劉杰Chih-Ta Lin鄧馨
(1.濰坊科技學院,濰坊 262700;2.中國科學院植物研究所 北方資源植物重點實驗室,北京 100093;3. IWBT,Stellenbosch University,Cape Town,Republic of South Africa)
復蘇植物耐脫水機制研究進展
劉杰1,2Chih-Ta Lin2,3鄧馨2
(1.濰坊科技學院,濰坊 262700;2.中國科學院植物研究所 北方資源植物重點實驗室,北京 100093;3. IWBT,Stellenbosch University,Cape Town,Republic of South Africa)
大多數(shù)高等植物無法耐受極度脫水狀態(tài),然而有一小部分被稱為“復蘇植物”的植物,它們進化出獨特的耐脫水機制,能夠耐受體內(nèi)水分喪失90%以上,且復水后迅速恢復生活狀態(tài)。對復蘇植物分布與分類,干旱誘導的形態(tài)結(jié)構(gòu)變化,尤其是其耐脫水生理生化及分子機制進行了綜述,并對復蘇植物今后的研究和應用方向進行了展望。
復蘇植物;耐脫水性;干旱脅迫
DOI:10.13560/j.cnki.biotech.bull.1985.2016.10.011
水分是生物體的重要組成成分,除了維持細胞膨壓外,還是生物體新陳代謝所必需的。水分的可利用率是影響植物產(chǎn)量的重要因素,同時也是決定物種分布的主要因素之一[1]。大多數(shù)陸生植物在其生活史的某一個階段會遭遇缺水脅迫,為了生存,植物進化出各種保護機制及適應策略。例如,通過氣孔調(diào)控和特化結(jié)構(gòu)來增強保水能力,通過促進根系生長增強吸水能力,通過累積糖和脯氨酸等物質(zhì)來提高滲透調(diào)節(jié)能力,通過抗氧化劑和活性氧清除酶來降低干旱造成的活性氧傷害等[2]。雖然這些機制對抵御輕度和中度干旱脅迫通常有效,但無法幫助植物有效應對嚴重持久的干旱脅迫。
自然界中僅有較少一部分植物被稱為“復蘇植物(resurrection plant)”,能夠在極端缺水情況下生存。即使干旱到細胞已經(jīng)喪失90%以上水分的程度,只要遇水,這類植物就能迅速恢復生活狀態(tài),其所具有的耐脫水性狀被稱為耐干性(desiccation tolerance,簡稱DT)[3]。近年來,國際上對復蘇植物的研究日益廣泛,不但因為復蘇植物蘊含著強效抗旱基因資源,而且對其耐旱復蘇機制的深入了解,將推動人們對植物抗逆機理的更廣泛認識,并借此找到植物專門應對嚴重干旱的更有效的機制,最終找到使植物徹底擺脫干旱威脅的鑰匙。本文就復蘇植物的起源、進化、種類分布及耐脫水機制研究現(xiàn)狀等進行綜述,并對復蘇植物未來的研究方向進行了展望。
國外對復蘇植物的認識始于1914年P(guān)ickett[4]對一些蕨類植物的原葉體生態(tài)適應性的研究。隨后Myrothamnus flabellifolia、Xerophyta humilis和Craterostigma plantagineum等一些復蘇植物被陸續(xù)報道出來[5]。目前已發(fā)現(xiàn)的復蘇植物約有1 300種,主要分布在苔蘚和蕨類植物中,裸子植物中未見,被子植物中僅發(fā)現(xiàn)135種,分屬于15個科[6]。這些復蘇植物多為草本,木本植物只有M. flabellifolia一例,主要分布于非洲東部和南部、澳大利亞和南美地區(qū),零散分布于東亞和巴爾干半島。復蘇植物原生境極其相似,都生長于巖石表層土壤(大約1 cm厚度),一年中會經(jīng)歷多次失水及復水過程,其中一些種類已趨于瀕危[6]。
在中國,對于復蘇現(xiàn)象的記錄可以追溯到明朝李時珍《本草綱目》對巻柏(Seaslniealla tamarsicnia(P. Beauv.)spring)的記錄:“卷柏,釋名萬歲、長生不死草,可以在晾干后,經(jīng)浸水而生?!逼?,在我國已被報道過的復蘇植物除卷柏[7]和小立碗蘚[8]等蕨類和苔蘚植物外,主要集中于苦苣苔科旋蒴苣苔屬旋蒴苣苔(Boea hygrometrica,俗名牛耳草)[9-11]及其近緣種[12-18]。部分復蘇植物的種類與分布情況見表1。
表1 復蘇植物種類與分布[19]
