亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        H2S參與植物氣孔運(yùn)動調(diào)節(jié)與逆境響應(yīng)過程研究進(jìn)展

        2016-11-09 02:22:41車永梅侯麗霞孫艷君劉新
        生物技術(shù)通報 2016年10期
        關(guān)鍵詞:清除劑逆境外源

        車永梅 侯麗霞 孫艷君 劉新

        (青島農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院 山東省高校植物生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,青島 266109)

        H2S參與植物氣孔運(yùn)動調(diào)節(jié)與逆境響應(yīng)過程研究進(jìn)展

        車永梅 侯麗霞 孫艷君 劉新

        (青島農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院 山東省高校植物生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,青島 266109)

        H2S是近年來確認(rèn)的植物氣態(tài)信號分子,內(nèi)源H2S介導(dǎo)了乙烯和ABA等激素誘導(dǎo)氣孔關(guān)閉的過程,參與植物對鹽、干旱及重金屬脅迫等多種非生物逆境的應(yīng)答過程。H2S與Ca2+、H2O2和NO等信號分子相互作用調(diào)節(jié)氣孔運(yùn)動;外源H2S通過調(diào)節(jié)抗氧化酶活性及其基因表達(dá),促進(jìn)脯氨酸等滲透調(diào)節(jié)物質(zhì)積累,提高植物的抗逆性。就近年來有關(guān)植物體內(nèi)H2S的來源,其在氣孔運(yùn)動調(diào)控和脅迫應(yīng)答中的作用及機(jī)制進(jìn)行闡述。

        H2S;氣孔運(yùn)動;逆境響應(yīng);信號轉(zhuǎn)導(dǎo)

        DOI:10.13560/j.cnki.biotech.bull.1985.2016.10.004

        硫化氫(hydrogen sulfide,H2S)在標(biāo)準(zhǔn)狀態(tài)下是一種易燃的酸性有毒氣體,近年來大量的研究結(jié)果證實(shí),H2S是生物體內(nèi)重要的信號分子。H2S的信號作用首先在動物中得到證實(shí)[1],隨后證明植物體內(nèi)也可以產(chǎn)生H2S,H2S在調(diào)控植物生長發(fā)育及逆境適應(yīng)等多種重要生命過程中發(fā)揮重要作用[2-4]。

        本文就植物體內(nèi)H2S的形成、其在植物氣孔運(yùn)動調(diào)節(jié)及逆境響應(yīng)方面的研究進(jìn)展進(jìn)行概述。

        1 植物體內(nèi)H2S的來源

        H2S廣泛分布于植物體內(nèi),合成H2S的途徑包括酶促途徑和非酶促途徑。目前認(rèn)為植物體內(nèi)至少有5種酶參與了H2S的合成,它們分別是L-半胱氨酸脫巰基酶(L-cysteine desulphydrase,L-CDes)、D-半胱氨酸脫巰基酶(D-cysteine desulphydrase,D-CDes)、亞硫酸鹽還原酶(sulfite reductase,SiR)、氰丙氨酸合酶(cyanide synthase,CAS)和半胱氨酸合酶(cysteine synthase,CS)[5]。2010年,Alvarez等[6]發(fā)現(xiàn)O-乙酰基-L-絲氨酸(硫醇)裂解酶(oacetylserine(thiol)lyase,OASTL)催化Cys分解生成H2S的活性高于催化Cys合成,認(rèn)為該酶是一種新發(fā)現(xiàn)的L-CDes,并把它命名為DES1(L-Cys desulfhydrases,AT5G28030)。至今為止只有擬南芥、煙草和油菜等少數(shù)植物的L/D-CDes被分析研究。最近本實(shí)驗(yàn)室構(gòu)建AtD-/L-CDes∷GUS轉(zhuǎn)基因擬南芥研究發(fā)現(xiàn),AtD-CDes在葉片中表達(dá)量較高,特別是在葉脈、葉肉細(xì)胞和氣孔保衛(wèi)細(xì)胞中具有較高表達(dá)量,在保衛(wèi)細(xì)胞中主要存在于葉綠體中,AtD-CDe亦存在于根部微管組織中;而AtL-CDes存在于子葉尖端、保衛(wèi)細(xì)胞細(xì)胞質(zhì)和中柱原始細(xì)胞中[7]。

