獨(dú)立樣本的t檢驗(yàn),各組均數(shù)的比較采用單因素方差分析(ANOVA),以P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2.1MSCs的形態(tài)學(xué)及生長(zhǎng)特點(diǎn)
利用差速貼壁法進(jìn)行MSCs原代培養(yǎng),接種4 h后細(xì)胞開始貼壁, 48 h后大量MSCs貼壁,形態(tài)為多角形或梭形,7 d左右細(xì)胞生長(zhǎng)至融合后可傳代。原代和P1代細(xì)胞呈克隆樣生長(zhǎng),一般傳代后3 d細(xì)胞生長(zhǎng)至融合,P2代以后細(xì)胞呈均勻分布生長(zhǎng),細(xì)胞傳至P3代時(shí)形態(tài)趨于一致,呈短梭形。細(xì)胞傳至P6、P7代時(shí)生長(zhǎng)變得緩慢。本研究應(yīng)用P4代細(xì)胞進(jìn)行后續(xù)實(shí)驗(yàn)(圖1)。
圖1 MSCs形態(tài)學(xué)檢測(cè)(100×倍)
P3代MSCs生長(zhǎng)曲線顯示,接種后的第1、2 d細(xì)胞處于潛伏期,增殖緩慢;第3、4 d細(xì)胞進(jìn)入對(duì)數(shù)生長(zhǎng)期,增殖旺盛;第5 d進(jìn)入平臺(tái)期,增殖減慢(圖2)。
圖2 SD大鼠MSCs的生長(zhǎng)曲線
2.2MSCs表面標(biāo)志物的檢測(cè)
經(jīng)流式細(xì)胞儀檢測(cè),體外傳代培養(yǎng)的P4代細(xì)胞具有較好的均一性。其中絕大部分細(xì)胞CD11b、CD34和CD45表達(dá)為陰性(陽性率分布為6.6%、4.6%、1.9%),高度表達(dá)CD29和CD44,兩者陽性率分別為99.9%和73.2%(圖3)。
圖3 流式細(xì)胞儀檢測(cè)P4代MSCs的表面抗原標(biāo)志
2.3Wnt3a蛋白處理MSCs細(xì)胞后胞內(nèi)β-catenin的分布變化
應(yīng)用含50 ng/mL Wnt3a蛋白和10%FBS的DMEM培養(yǎng)基培養(yǎng)MSCs48 h后間接免疫熒光顯示W(wǎng)nt3a組在細(xì)胞核的位置可見β-catenin的聚集(圖4),而對(duì)照組未見β-catenin在細(xì)胞核位置聚集。為進(jìn)一步驗(yàn)證上述結(jié)果,采用蛋白核質(zhì)分離Western-Blot結(jié)果顯示,經(jīng)Wnt3a處理48 h后胞核內(nèi)的β-catenin的含量較對(duì)照組顯著增多,對(duì)照組和實(shí)驗(yàn)組胞核內(nèi)β-catenin/HDAC的比值分別為0.541±0.157和1.181±0.158。2組之間有明顯差異(P<0.01)(圖5)。
圖4 間接免疫熒光檢測(cè)β-catenin在胞內(nèi)的分布變化Wnt3a組培養(yǎng)48h后間接免疫熒光顯示W(wǎng)nt3a組在細(xì)胞核的位置可見β-catenin的聚集(箭頭所示),而對(duì)照組未見β-cate-nin在細(xì)胞核位置聚集
圖5 Western-Blot檢測(cè)細(xì)胞蛋白核質(zhì)分離后β-catenin的水平與空白對(duì)照組比較,**P<0.01
2.4MSCs向神經(jīng)元及膽堿能神經(jīng)元誘導(dǎo)分化的檢測(cè)
將P4代MSCs經(jīng)不同誘導(dǎo)培養(yǎng)基進(jìn)行誘導(dǎo)分化7 d后形態(tài)學(xué)觀察顯示空白對(duì)照組細(xì)胞呈梭形,誘導(dǎo)分化對(duì)照組和Wnt3a誘導(dǎo)分化組細(xì)胞長(zhǎng)出突起,呈神經(jīng)元樣細(xì)胞,而Wnt3a誘導(dǎo)分化組細(xì)胞形態(tài)學(xué)變化更明顯(圖6)。
圖6 MSCs的誘導(dǎo)分化細(xì)胞形態(tài)改變(200×倍)