苔蘚、藻類、地衣、蕨類以及擬蕨類植物的生殖及營養(yǎng)器官都具有耐脫水性,干旱和復蘇過程都很快,在幾小時之內(nèi)即發(fā)生明顯的形態(tài)變化,被認為是一種“完全型”耐干性(Full DT)[20]。雖然幾乎所有被子植物的種子都具有耐脫水性,但只有少數(shù)被子植物的營養(yǎng)器官耐脫水,這可能意味著維管植物本身結(jié)構(gòu)和形態(tài)更為適應陸地環(huán)境,體內(nèi)保水調(diào)控能力更強,營養(yǎng)器官耐脫水復蘇能力逐漸退化丟失。因此,Oliver、Farrant和Moore等[20,21]進一步提出,種子的耐脫水能力可能是從低等植物“完全型”耐干性進化而來,最終成為一種由發(fā)育程序調(diào)控的細胞保護系統(tǒng);在干旱頻發(fā)的生境中,一些植物通過對種子耐脫水性調(diào)控程序的“重新編程”,使之在營養(yǎng)組織中可響應干旱誘導,最終進化出復蘇植物的“改良型”耐干性(Modified DT)。圖1展示了幾種被子復蘇植物脫水和復蘇狀態(tài)。
復蘇被子植物大多為多年生、株型矮小的草本,生長于巖石表層土壤(大約1 cm厚度),一生中會經(jīng)歷多次失水及復水過程。與仙人掌等耐旱植物不同,復蘇植物大多缺乏特殊的保水性結(jié)構(gòu),如特化為針形的葉片,或者較厚的蠟質(zhì)層等。因此在干旱來臨時,復蘇植物葉片失水速度很快,迅速向枝干折疊(圖1- A),或干枯卷曲(圖1-C),或向葉柄方向卷曲(圖1-E)。單子葉復蘇植物X. humilis脫水過程中葉片會沿葉中脈折疊成原來葉片的一半[22]。很多復蘇植物的葉背有柔毛或者剛毛,在葉片脫水收縮后,這些毛密度和硬度增大,覆蓋整個葉背,使植物的外觀形態(tài)結(jié)構(gòu)和硬度發(fā)生明顯變化,其生化生理機制尚未被揭示。這些變化在雨后或者澆水后逆轉(zhuǎn),恢復正常狀態(tài),植物也恢復生長發(fā)育(圖1-B,D,F(xiàn))。
復蘇植物所要面對的干旱脅迫是一種極端干旱,葉片等營養(yǎng)組織可干旱至脫水狀態(tài),即含水量最低降至10%以下,相當于超干種子的含水量。Vicré等[23]總結(jié)脫水對植物的損傷主要表現(xiàn)為3個方面:(1)細胞失水達到一定閾值(細胞內(nèi)含水量低于40%[19])后原生質(zhì)體收縮引發(fā)機械損傷;(2)膜系統(tǒng)穩(wěn)定性下降;(3)細胞失水后代謝物濃度變化、大分子結(jié)構(gòu)和功能的破壞對代謝速率和方向的影響。
低等復蘇植物應對脫水主要依賴于復水過程中的損傷修復機制,需消耗大量能量;而被子復蘇植物在脫水時主要傾向于加強保護、減小損傷的機制,不需消耗過多能量[20]。這些植物中均發(fā)現(xiàn)干旱誘導大量基因表達,通過調(diào)節(jié)細胞壁成分和物理性質(zhì)、滲透調(diào)節(jié)、抗氧化、光合保護以及蛋白質(zhì)質(zhì)量控制等過程參與耐旱保護。
3.1細胞壁折疊
植物細胞脫水時原生質(zhì)體縮小會引發(fā)機械壓力,其主要根源在于細胞壁的剛性結(jié)構(gòu)。研究發(fā)現(xiàn)復蘇植物如牛耳草和C. wilmsii,葉肉細胞的細胞壁可以在細胞脫水后發(fā)生折疊,不但可確保質(zhì)壁分離的程度不至于引起質(zhì)膜的撕裂,而且維持了胞間連絲的結(jié)構(gòu)[24-27]。免疫細胞化學分析發(fā)現(xiàn)C. wilmsii脫水組織細胞壁可萃取性與水合組織有所不同:脫水組織細胞壁發(fā)生重組修飾,主要涉及一系列諸如鈣-果膠交聯(lián)物和木葡聚糖修飾等誘導因子,以促進細胞壁的交聯(lián)和緊縮[24]。C. plantagineum脫水脅迫時α-expansin 蛋白表達明顯上調(diào),被證明能夠增加細胞壁的可延展性[25]。木本復蘇植物M. flabellifolia脫水組織與水合組織中果膠、木葡聚糖以及阿拉伯糖抗原表位并沒有差異,其特征主要是在脫水組織中聚集高濃度的阿拉伯糖,形成阿拉伯糖與阿拉伯半乳糖聚合物[26,27]。
3.2滲透調(diào)節(jié)與大分子保護
滲透調(diào)節(jié)是水分脅迫下細胞避免機械傷害、維持結(jié)構(gòu)完整和膜穩(wěn)定的廣泛機制。復蘇植物脫水過程中也會積累蔗糖[28],一方面可以通過滲透調(diào)節(jié)和形成原生質(zhì)體“玻璃化”溶膠狀態(tài)來維持生物大分子結(jié)構(gòu)的穩(wěn)定從而保護生物膜系統(tǒng)的完整;另一方面作為信號分子來調(diào)控碳水化合物的水平、調(diào)節(jié)植物生長以及能量代謝。C. plantagineum新鮮葉片中含有高濃度、在其它植物中少見的C8-糖-2-辛酮糖,脫水過程中大量轉(zhuǎn)化成蔗糖[29,30]。很多被子復蘇植物在脫水過程中也會積累棉子糖和海藻糖等低聚糖[31,32]。