        H2S合成的非酶促反應(yīng)途徑包括將吸收的結(jié)合態(tài)硫酸鹽轉(zhuǎn)化成游離態(tài)硫酸鹽,最終將多余的硫以H2S氣體的形式釋放出來;或者L-半胱氨酸在非酶作用下直接還原生成H2S[8]。

        2 H2S參與氣孔運(yùn)動的調(diào)節(jié)

        氣孔是高等植物與外界進(jìn)行氣體和水分交換的主要通道,對各種內(nèi)外刺激反應(yīng)非常靈敏,氣孔保衛(wèi)細(xì)胞可以感受光照、水分、溫度、二氧化碳濃度和激素等不同內(nèi)外因子,從而調(diào)節(jié)氣孔開閉。脫落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和茉莉酸(jasmonic acid,JA)等植物激素均對氣孔運(yùn)動起調(diào)節(jié)作用,Ca2+、一氧化氮(nitric oxide,NO)和過氧化氫(hydrogen peroxide,H2O2)等是氣孔信號轉(zhuǎn)導(dǎo)途徑的重要信號組分[9,10]。最早發(fā)現(xiàn)外施H2S供體能夠調(diào)控氣孔運(yùn)動,但作用有所差異。2010年,Lisjak等[11]使用兩種H2S供體(NaHS和GYY4137)處理擬南芥和甜椒,發(fā)現(xiàn)兩種H2S供體處理均可阻止黑暗誘導(dǎo)的氣孔關(guān)閉,并阻斷ABA引起的氣孔保衛(wèi)細(xì)胞中NO的積累,但García-Mata和Lamattina[3]、劉菁等[12]越來越多的研究表明,H2S能夠誘導(dǎo)擬南芥和蠶豆等植物葉片氣孔關(guān)閉。