誘導(dǎo)分化12 d后應(yīng)用Western-Blot檢測(cè)發(fā)現(xiàn),空白對(duì)照組可見少量NeuN的表達(dá)而未見ChAT的表達(dá),誘導(dǎo)分化對(duì)照組和Wnt3a誘導(dǎo)分化組均可見NeuN和ChAT的表達(dá)。空白對(duì)照組、誘導(dǎo)分化對(duì)照組和Wnt3a誘導(dǎo)分化組的NeuN/actin的比值分別為0.218±0.012、0.712±0.042和0.736±0.039,空白對(duì)照組與誘導(dǎo)分化對(duì)照組,空白對(duì)照組與Wnt3a誘導(dǎo)分化組之間有明顯差異(P<0.01),而誘導(dǎo)分化對(duì)照組與Wnt3a誘導(dǎo)分化組之間無明顯差異。Wnt3a誘導(dǎo)分化組較誘導(dǎo)分化對(duì)照組的ChAT表達(dá)增多,2組ChAT/actin的比值分別為0.208±0.018和0.112±0.012,兩組之間有明顯差異(P<0.01)(圖7)。
本研究發(fā)現(xiàn),利用差速貼壁法分離純化的MSCs細(xì)胞傳至P3代時(shí)形態(tài)趨于一致,呈均勻分布生長(zhǎng)。生長(zhǎng)曲線顯示接種后的第1、2 d細(xì)胞處于潛伏期;第3、4 d細(xì)胞進(jìn)入對(duì)數(shù)生長(zhǎng)期;第5 d進(jìn)入平臺(tái)期。P4代細(xì)胞高度表達(dá)CD29和CD44。應(yīng)用Wnt3a處理MSCs后細(xì)胞漿中β-catenin轉(zhuǎn)移至細(xì)胞核,細(xì)胞形態(tài)發(fā)生顯著變化,NeuN和ChAT的表達(dá)顯著增多。上述研究發(fā)現(xiàn)Wnt3a能夠促進(jìn)體外培養(yǎng)的MSCs向膽堿能神經(jīng)元分化。
MSCs具有自我更新及多向分化的潛能,在不同的微環(huán)境下可以分化為骨細(xì)胞、軟骨細(xì)胞、脂肪細(xì)胞和神經(jīng)元等多種細(xì)胞[6],因此被認(rèn)為是細(xì)胞移植治療多種疾病的種子細(xì)胞[7]。但骨髓中MSCs的含量很低,約占細(xì)胞總數(shù)的0.001%~0.01%。本實(shí)驗(yàn)通過差速貼壁法成功分離培養(yǎng)了MSCs,并對(duì)其進(jìn)行了鑒定,P4代經(jīng)流式細(xì)胞儀檢測(cè)細(xì)胞具有較好的均一性,表達(dá)CD29和CD44,而不表達(dá)CD11b、CD34和CD45,符合MSCs的特點(diǎn)。細(xì)胞生長(zhǎng)曲線顯示傳代后第3、4 d細(xì)胞處于對(duì)數(shù)生長(zhǎng)期,增殖旺盛[8]。
已有研究表明MSCs在適當(dāng)條件下能在體內(nèi)外誘導(dǎo)分化為多種類型的神經(jīng)元。但MSCs向神經(jīng)元分化的調(diào)控機(jī)制尚未明確。研究表明Wnt信號(hào)通路對(duì)MSCs的分化有一定的調(diào)控作用[9-10]。根據(jù)細(xì)胞內(nèi)β連環(huán)蛋白(β-catenin)是否參與信號(hào)通路,將Wnt信號(hào)傳導(dǎo)通路分為經(jīng)典Wnt信號(hào)傳導(dǎo)通路和非經(jīng)典Wnt信號(hào)傳導(dǎo)通路。其中Wnt3a蛋白與細(xì)胞膜上的相應(yīng)受體結(jié)合,可以激活經(jīng)典Wnt信號(hào)通路,促進(jìn)未被磷酸化的β-catenin入核并啟動(dòng)靶基因的轉(zhuǎn)錄,產(chǎn)生多種細(xì)胞效應(yīng)[11]。Ping 等分離正常人及AD患者皮層的膠質(zhì)祖細(xì)胞(glial progenitor cells, GPCs),研究這些細(xì)胞分化為神經(jīng)元的能力,發(fā)現(xiàn)相對(duì)于正常人,AD患者的GPC自我更新能力及神經(jīng)發(fā)生能力明顯下降,AD患者的GPC中有功能的β-catenin水平顯著下降,而即將降解的磷酸化的β-catenin水平增高[12]。表明經(jīng)典Wnt信號(hào)通路對(duì)AD患者的神經(jīng)發(fā)生具有一定的調(diào)節(jié)作用。Wexler 等應(yīng)用鋰劑來激活Wnt通路,能夠刺激成年小鼠體內(nèi)海馬前體細(xì)胞增殖,并能促進(jìn)海馬前體細(xì)胞分化為表達(dá)微管相關(guān)蛋白β-Ⅲ-Tubulin (Tuj1) 的神經(jīng)元[13]。本實(shí)驗(yàn)通過加有Wnt3a蛋白的培養(yǎng)基培養(yǎng)細(xì)胞,細(xì)胞免疫熒光和Western-Blot檢測(cè)均證實(shí)了Wnt3a蛋白可以促進(jìn)MSCs的β-catenin入核,說明Wnt3a蛋白可以激活MSCs的經(jīng)典Wnt信號(hào)通路。