除滲透調(diào)節(jié)保護物質(zhì)外,一些特定的親水性蛋白如胚胎晚期豐富蛋白(LEA)、熱激蛋白(HSPs)也對細胞結(jié)構(gòu)以及包括膜脂和膜蛋白在內(nèi)的大分子的穩(wěn)定性起重要保護作用。當水分匱缺時,植物會同時激活不同種類的LEA蛋白,形成必要的互作關(guān)系網(wǎng)絡在不同的組織或細胞結(jié)構(gòu)中來保護和穩(wěn)定生物大分子[33]。Xiao等[11]對牛耳草全基因組測序數(shù)據(jù)分析發(fā)現(xiàn)牛耳草基因組中存在大量的LEA基因,且其中2/3在脫水時表達明顯增加,表明LEA蛋白對于牛耳草脫水響應起重要作用。另外,牛耳草中克隆到29個HSP蛋白基因。HSPs作為分子伴侶同其它蛋白質(zhì)結(jié)合來促進蛋白質(zhì)的正確折疊、組裝并轉(zhuǎn)運到特定的亞細胞區(qū)域,或者識別未折疊或錯誤折疊的蛋白防止其不可逆的聚集[34,35]。
3.3抗氧化系統(tǒng)
復蘇植物體內(nèi)存在的抗氧化系統(tǒng)對防止膜脂過氧化、維持膜及細胞結(jié)構(gòu)的穩(wěn)定也起了重要作用。Kranner等[36]發(fā)現(xiàn)M. flabellifolia的復蘇能力與其體內(nèi)抗氧化防御系統(tǒng)有直接關(guān)系,脫水時間延長至8個月時,其體內(nèi)抗氧化劑耗盡便不能復蘇。
植物體內(nèi)抗氧化防御系統(tǒng)由非酶組分和酶組分兩部分組成??寡趸瘎┖兔割惖姆e累及其相關(guān)基因的表達在多種復蘇植物中均已被檢測到[37-41]。干旱及復水過程中,C. wilmsii和X. viscosa營養(yǎng)組織中APX,GR以及SOD等抗氧化酶基因的表達都會升高[37]。X. viscosa中還確定了一個新的干旱誘導的過氧化物酶基因XvPer1,其編碼蛋白的功能是保護細胞核內(nèi)的核酸免受氧化脅迫損傷[38]。牛耳草、H. rhodopensis、Ramonda serbica 和R. nathaliae等苦苣苔科復蘇植物離體葉片脫水過程中發(fā)現(xiàn)除谷胱甘肽-S-轉(zhuǎn)移酶、抗壞血酸、GSH及維生素E(α生育酚)的含量明顯增加外,多酚含量和多酚氧化酶活性也明顯升高[39-41]。
3.4光合保護
植物遭受水分脅迫時,光合作用是最敏感的生理過程,而光合作用的降低有利于減少光合過程中產(chǎn)生的活性氧對細胞的損傷[42]。復蘇植物失水后光合活性也會迅速下降,甚至在其葉片含水量尚未顯著下降時就停止了,例如Tripogon loliiformis在葉片失水30%時,光合作用便完全停止[43]。盡管如此,復蘇植物復水后光合作用可在幾天之內(nèi)重新恢復,而非復蘇植物干旱造成的光合失活卻不能逆轉(zhuǎn)。這個現(xiàn)象意味著復蘇植物葉綠體中存在某些特殊的保護機制。推測復蘇植物葉片在干旱后發(fā)生的折疊或卷曲有助于減少葉片對光能的吸收,防止脫水過程中光誘導產(chǎn)生的葉綠體活性氧傷害。
蕨類植物、苔蘚植物以及雙子葉復蘇植物葉綠體在脫水時結(jié)構(gòu)保持完整,大部分葉綠素得以保持,葉綠體內(nèi)部類囊體的垛疊結(jié)構(gòu)清晰可見,膜結(jié)構(gòu)只有輕微損傷,復水后可以迅速復蘇并恢復光合作用,例如牛耳草[44]和C. wilmsii[45]等(表1),這些植物被稱為葉綠素保持型(Homoiochlorophyllous)。牛耳草脫水過程中類囊體膜色素-蛋白復合體雖然解聚但不降解[9],可能是其干旱后光合活性快速停止以及復水后迅速恢復的重要機制之一。LEA蛋白被發(fā)現(xiàn)在保護光合作用蛋白穩(wěn)定方面具有明顯效果[45]。復蘇植物脫水過程中也大量積累ELIP(early light induced protein)蛋白,例如C. plantagineum類囊體膜上大量積累的一種22 kD的蛋白(dsp22)對于防止脫水過程導致的光抑制有重要作用[46]。牛耳草全基因組測序分析也發(fā)現(xiàn)大量ELIP基因,脫水過程中會大量轉(zhuǎn)錄,推測可能在PSII的保護中起作用[11]。
單子葉復蘇植物在脫水時大部分葉綠素降解,膜結(jié)構(gòu)破壞,類囊體解體,復水后需要重新合成葉綠素并修復膜結(jié)構(gòu),復蘇時間較長,不能迅速恢復光合作用,被稱為葉綠素變化型(Poikilochlorophyllous),如X. viscosa[22]等(表1)。因此葉綠素保持型復蘇植物比葉綠素變化型能更快地恢復光合作用,而且葉綠素保持型復蘇植物離體葉片可以復蘇但葉綠素變化型復蘇植物離體葉片卻不能復蘇[19]。