        2.1H2S誘導(dǎo)氣孔關(guān)閉的信號轉(zhuǎn)導(dǎo)機(jī)制

        H2S通過一系列復(fù)雜的信號轉(zhuǎn)導(dǎo)過程(圖1)最終誘導(dǎo)氣孔關(guān)閉,H2S能夠通過Ca2+、G蛋白或細(xì)胞外ATP(extracellular ATP,eATP)促進(jìn)H2O2形成,從而參與對氣孔運(yùn)動的調(diào)控[13-15]。Ca2+螯合劑乙二醇-雙-(2-氨基乙醚)四乙酸(glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid,EGTA)和質(zhì)膜Ca2+通道阻斷劑硝苯地平(nifedipine,Nif)能不同程度抑制H2S誘導(dǎo)的氣孔關(guān)閉,而內(nèi)質(zhì)網(wǎng)鈣泵阻斷劑毒胡蘿卜素(thapsigargin,Thaps)對H2S的作用無顯著影響,表明H2S通過促進(jìn)胞外Ca2+內(nèi)流誘導(dǎo)氣孔關(guān)閉[13]。在H2S誘導(dǎo)擬南芥氣孔關(guān)閉過程中G蛋白α亞基(GPA)和β亞基(AGB)基因表達(dá)量上調(diào),但H2S對G蛋白α亞基和β亞基缺失突變體Atgpa1-3、Atgpa1-4、Atagb1-1和Atagb1-2葉片氣孔運(yùn)動無顯著影響;G蛋白激活劑霍亂毒素(cholera toxin,CTX)增強(qiáng)H2S誘導(dǎo)擬南芥氣孔關(guān)閉的作用,而其抑制劑百日咳毒素(pertussis toxin,PTX)能夠阻斷H2S的誘導(dǎo)作用,表明G蛋白參與H2S誘導(dǎo)的擬南芥氣孔關(guān)閉過程[5]。H2S能夠誘導(dǎo)ABC轉(zhuǎn)運(yùn)體AtMRP4和AtMRP5基因表達(dá),引起eATP積累,促進(jìn)擬南芥氣孔關(guān)閉;AtMRP4和AtMRP5缺失取消H2S對eATP積累和氣孔關(guān)閉的誘導(dǎo)效應(yīng),證明AtMRP4和AtMRP5來源的eATP介導(dǎo)了H2S誘導(dǎo)的氣孔關(guān)閉過程[14]。H2S處理后擬南芥葉片NADPH氧化酶基因AtRBOHD和AtRBOHF以及細(xì)胞壁過氧化物酶基因AtPRX34表達(dá)增強(qiáng),引起葉片和保衛(wèi)細(xì)胞中H2O2積累,鈣螯合劑EGTA和G蛋白抑制劑PTX對此起抑制作用;外源CaCl2處理可以上調(diào)AtRBOHD、AtRBOHF和AtPRX34的表達(dá);G蛋白激活劑霍亂毒素(CTX)促進(jìn)擬南芥葉片及氣孔保衛(wèi)細(xì)胞中H2O2積累;H2S不能促進(jìn)ABC轉(zhuǎn)運(yùn)體缺失突變體Atmrp4和Atmrp5中H2O2積累,表明Ca2+、G蛋白和eATP可能位于H2O2上游參與H2S誘導(dǎo)的擬南芥氣孔關(guān)閉過程[13-15]。Papanatsiou等[16]最近發(fā)現(xiàn)外源H2S可以通過抑制內(nèi)向整流K+通道的K+內(nèi)流促進(jìn)氣孔關(guān)閉。

        2.2H2S參與逆境相關(guān)因子調(diào)控氣孔關(guān)閉的機(jī)制

        H2S作為內(nèi)源信號分子參與干旱、鹽害、ABA、乙烯和JA誘導(dǎo)氣孔關(guān)閉的過程。我們課題組發(fā)現(xiàn)AtL/D-CDes啟動子含有乙烯響應(yīng)元件ERE,非生物脅迫響應(yīng)元件MBS、LTR和ABRE。構(gòu)建AtD-CDes缺失片段啟動子轉(zhuǎn)基因擬南芥的組織特異性分析結(jié)果進(jìn)一步證明,響應(yīng)乙烯和干旱的關(guān)鍵作用區(qū)段分別是-408 bp至-697 bp,-1 bp至-90 bp。研究發(fā)現(xiàn),干旱[17]、鹽脅迫[18]、ABA[3,12]、乙烯[7,19]和JA[20]能提高L/D-CDes活性和(或)基因表達(dá)量、促進(jìn)H2S合成、誘導(dǎo)氣孔關(guān)閉;H2S清除劑次?;撬幔╤ypotaurine,HT)及合成抑制劑氨氧基乙酸(aminooxy acetic acid,AOA)等均可不同程度抑制這些因子所引起的氣孔關(guān)閉;逆境對H2S合成突變體Atl-cdes和Atd-cdes氣孔關(guān)閉的作用效果顯著下降[21],表明L/D-CDes途徑來源的H2S介導(dǎo)干旱、鹽脅迫、ABA、ETH和JA誘導(dǎo)的氣孔關(guān)閉[7,17,19,20]。本實(shí)驗(yàn)室以擬南芥野生型和SOS突變體(Atsos1、Atsos2和Atsos3)為材料研究證實(shí),H2S位于SOS上游介導(dǎo)了鹽脅迫誘導(dǎo)氣孔關(guān)閉過程[18]。利用ABC轉(zhuǎn)運(yùn)體缺失突變體(Atmrp4,Atmrp5和Atmrp4/Atmrp5)證明ABC轉(zhuǎn)運(yùn)體位于H2S上游參與鹽脅迫誘導(dǎo)氣孔關(guān)閉過程[22]。Jin等[23]發(fā)現(xiàn)H2S合成缺失突變體中Ca2+通道、外向整流K+通道基因表達(dá)下調(diào),而內(nèi)向整流K+通道基因表達(dá)上調(diào),氣孔開度增大,對干旱敏感性增強(qiáng),外源H2S可以恢復(fù)ABA合成缺失突變體aba3和abi1氣孔對干旱的敏感性,aba3 和 abi1突變體中LCD表達(dá)量和H2S含量降低。表明干旱脅迫下ABA通過與H2S互作調(diào)控離子運(yùn)輸系統(tǒng)活性誘導(dǎo)氣孔關(guān)閉。