通過維甲酸等的誘導(dǎo)作用MSCs可以分化為膽堿能神經(jīng)元,且分化的膽堿能神經(jīng)元Wnt3a蛋白表達(dá)增加[14]。本實(shí)驗(yàn)采取了維甲酸和堿性成纖維細(xì)胞因子聯(lián)合誘導(dǎo)MSCs向膽堿能神經(jīng)元分化的方法,Wnt3a組另外加入Wnt3a蛋白誘導(dǎo)分化,結(jié)果表明3組均有神經(jīng)元標(biāo)記物的表達(dá),表明MSCs培養(yǎng)過程中可能存在自然分化現(xiàn)象,但其分化量遠(yuǎn)少于誘導(dǎo)分化組。相對(duì)于空白對(duì)照組,維甲酸和堿性成纖維細(xì)胞因子聯(lián)合誘導(dǎo)可以使MSCs向膽堿能神經(jīng)元分化,并且Wnt3a組對(duì)MSCs分化為膽堿能神經(jīng)元有促進(jìn)作用。Wnt3a蛋白可以激活MSCs的經(jīng)典Wnt信號(hào)通路,推測(cè)經(jīng)典Wnt信號(hào)通路對(duì)MSCs向膽堿能神經(jīng)元分化具有調(diào)節(jié)作用。
圖7 Western-Blot檢測(cè)各組細(xì)胞神經(jīng)元NeuN和膽堿能神經(jīng)元ChAT的表達(dá)水平A組為空白對(duì)照組,B組為誘導(dǎo)分化對(duì)照組,C組為Wnt3a誘導(dǎo)分化組;直方圖顯示各組NeuN/actin和ChAT/actin的比值,與A組比較,**P<0.01;與B組比較,△P<0.01
本實(shí)驗(yàn)結(jié)果證實(shí)MSCs在體外誘導(dǎo)條件下可以分化為膽堿能神經(jīng)元,并且經(jīng)典Wnt信號(hào)通路的激活可以促進(jìn)這一過程,推測(cè)移植經(jīng)Wnt3a激活的MSCs,在動(dòng)物體內(nèi)同樣可以促進(jìn)其向膽堿能神經(jīng)元的分化,提高M(jìn)SCs移植治療阿爾茨海默病的療效。
[1]Bateman RJ,Xiong CJ,Benzinger TL,et al.Clinical and biomarker changes in dominantly inherited alzheimer's disease[J].N Engl J Med,2012,367(9):795-804.
[2]Moon M,Cha MY,Mook-Jung I.Impaired hippocampal neurogenesis and its enhancement with ghrelin in 5XFAD mice[J].Journal of Alzheimers Disease,2014,41(1):233-241.
[3]Aimone JB,Li Y,Lee SW,et al.Regulation and function of adult neurogenesis: from genes to cognition[J].Physiol Rev,2014,94(4):991-1026.
[4]Liang CM,Weng SJ,Tsai TH,et al.Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells[J].Cytotherapy,2014,16(10):1371-1383.
[5]Hussaini SM,Choi CI,Cho CH,et al.Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior[J].Neurosci Biobehav Rev,2014,47:369-383.
[6]Sharma RR,Pollock K,Hubel A,et al.Mesenchymal stem or stromal cells:a review of clinical applications and manufacturing practices[J].Transfusion,2014,54(5):1418-1437.