脫落酸(ABA)是一種重要的植物激素,在調(diào)控植物的生長發(fā)育以及植物響應干旱、冷等逆境脅迫方面有重要作用[47]。研究認為ABA對于復蘇植物耐脫水基因的激活發(fā)揮著重要的協(xié)調(diào)作用[48]。Wang等發(fā)現(xiàn)牛耳草體內(nèi)肌醇半乳糖苷及棉子糖的合成是依賴ABA信號途徑完成的:BhGoLS1 和 BhRFS的表達都受ABA誘導[32,49],ABA誘導的轉(zhuǎn)錄因子WRKY能夠結(jié)合BhGoLS1啟動子區(qū)的W-box元件,從而調(diào)控BhGoLS1基因表達[32]。Bartels等[50]發(fā)現(xiàn)C. plantagineum干旱葉片中ABA大量積累,而且外源ABA可促進其愈傷組織獲得耐脫水性。但是C. plantagineum脫水早期部分基因的表達與ABA并不相關(guān),這表明可能有其它的信號途徑參與植物耐脫水過程[51]。在另一種苦苣苔科復蘇植物H. rhodopensis 中茉莉酸比ABA更早響應干旱脅迫;而且水楊酸、細胞分裂素以及生長素等激素都參與了其脫水響應的調(diào)控[52]。
復蘇植物體內(nèi)的一系列轉(zhuǎn)錄因子都調(diào)控著脫水相關(guān)基因的表達。例如H. rhodopensis轉(zhuǎn)錄組數(shù)據(jù)分析顯示NAC、NF-YA、MADS box、HSF、GRAS以及WRKY家族的轉(zhuǎn)錄因子在水分匱缺時被誘導表達[53]。C. plantagineum中也確定了幾類脫水誘導的轉(zhuǎn)錄因子,包括3個MYB轉(zhuǎn)錄因子[54],7個亮氨酸拉鏈家族蛋白(HDZIP)[55-57]以及一類新的鋅指因子[58]。CPHB-1和CPHB-2是從C. plantagineum中克隆到的兩個HDZIP基因,都受脫水脅迫誘導,但只有CPHB-2受ABA誘導,這表明兩個基因分別在ABA依賴途徑與非ABA依賴途徑中發(fā)揮作用;而這兩種蛋白又可以形成異源二聚體,推測它們可能將ABA依賴途徑與ABA非依賴途徑聯(lián)系起來共同發(fā)揮功能[55]。牛耳草中發(fā)現(xiàn)的熱激因子BhHSF1可通過誘導抗逆基因的同時抑制細胞分裂相關(guān)基因的表達,實現(xiàn)對植物在干旱脅迫下能量和物質(zhì)代謝方向的協(xié)同調(diào)控,促使其從生長需求轉(zhuǎn)向抗逆性[59]。另外,牛耳草的一個含C2結(jié)構(gòu)域的小蛋白BhC2DP1,可通過鈣信號途徑參與ABA對干旱的調(diào)控[60]。
除轉(zhuǎn)錄水平調(diào)控外,近年來研究發(fā)現(xiàn)轉(zhuǎn)座子、小RNA與非編碼RNA和表觀遺傳調(diào)控在復蘇植物抗逆過程中也發(fā)揮了重要作用。C. plantagineum中發(fā)現(xiàn)的受脫水及ABA誘導的逆轉(zhuǎn)座子CDT-1,能夠指導一雙鏈21 bp的siRNA合成,從而發(fā)揮其功能[50,61,62]。后續(xù)研究發(fā)現(xiàn),C. plantagineum轉(zhuǎn)錄組數(shù)據(jù)中較大一部分無法匹配到已知序列的轉(zhuǎn)錄本可能是非編碼RNAs,這些序列在基因組中存在大量的拷貝,并在脫水過程中被大量誘導表達[63];其中一個長非編碼RNA,在脫水過程中大量表達,猜測可能通過表觀遺傳、轉(zhuǎn)錄水平或轉(zhuǎn)錄后水平來調(diào)控基因的表達從而在植物耐脫水中起重要作用[64]。與C. plantagineum相似,牛耳草中克隆到的逆轉(zhuǎn)座子片段S21發(fā)揮功能的形式與CDT-1類似,可能是通過轉(zhuǎn)錄產(chǎn)生干擾RNA來發(fā)揮作用[65]。
“組學”技術(shù)的發(fā)展實現(xiàn)了以高通量的方式來檢測生物大分子在植物體內(nèi)的豐度,所以研究者利用轉(zhuǎn)錄組、蛋白質(zhì)組以及代謝組研究方法可以全面獲取復蘇植物在脫水及復水過程中轉(zhuǎn)錄本、蛋白質(zhì)、代謝物的變化情況。轉(zhuǎn)錄組分析在多種復蘇植物中鑒定了脫水復水誘導或抑制的轉(zhuǎn)錄本及其所富集的生物學過程和代謝過程,如逆境響應、氧化-還原反應、糖代謝和脂代謝、蛋白質(zhì)降解與穩(wěn)態(tài)維持和自噬等[38,53,66,67]。蛋白質(zhì)組學分析也發(fā)現(xiàn),脫水過程中積累的脅迫保護蛋白涉及ROS清除、蔗糖積累、大分子保護、細胞壁折疊等不同生物學過程[39,68,69]。