        圖1 H2S調(diào)控氣孔運(yùn)動的信號轉(zhuǎn)導(dǎo)機(jī)制

        在響應(yīng)逆境及相關(guān)因子促進(jìn)氣孔關(guān)閉過程中,H2S與其他信號分子之間存在聯(lián)系。例如,NO和H2S之間存在相互作用參與ABA和ETH誘導(dǎo)氣孔關(guān)閉過程:ABA誘導(dǎo)的NO合成依賴于DES1,并且H2S能促進(jìn)NO產(chǎn)生[21],在ABA誘導(dǎo)氣孔關(guān)閉過程中NO位于H2S的下游。NO合成抑制劑和清除劑抑制ETH誘導(dǎo)的L/D-CDes活性和H2S含量的上升,H2S位于NO下游參與ETH誘導(dǎo)氣孔關(guān)閉的過程[24]。干旱脅迫對H2O2合成缺失突變體AtrbohD、AtrbohF和AtrbohD/F的葉片中H2S含量和L-/D-CDes活性及基因表達(dá)量沒有顯著影響,H2O2清除劑和合成抑制劑均能抑制干旱、ETH和JA誘導(dǎo)的擬南芥葉片H2S含量和L-/D-CDes活性的增加及氣孔開度的減小,在干旱、ETH和JA誘導(dǎo)氣孔關(guān)閉的過程中H2S位于H2O2下游[17,19,20]。

        3 H2S參與植物的非生物逆境響應(yīng)過程

        3.1H2S與植物的耐鹽性

        外源H2S至少可以通過4種方式提高植物的耐鹽能力(圖2)。

        第一,提高植物體清除活性氧的能力。外施H2S可以提高超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶(catalase,CAT)和抗壞血酸過氧化物酶(aseorbateperoxidase,APX)等抗氧化酶,以及抗壞血酸-谷胱甘肽循環(huán)相關(guān)酶谷胱甘肽過氧化物酶(glutathione peroxidase,GPX)和谷胱苷肽S-轉(zhuǎn)移酶(glutathione S-transferase,GST)等酶活性和(或)基因表達(dá)量,維持細(xì)胞抗氧化能力和氧化還原平衡,降低活性氧積累,提高水稻、草莓和狗牙根等植物的耐鹽性[25-30]。外施H2S供體NaHS可以促進(jìn)谷胱甘肽還原酶(glutathione reductase,GR),脫氫抗壞血酸還原酶(dehydroascorbate reductase,DHAR)和單脫氫抗壞血酸還原酶(monodehydroascorbatereductase,MDHAR)等參與谷胱甘肽和抗壞血酸代謝相關(guān)基因表達(dá),維持細(xì)胞還原態(tài)谷胱甘肽和抗壞血酸水平,抑制鹽脅迫誘導(dǎo)的活性氧積累和膜脂過氧化作用[31]。