[7]Sutton MT,Bonfield TL.Stem cells: innovations in clinical applications[J].Stem Cells Int,2014,2014:516278.
[8]Shang YC,Wang SH,Xiong F,et al.Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells[J].Acta Pharmacol Sin,2007,28(11):1761-1774.
[9]Bhaskar B,Mekala NK,Baadhe RR,et al.Role of signaling pathways in mesenchymal stem cell differentiation[J].Curr Stem Cell Res Ther,2014,9(6):508-512.
[10]Zhu D,Kang Q,Huang PY,et al.Neurogenesis-related genes expression profiling of mouse fibroblastic stem cells induced by Wnt signaling[J].Neurol Res,2009,31(2):200-203.
[11]Andersson T,Duckworth JK,Fritz NA,et al.Noggin and Wnt3a enable BMP4-dependent differentiation of telencephalic stem cells into GluR-agonist responsive neurons[J].Molecular and Cellular Neuroscience,2011,47(1):10-18.
[12]He P,Shen Y.Interruption of beta-catenin signaling reduces neurogenesis in Alzheimer's disease[J].J Neurosci,2009,29(20):6545-6557.
[13]Wexler EM,Geschwind DH,Palmer TD.Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation[J].Mol Psychiatry,2008,13(3):285-292.
[14]王晉麗,王春芳,王曉霞,等.Wnt3a在大鼠骨髓源性膽堿能神經(jīng)元中的表達(dá)[J].山西醫(yī)科大學(xué)學(xué)報(bào),2008,39(1):7-10, 95.
(2016-03-05收稿)
Experimental study of Wnt3a regulating the cholinergic neuron differentiation of rat bone marrow mesenchymal stem cells
WangShuhui,WangWei,ZhangHaiting,etal.
DepartmentofNeurology,BeijingFriendshipHospital,CapitalMedicalUniversity,Beijing100050
ObjectiveTo investigate the effects of canonical Wnt/β-catenin signaling pathway on differentiation of MSCs into neuron and cholinergic neuron. MethodsRat MSCs were isolated and purified through differential anchoring method. Observe the morphological changes of cells under optical microscope, drew the cell growth curves, and detect the surface antigens by FACScan. The distribution of β-catenin was detected by Western blot and immunofluorescence stain after Wnt3a treatment. Then the fourth generation of MSCs was divided into three groups. Group A: cells were cultured in DMEM; Group B: cells were cultured in DMEM supplemented with 100 ng/ml basic fibroblast growth factor (bFGF) and 5 umol/L retinoic acid (RA); Group C: cells were cultured in DMEM supplemented with 100 ng/ml bFGF, 5 umol/L RA and 50ng/ul Wnt3a. The morphological changes of the cells were observed and the markers of neurons and cholinergic neurons were detected by Western blot after inducing neuronal differentiation. ResultsMSCs were purified after passage 3 through differential anchoring method. The growth kinetics of MSCs showed cells grew slowly in the first two days. After inoculation, entered a logarithmic phase from the third day and became slowly in the fifth day. Positive rate of CD29 and CD44 was 99.9% and 73.2%. Compared with control group, Wnt3a treated MSCs showed a higher level of β-catenin in the nucleus (P<0.01). The marker of neurons was detected in Group A, but the marker of cholinergic neurons couldn’ t be detected. The marker of both neuron and cholinergic could be detected in Group B and Group C. Compared to Group A, the level of the neurons' marker was higher in both Group B and Group C (P<0.01). Compared with Group B, the level of the cholinergic neurons' marker was significantly higher in the Group C (P<0.01). ConclusionWnt3a could induce beta-catenin nuclear translocation and activate the canonical Wnt pathway in MSCs. The canonical Wnt signaling pathway enhances the differentiation of MSCs into cholinergic neurons.
MSCsWnt3aCholinergic neuronAlzheimer's disease
國(guó)家自然科學(xué)基金(81100237);北京市自然科學(xué)基金(7142042)
100050北京,首都醫(yī)科大學(xué)附屬北京友誼醫(yī)院神經(jīng)科[王淑輝王薇(共同第一作者)張海廷張擁波李繼梅];首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院生物化學(xué)與分子生物學(xué)系(程杉);解放軍總醫(yī)院老年神經(jīng)科(尚延昌)
R741
A
1007-0478(2016)05-0309-06
10.3969/j.issn.1007-0478.2016.05.001