利用GC-MS、LC-MS、CE-MS以及NMR技術(shù)研究發(fā)現(xiàn)復蘇植物脫水及復水過程中變化的代謝組分包括碳水化合物、氨基酸、核酸衍生物、脂類、多胺、抗氧化物以及防御化合物;而碳水化合物的代謝在復蘇植物耐脫水過程中細胞保護方面起了關(guān)鍵作用[70,71,72]。復蘇植物形態(tài)研究也從早期的顯微鏡技術(shù)觀察推斷結(jié)構(gòu)及內(nèi)部的變化[73,74],發(fā)展至以高通量技術(shù)檢測細胞壁、類囊體膜中糖類、蛋白的分布狀態(tài),并利用生物信息技術(shù)分析推測這些大分子在脫水狀態(tài)下的排列[75,76]。表2中列出了已經(jīng)利用“組學”技術(shù)研究過的復蘇被子植物。另外,到目前為止,完成全基因組測序的復蘇植物只有苦苣苔科的牛耳草[11]和禾本科的Oropetium thomaeum[77]。O. thomaeum 基因組只有245 Mb,是已知具有最小基因組的禾本科草類;相比于其它禾本科植物,其基因組中含有較高的串聯(lián)重復基因;這些串聯(lián)重復基因主要涉及滲透脅迫響應,基因調(diào)控以及細胞代謝機制等并且對適應進化有重要作用[77]。而牛耳草基因組較大,約1 691 Mb,包含75.75%的重復序列(主要是轉(zhuǎn)座子序列)和約占表達基因的10%的孤兒基因(Orphan gene),其中有128個孤兒基因與其復蘇現(xiàn)象有關(guān)[11]。這表明復蘇植物基因組在最新進化過程中可能通過基因組重排,基因組復制以及轉(zhuǎn)座子或逆轉(zhuǎn)座子的活性產(chǎn)生了獨特的新基因。
表2 利用“組學”技術(shù)研究的復蘇被子植物
復蘇植物營養(yǎng)組織耐脫水機制與種子耐脫水機制有較大的相似性,例如高度依賴于抗氧化物、各種保護物質(zhì)特別是蔗糖與棉子糖以及親水性蛋白尤其是LEA大量積累的綜合作用[20]。被子復蘇植物營養(yǎng)組織耐脫水性可能來源于種子,但進化又使這種耐脫水性從發(fā)育程序調(diào)控轉(zhuǎn)變?yōu)榄h(huán)境因子誘導調(diào)控,而且產(chǎn)生了CDT-1等新調(diào)控子。高通量技術(shù)數(shù)據(jù)的整合分析發(fā)現(xiàn),脫水誘導基因表達、蛋白質(zhì)及代謝物積累在復蘇植物之間非常相似,再次證明了上述所闡述的復蘇植物共有的耐脫水機制,同時也發(fā)現(xiàn)了很大一部分無法匹配到其它物種已知序列的轉(zhuǎn)錄本、或已鑒定的蛋白質(zhì)和代謝物。這表明專門針對復蘇植物進行的多物種基因組測序分析、進一步豐富和完善復蘇植物特有蛋白質(zhì)和代謝組等高通量數(shù)據(jù)庫是現(xiàn)階段深化復蘇植物研究的前提和關(guān)鍵。因此利用“組學”技術(shù)及生物信息學方法,進一步分析復蘇植物基因組序列所蘊含的遺傳調(diào)控信息(包括基因序列和表觀調(diào)控)、全面整合復蘇植物轉(zhuǎn)錄組、蛋白質(zhì)組、代謝組以及基因組數(shù)據(jù)并且與近緣的非復蘇植物相關(guān)數(shù)據(jù)進行比較,確定其耐脫水性的關(guān)鍵成員/代謝組分和調(diào)控因子及其調(diào)控分子機制、比較復蘇被子植物與種子耐脫水性之間以及復蘇植物與非復蘇植物的抗旱反應和調(diào)控機制之間的異同,將成為未來幾年復蘇植物研究的方向。這些研究將有助于理解植物抗旱調(diào)控機理和陸地植物的適應性進化,并為作物抗逆栽培和品種培育提供理論基礎(chǔ)。
復蘇植物中發(fā)現(xiàn)了大量與脫水復蘇相關(guān)的基因,利用基因工程技術(shù)將其轉(zhuǎn)化到模式植物擬南芥或煙草體內(nèi),大大提高了轉(zhuǎn)基因植物自身的抗旱性。隨著基因工程技術(shù)的發(fā)展,將復蘇植物抗旱基因?qū)胱魑镏仓辏蛊浞€(wěn)定表達,可以培育出極度抗旱新品種,這對提高全球糧食產(chǎn)量具有重要意義。其中一些如BhLEA1、BhGOLS1、BhHsf1和BhDNAJC2等[31,33,45,60]具有自主知識產(chǎn)權(quán)的復蘇植物耐旱功能基因必將在我國植物抗逆分子育種上發(fā)揮極大作用。
[1] Delmer DP. Agriculture in the developing world:connecting innovations in plant research to downstream applications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44):15739-15746.