        第二,維持鹽脅迫條件下的離子平衡。外施H2S能夠調(diào)節(jié)水稻對鈣、鎂、鐵等營養(yǎng)離子吸收和K+/Na+平衡[25],上調(diào)草莓SOS途徑基因(SOS2-like,SOS3-like和SOS4)表達(dá)[26];提高大麥根部內(nèi)向整流K+-通道基因HvAKT1、高親和K+轉(zhuǎn)運(yùn)蛋白基因HvHAK4、質(zhì)膜H+-ATPase基因HvHA1和Na+/H+反向轉(zhuǎn)運(yùn)體基因 HvSOS1以及液泡膜Na+/H+反向轉(zhuǎn)運(yùn)體基因HvVNHX2和H+-ATPase β亞基基因HvVHA-β表達(dá),促進(jìn)K+吸收Na+向胞外和液泡分泌,維持細(xì)胞Na+/K+平衡,提高其耐鹽性[29,30]。

        第三,能夠促進(jìn)脯氨酸和可溶性糖等滲透調(diào)節(jié)物質(zhì)積累,以提高其抗鹽性[27,28]。

        第四,通過其他信號分子提高耐鹽性。例如,H2S通過NO提高苜蓿和大麥耐鹽性,H2S可以促進(jìn)大麥根部NO積累,而NO清除劑cPTIO消除H2S對苜蓿和大麥鹽脅迫的緩解作用[29,30];H2S能誘導(dǎo)6-磷酸葡萄糖脫氫酶(glucose-6-phosphate dehydrogenase,G6PDH)和質(zhì)膜NADPH氧化酶活性升高,促進(jìn)H2O2合成,而H2O2清除劑二甲叉三脲(dimethylthiourea,DMTU)和合成抑制劑二苯基碘(diphenyliodonium,DPI)取消H2S作用,表明H2O2介導(dǎo)H2S誘導(dǎo)的耐鹽性[32]。

        圖2 植物體內(nèi)H2S的合成和在非生物脅迫中的作用示意圖

        3.2H2S與植物的耐旱性

        外施H2S能夠誘導(dǎo)氣孔關(guān)閉、促進(jìn)脯氨酸和可溶性糖等滲透調(diào)節(jié)物質(zhì)積累,以提高其抗旱性[27,33];能夠顯著提高植物體SOD、CAT和APX等抗氧化酶以及(或)GR、MDHAR、DHAR、L-半乳糖內(nèi)酯脫氫酶(L-Galactono-1,4-lactone dehydrog-enas,GalLDH)等抗壞血酸代謝和谷胱甘肽代謝相關(guān)酶活性,降低脂氧合酶(lipoxygenase,LOX)活性,減少H2O2和O2-· 積累,緩解干旱對甘薯、大豆和小麥幼苗等造成的氧化損傷[27,33,34];可以誘導(dǎo)擬南芥干旱誘導(dǎo)基因CBF1、CBF3、CBF4、DREB2A、DREB2B、RAB18、RD29A和RD29的表達(dá),提高其干旱條件下的存活率[35,36];亦可降低干旱脅迫下柑橘葉片蛋白的羰基化和S-亞硝基化水平,通過影響蛋白質(zhì)的翻譯后修飾,進(jìn)而提高植物的抗旱性[37]。

        內(nèi)源H2S亦參與植物的干旱應(yīng)答過程。干旱脅迫下ABA通過與H2S互作調(diào)控離子運(yùn)輸系統(tǒng)活性誘導(dǎo)氣孔關(guān)閉[23];PEG8000模擬干旱處理野生型擬南芥能夠促進(jìn)H2S合成相關(guān)酶基因LCD、DCD1、NFS1、NFS2 和 DES1表達(dá),促進(jìn)H2S產(chǎn)生,并引發(fā)干旱響應(yīng)miRNA,如miR167、miR39、miR396和miR398的轉(zhuǎn)錄改變,進(jìn)一步影響其靶基因表達(dá)。外源H2S處理能模擬PEG8000引發(fā)的miRNA轉(zhuǎn)錄改革并誘導(dǎo)其靶基因表達(dá)變化,LCD突變削弱PEG8000對miRNA轉(zhuǎn)錄的影響,表明干旱脅迫下植物通過合成H2S調(diào)節(jié)干旱相關(guān)miRNA轉(zhuǎn)錄提高其抗旱性[38]。