[2] Jaleel CA, Manivannan P, Wahid A, et al. Drought stress in plants:a review on morphological characteristics and pigments composition[J]. International Journal of Agriculture & Biology,2009, 11(1):100-105.
[3] Bewley JD. Physiological aspects of desiccation tolerance[J]. Annual Review Plant Biology, 1979, 30:195-238.
[4] Pickett FL. Some ecological adaptations of certain fern Prothallia-Camptosorus rhizophyllus Link., Asplenium platyneuron Oakes[J]. American Journal of Botany, 1914, 1(9):477-498.
[5] Gaff DF. Desiccation-tolerant flowering plants in southern Africa[J]. Science, 1971, 174(4013):1033-1034.
[6] Gaff DF, Oliver M. The evolution of desiccation tolerance in angiosperm plants:a rare yet common phenomenon[J]. Functional Plant Biology, 2013, 40(4):315-28.
[7] Wang X, Chen S, Zhang H, et al. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis[J]. Journal of Proteome Research, 2010, 9(12):6561-6577.
[8] Wang XQ, Yang PF, Liu Z, et al. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy[J]. Plant Physiology, 2009, 149(4):1739-1750.
[9] Deng X, Hu Z, Wang H, et al. Effects of dehydration and rehydration on photosynthesis of detached leaves of the resurrective plant Boea hygrometrica[J]. Acta Botanica Sinica, 1999, 42(3):321-323.
[10] Mitra J, Xu G, Wang B, et al. Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system[J]. Frontiers in Plant Science, 2013, 4:446.
[11] Xiao LH, Yang G, Zhang L C, et al. The resurrection genome of Boea hygrometrica:A blueprint for survival of dehydration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18):5833-5837.
[12] 張丹丹, 周守標, 周會, 等. 大花旋蒴苣苔對脫水與復水的生理響應[J]. 生態(tài)學雜志, 2016, 1:74-80.
[13] Shen Y, Tang M J, Hu YL, et al. Isolation and characterization of a dehydrin-like gene from drought-tolerant Boea crassifolia[J]. Plant Science, 2004, 166(5):1167-1175.
[14] Chen BJ, Wang Y, Hu YL, et al. Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia[J]. Plant Science, 2005, 168(2):493-500.
[15] Wu H, Shen Y, Hu Y, et al. A phytocyanin-related early nodulinlike gene, BcBCP1, cloned from Boea crassifolia enhances osmotic tolerance in transgenic tobacco[J]. Journal of Plant Physiology,2011, 168(9):935-943.
[16] Huang W, Yang SJ, Zhang SB, et al. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress[J]. Planta, 2012, 235(4):819-828.
[17] Fu P, Zhang Y, Fan ZX, et al. Leaf gas exchange and xylem hydraulic traits of a resurrection plant(Paraboea rufescens,Gesneriaceae)and its responses to drought and re-watering. Oral presentation, 7th International workshop on desiccation sensitivity and tolerance across life forms. 2016.
[18] Li A, Wang D, Yu B, et al. Maintenance or collapse:responses of extraplastidic membrane lipid composition to desiccation in the resurrection plant Paraisometrum mileense[J]. PLoS ONE, 2014,9(7):e103430.
[19] Dinakar C, Djilianov D, Bartel D. Photosynthesis in desiccation tolerant plants:Energy metabolism and antioxidative stress defense[J]. Plant Science, 2012, 182:29-41.
[20] Oliver MJ, Tuba Z, Mishler BD. The evolution of vegetative desiccation tolerance in land plants[J]. Plant Ecology, 2000,151(1):85-100.
[21] Farrant JM, Moore JP. Programming desiccation-tolerance:from plants to seeds to resurrection plants[J]. Current Opinion in Plant Biology, 2011, 14(3):340-345.
[22] Sherwin HW, Farrant JM. Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa[J]. Plant Growth Regulation, 1998, 24(3):203-210.
[23] Vicré M, Farrant J M, Driouich A. Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species[J]. Plant, Cell & Environment, 2004,27(11):1329-1340.
[24] Vicré M, Sherwin HW, Driouich A, et al. Cell wall characteristics and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a microscopical study[J]. Journal of Plant Physiology, 1999, 155(6):719-726.
[25] Jones L, McQueen-Mason S. A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum[J]. FEBS Letters, 2004, 559(1-3):61-65.
[26] Moore JP, Nguema-Ona E, Chevalier L, et al. Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius[J]. Plant Physiology, 2006, 141(2):651-662.
[27] Moore JP, Farrant JM, Driouich A. A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress[J]. Plant Signaling & Behavior, 2008, 3(2):102-104.
[28] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Annual Review Plant Physiology and Plant Molecular Biology, 1996, 47:377-403.
[29] Bianchi G, Gamba A, Murelli C, et al. Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum[J]. The Plant Journal, 1991, 1(3):355-359.
[30] Ingram J, Chandler JW, Gallagher L, et al. Analysis of cDNA clones encoding sucrose-phosphate synthase in relation to sugarinterconversions associated with dehydration in the resurrection plant Craterostigma plantagineum Hochst[J]. Plant Physiology,1997, 115(1):113-121.
[31] Norwood M, Truesdale MR, Richter A, et al. Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum[J]. Journal of Experimental Botany, 2000, 51(343):159-165.
[32] Wang Z, Zhu Y, Wang L, et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase(BhGolS1)promoter[J]. Planta, 2009, 230(6):1155-1166.
[33] Illing N, Denby KJ, Collett H, et al. The signature of seeds in resurrection plants:a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues[J]. Integrative & Comparative Biology, 2005, 45(5):771-787.
[34] 陳世璇, 張振南, 王波, 等. 復蘇植物旋蒴苣苔J 結(jié)構(gòu)域蛋白編碼基因BhDNAJC2 的克隆, 表達與功能[J]. 植物學報,2015, 50(2):180-190.
[35] Zhang Z, Wang B, Sun S, et al. Molecular cloning and differential expression of sHSP gene family members from the resurrection plant Boea hygrometrica in response to abiotic stresses[J]. Biologia, 2013, 68(4):651-661.
[36] Kranner I, Beckett RP, Wornik S, et al. Revival of a resurrection plant correlates with its antioxidant status[J]. The Plant Journal,2002, 31(1):13-24.
[37] Mowla SB, Thomson JA, Farran JM, et al. A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker[J]. Planta, 2002, 215(5):716-726.
[38] Zhu Y, Wang B, Phillips J, et al. Global transcriptome analysis reveals acclimation-primed processes in the acquisition of desiccation tolerance in Boea hygrometrica[J]. Plant Cell Physiology, 2015, 56(7):1429-1441.
[39] Jiang G, Wang Z, Shang H, et al. Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration[J]. Planta, 2007, 225(6):1405-1420.
[40] Jovanovic Z, Rakic T, Stevanovic B, et al. Characterization of oxidative and antioxidative events during dehydration and rehydration of resurrection plants Ramonda nathaliae[J]. Plant Growth Regulation, 2011, 64(3):231-240.
[41] Farrant JM, Vander Willigen C, Loffell DA, et al. An investigation into the role of light during desiccation of three angiosperm resurrection plants[J]. Plant, Cell & Environment, 2003, 26(8):1275-1286.
[42] Karbaschi MR, Williams B, Taji A, et al. Tripogon loliiformis elicits a rapid physiological and structural response to dehydration for desiccation tolerance[J]. Functional Plant Biology, 2016, 43(7):643-655.
[43] Wang L, Shang H, Liu Y, et al. A role for a cell wall localized glycine-rich protein in dehydration and rehydration of the resurrection plant Boea hygrometrica[J]. Plant Biology, 2009,11(6):837-848.
[44] Liu X, Wang Z, Wang L, et al. LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco[J]. Plant Science, 2009, 176(1):90-98.
[45] Alamillo JM, Bartels D. Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complex in the resurrection plant Craterostigma plantagineum[J]. Plant Science, 2001, 160(6):1161-1170.
[46] Sherwin HW, Farrant JM. Differences in rehydration of three desiccation-tolerant angiosperm species[J]. Annals of Botany,1996, 78(6):703-710.
[47] Bartels D, Phillips J, Chandler J. Desiccation tolerance:Gene expression, pathways, and regulation of gene expression. [M]// Jenks MA, Wood AJ. Plant desiccation tolerance. Ames, Iowa:Blackwell Publishing, 2007:115-148.
[48] Toldi O, Tuba Z, Scott P. Vegetative desiccation tolerance:is it a goldmine for bioengineering crops?[J]. Plant Science, 2009, 176(2):187-199.
[49] Wang Z, Liu Y, Wei J, et al. Cloning and expression of a gene encoding a raffinose synthase in the resurrection plant Boea hygrometrica[J]. Chinese Bulletin Botany, 2012, 47(1):44-54.
[50] Furini A, Koncz C, Salamini F, et al. High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum[J]. The EMBO Journal, 1997, 16(12):3599-3608.
[51] Frank W, Munnik T, Kerkmann K, et al. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum[J]. The Plant Cell, 2000, 12(1):111-124.
[52] Djilianov DL, Dobrev PI, Moyankova DP, et al. Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis[J]. Journal of Plant Growth Regulation, 2013, 32(3):564-574.
[53] Gechev TS, Benina M, Obata T, et al. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis[J]. Cellular and Molecular Life Sciences, 2013, 70(4):689-709.
[54] Iturriaga G, Leyns L, Villegas A, et al. A family of novel mybrelated genes from the resurrection plant Craterostigma plantagineum are specifically expressed in callus and roots in response to ABA or desiccation[J]. Plant Molecular Biology,1996, 32(4):707-716.
[55] Frank W, Phillips J, Salamini F et al. Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins[J]. The Plant Journal, 1998, 15(3):413-421.
[56] Deng X, Phillips J, Meijer A H, et al. Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum[J]. Plant Molecular Biology, 2002, 49(6):601-610.