        3.3H2S與植物對溫度逆境的響應(yīng)

        極端溫度影響植物生長發(fā)育,H2S在植物抵御低溫和高溫中的作用引起人們的關(guān)注。發(fā)現(xiàn)外源H2S提高小麥幼苗葉片水溶性非蛋白巰基(主要是谷胱甘肽)水平,提高其耐寒性[39];低溫上調(diào)擬南芥LCD和DCD1表達(dá)量,提高LCD和DCD活性及H2S含量,LCD和DCD1過表達(dá)提高擬南芥對低溫的抵抗能力,而LCD和DCD1缺失和H2S清除劑則導(dǎo)致脅迫條件下擬南芥存活率降低,內(nèi)源H2S參與擬南芥低溫應(yīng)答過程。H2S可能通過提高抗氧化酶活性和抗氧化物質(zhì)含量,調(diào)控CBF1、CBF3和CBF4等抗逆相關(guān)基因表達(dá)參與植物對低溫等逆境的響應(yīng)過程[36]。

        H2S處理提高高溫脅迫下玉米幼苗胚芽鞘海藻糖-6-磷酸磷酸酯酶(trehalose-6-phosphate phosphatase,TPP)和吡咯啉-5-羧酸-合成酶(Δ'-pyrroline-5-carboxylate synthetase,P5CS)活性,降低脯氨酸脫氫酶(proline dehydrogenase,ProDH)活性,促進(jìn)海藻糖和脯氨酸積累,提高其耐熱性[40];外源H2S提高高溫脅迫下煙草懸浮細(xì)胞的存活率和高溫后恢復(fù)生長的能力,該作用被外源Ca2+加強(qiáng),而被Ca2+螯合劑EGTA、質(zhì)膜Ca2+通道阻斷劑La3+、鈣調(diào)素(calmodulin,CaM)拮抗物氯丙嗪(chlorpromazine,CPZ)和三氟吡啦嗪(trifluoperazine)削弱,而不受胞內(nèi)Ca2+通道阻斷劑釕紅(ruthenium red,RR)影響,表明H2S提高植物的耐熱性需要胞外Ca2+的內(nèi)流及CaM的參與[41]。高溫促進(jìn)煙草幼苗煙堿合成,同時促進(jìn)煙草幼苗H2S和JA(jasmonic acid,JA)合成,H2S合成抑制劑取消高溫的作用,高溫不能誘導(dǎo)L-CDes RNAi干擾株系煙堿和JA合成,表明H2S位于JA上游介導(dǎo)高溫誘導(dǎo)的煙堿合成[42]。Li等[5,43]研究發(fā)現(xiàn),H2S參與SA誘導(dǎo)的玉米幼苗耐熱性,SA預(yù)處理誘導(dǎo)玉米幼苗L-CDes活性提高,促進(jìn)H2S積累,提高高溫脅迫下玉米幼苗的存活率,而H2S合成抑制劑炔丙基甘氨酸(DL-propargylglycine,PAG)和清除劑羥胺(hydroxylamine,HT)削弱SA的作用,但SA合成抑制劑多效唑(paclobutrazol,PAC)和氨基茚磷酸(2-aminoindan-2-phosphonic acid,AIP)對H2S誘導(dǎo)的耐熱性無顯著作用,表明H2S位于SA下游介導(dǎo)玉米幼苗的耐熱性。

        3.4 H2S與重金屬脅迫

        由于工業(yè)“三廢”(廢水、廢渣和廢氣)、機(jī)動車尾氣的排放、污水灌溉和農(nóng)藥、除草劑、化肥等的使用造成土壤、水質(zhì)和大氣的重金屬污染,近年來,土壤重金屬污染對植物生長發(fā)育的影響受到廣泛關(guān)注。研究發(fā)現(xiàn),H2S可以提SOD、POD、APX、CAT和GR等抗氧化酶活性,緩解鎘、鋁、鉻、鉛和砷引發(fā)的氧化損傷[36,44-52]能提高植物對氮、磷、鉀等大量元素和錳、鐵、銅等微量元素的吸收,維持葉肉細(xì)胞和根尖細(xì)胞的正常結(jié)構(gòu)和功能,降低有害離子的吸收,緩解鎘、鋁、鉛和砷對大麥、油菜和大豆幼苗的毒害作用[36,47-51];能阻止鎘脅迫下H2O2激活的質(zhì)膜Ca2+-通道介導(dǎo)的鎘內(nèi)流,促進(jìn)鎘經(jīng)液泡膜Cd+/H+反向傳遞體向液泡分泌,降低胡楊的鎘脅迫[52]。

        內(nèi)源H2S參與植物對鎘、鋁和鉻等重金屬脅迫的響應(yīng)。鎘脅迫上調(diào)白菜幼苗和大麥根部H2S合成相關(guān)酶基因L/D-CDes和DES1表達(dá),促進(jìn)內(nèi)源H2S含量升高[53];外源H2S預(yù)處理提高谷胱甘肽代謝相關(guān)酶以及抗氧化酶基因表達(dá),維持還原性谷胱甘肽含量并降低活性氧積累,降低鎘的傷害作用[54]。Shi等[55]和Li等[56]發(fā)現(xiàn)鎘脅迫誘導(dǎo)狗牙根NO和H2S的產(chǎn)生,外施NO和H2S提高鎘脅迫下狗牙根和苜蓿根部SOD和POD等抗氧化酶活性,提高GSH含量,降低氧化損傷,緩解對生長的抑制;Shi等[55]利用狗牙根研究發(fā)現(xiàn)H2S合成抑制劑和清除劑削弱NO的作用,而NO清除劑對H2S的作用無顯著影響,表明NO位于H2S上游參與鎘脅迫響應(yīng)。而Li等[56]利用苜蓿研究表明,NO清除劑削弱H2S的作用,H2S處理促進(jìn)苜蓿NO的產(chǎn)生,表明NO位于H2S下游介導(dǎo)鎘脅迫應(yīng)答。

        Ca2+可能位于H2S的上游參與鉻脅迫應(yīng)答。Fang等[57]證明鉻脅迫誘導(dǎo)谷子幼苗H2S和Ca2+信號的產(chǎn)生,Ca2+通過H2S依賴方式促進(jìn)金屬螯合劑合成相關(guān)基因MT3A和PCS表達(dá),提高鉻脅迫下谷子幼苗葉片SOD、POD等抗氧化酶活性。腺苷酸環(huán)化酶抑制劑四氧嘧啶(alloxan)和DDA不同程度降低NaHS對鋁脅迫的緩解作用,表明H2S可能通過cAMP參與大麥鋁脅迫響應(yīng)過程[54]。

        4 H2S參與植物的生物逆境響應(yīng)過程

        H2S與油菜、葡萄和擬南芥等植物的抗病性有關(guān)[36]。Bloem等[58]發(fā)現(xiàn)核盤菌侵染誘導(dǎo)油菜H2S釋放量增多,增施硫肥能使感染葉斑菌的油菜葉片逐漸恢復(fù)正常,并且這種變化與植物體內(nèi)H2S含量相關(guān)[59]。本實(shí)驗(yàn)室證明H2S參與葡萄抗霜霉病過程,葡萄霜霉病菌侵染能夠顯著增強(qiáng)葡萄抗性品種‘左優(yōu)紅’L/D-CDes基因表達(dá)量和H2S含量增加;外源H2S提高抗病相關(guān)蛋白多酚氧化酶(polyphenoloxidase,PPO)和β-1,3葡聚糖酶(β-1,3-glucanase,Glu)活性,H2S清除劑HT對此起抑制作用;并且H2O2清除劑抗壞血酸可顯著抑制霜霉病菌誘導(dǎo)的H2S含量的升高,而H2S清除劑HT對霜霉病菌誘導(dǎo)的H2O2含量變化影響不顯著,推測H2S作用于H2O2的下游參與葡萄抵御霜霉病過程[60]。病原菌Pst DC3000侵染誘導(dǎo)擬南芥葉片LCD和 DCD1表達(dá)量和H2S含量升高,LCD和DCD1過表達(dá)提高擬南芥植物的抗病性,而LCD和DCD1缺失則導(dǎo)致擬南芥抗病性降低;H2S可能通過miR393-依賴的生長素信號途徑和調(diào)節(jié)SA誘導(dǎo)的抗病基因表達(dá)影響植物的抗病性[36]。