[57] Deng X, Phillips J, Brautigam A, et al. A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses[J]. Plant Molecular Biology, 2006, 61(3):469-489.
[58] Hilbricht T, Salamini F, Bartels D. CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CDeT27-45 gene from the resurrection plant Craterostigma plantagineum Hochst[J]. The Plant Journal, 2002, 31(3):293-303.
[59] Zhu Y, Wang Z, Jing YJ, et al. Ectopic over-expression of BhHsf1,a heat shock factor from the resurrection plant Boea hygrometrica,leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco[J]. Plant Molecular Biology,2009, 71:451-467.
[60] Zhang L, Ji F, Wang L, et al. A small C2-domain protein from the resurrection plant Boea hygrometrica promotes plant responses to abscisic acid[J]. Chinese Bulletin of Botany, 2012, 47(1):11-27.
[61] Smith-Espinoza CJ, Phillips JR, Salamini F, et al. Identification of further Craterostigma plantagineum cdt mutants affected in abscisic acid mediated desiccation tolerance[J]. Molecular Genetics and Genomics, 2005, 274(4):364-372.
[62] Hilbricht T, Varotto S, Sgaramella V, et al. Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum[J]. New Phytologist, 2008, 179(3):877-887.
[63] Giarola V, Bartels D. What can we learn from the transcriptome of the resurrection plant Craterostigma plantagineum?[J]. Planta,2015, 242(2):427-434.
[64] Giarola V, Krey S, Frerichs A, et al. Taxonomically restricted genes of Craterostigma plantagineum are modulated in their expression during dehydration and rehydration[J]. Planta, 2015, 241(1):193-208.
[65] Zhao Y, Xu T, Shen CY, et al. Identification of a retroelement from the resurrection plant Boea hygrometrica that confers osmotic and alkaline tolerance in Arabidopsis thaliana[J]. PLoS ONE, 2014,9(5):e98098.
[66] Rodriguez MCS, Edsg?rd D, Hussain SS, et al. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum[J]. The Plant Journal, 2010, 63(2):212-228.
[67] Ma C, Wang H, Macnish AJ, et al. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia[J]. Horticulture Research, 2015, 2:15034.
[68] Ingle R, Schmidt U, Farrant J, et al. Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa[J]. Plant, Cell & Environment, 2007, 30(4):435-446.
[69] Oliver MJ, Jain R, Balbuena TS, et al. Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration[J]. Phytochemistry, 2011, 72(10):1273-1284.
[70] Moyankova D, Mladenov P, Berkov S, et al. Metabolic profiling of the resurrection plant Haberlea rhodopensis during desiccation and recovery[J]. Physiologia Plantarum, 2014, 152(4):675-687.
[71] Yobi A, Wone BWM, Xu W, et al. Comparative metabolic profiling between desiccation-sensitive and desiccation tolerant species of Selaginella reveals insights into the resurrection trait[J]. The Plant Journal, 2012, 72(6):983-999.
[72] Oliver MJ, Guo L, Alexander DC, et al. A sister group contrast using untargeted global metabolomic analysis delineates thebiochemical regulation underlying desiccation tolerance in Sporobolus stapfianus[J]. The Plant Cell, 2011, 23(4):1231-1248.
[73] Liu YB, Wang G, Liu J, et al. Anatomical, morphological and metabolic acclimation in the resurrection plant Reaumuria soongorica during dehydration and rehydration. [J]Journal of Arid Environments, 2007, 70:183-194.
[74] Moore JP, Hearshaw M, Ravenscroft N, et al. Desiccationinduced ultrastructural and biochemical changes in the leaves of the resurrection plant Myrothamnus flabellifolia. [J]Australian Journal of Botany, 2007, 55:482-491.
[75] Moore JP, Nguema-Ona EE, Vicré-Gibouin M et al. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. [J]Planta, 2013, 273(3):739-54.
[76] Zia A, Walker B J, Oung H M et al. Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum. [J]The Plant Journal, 2016, doi:10. 1111/tpj. 13227
[77] VanBuren R, Bryant D, Edger PP, et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum[J]. Nature, 2015, 527(7579):508-511.
(責任編輯 李楠)
Progress on Mechanisms of Dehydration Tolerance in Resurrection Plants
LIU Jie1,2Chih-Ta Lin2,3DENG Xin2
(1 .Weifang University of Science and Technology,Weifang 262700;2. Key Laboratory of Plant Resources,Institute of Botany,Chinese Academy of Sciences,Beijing 100093;3. IWBT,Stellenbosch University,Cape Town,Republic of South Africa)
Extreme water loss is rarely found in most of higher plants,however,so-called “resurrection plants” evolved uniquely to tolerate the loss more than 90%,and resume living status rapidly after rehydration. This review summarized distribution and classification of these plants,with their morphology,physiological and molecular mechanisms in response to desiccation,and forward research and application prospects.
resurrection plant;desiccation tolerance;drought stress
2016-08-30
國家自然科學基金面上項目(31270312)
劉杰,女,博士后,研究方向:植物抗旱分子調(diào)控機制;E-mail:liujie655@163.com
鄧馨,女,博士生導師,研究方向:植物干旱適應及分子調(diào)控機制;E-mail:deng@ibcas.ac.cn