        5 問題與展望

        目前有關(guān)H2S在植物中作用的研究較多集中在H2S緩解逆境造成的氧化損傷,調(diào)節(jié)離子吸收和滲透平衡等生理作用方面,H2S介導(dǎo)的信號轉(zhuǎn)導(dǎo)過程和分子機(jī)制的研究相對欠缺。因此,今后可考慮從以下幾個方面深入研究:(1)逆境脅迫可以促進(jìn)H2S的合成,但H2S合成的調(diào)控機(jī)制尚未見報道。需要探究能夠調(diào)節(jié)H2S合成酶的轉(zhuǎn)錄因子和其他調(diào)控因子。(2)作為信號分子,植物體內(nèi)是否存在H2S的特異受體,對此問題可以通過生物學(xué)和物理化學(xué)等方法篩選與H2S特異結(jié)合的蛋白質(zhì),研究其作用機(jī)制;(3)在植物生長發(fā)育調(diào)控中H2S與H2O2、NO與Ca2+等信號分子之間存在相互作用,還需要尋找信號傳遞鏈的其他信號組分,完善H2S介導(dǎo)的信號傳遞鏈。(4)植物中存在WRKY和MYB等許多參與低溫、鹽和干旱誘導(dǎo)的轉(zhuǎn)錄因子[61,62],Ziogas等[37]篩選到干旱脅迫下受H2S特異誘導(dǎo)的基因,挖掘H2S特異誘導(dǎo)基因及其互作的轉(zhuǎn)錄因子,研究其作用機(jī)制,進(jìn)一步研究H2S參與逆境應(yīng)答的分子機(jī)制將有助于深入理解H2S的生物學(xué)功能。

        [1]Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator[J]. J Neurosci, 1996, 16:1066-1071.

        [2] Fang T, Cao Z, Li J, et al. Auxin-induced hydrogen sulphide generation is involved in lateral root formation in tomato[J]. Plant Physiol Bioch, 2014, 76:44-51.

        [3]García-Mata C, Lamattina L. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling[J]. New Phytol,2010, 188(4):977-984.

        [4]Kajimura M, Fukuda R, Bateman RM, et al. Interactions of multiple gas-transducing systems:hallmarks and uncertainties of CO, NO,and H2S gas biology[J]. Antioxid Redox Signal, 2010, 13(2):157-192.

        [5]Li ZG, Xie LR, Li XJ. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize(Zea mays L. )seedlings[J]. J Plant Physiol, 2015, 177:121-127.

        [6]Alvarez C, Calo L, Romero LC, et al. An O-acetytlserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis[J]. Plant Physiol, 2010, 152(2):656-669.

        [7]Hou ZH, Wang LX, Liu J, et al. Hydrogen sulfide regulates ethyleneinduced stomatal closure in Arabidopsis thaliana[J]. J Integr Plant Biol, 2013, 55(3):277-289.

        [8]Riemenschneider A, Nikiforova V, Hoefgen R, et al. Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism[J]. Plant Physio Biochem, 2005, 43:473-483.

        [9]Hossain MA, Munemasa S, Uraji M, et al. Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis[J]. Plant Physiol, 2011, 156(1):430-438.

        [10]Xie Y, Mao Y, Zhang W, et al. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis[J]. Plant Physiol, 2014, 165:759-773.

        [11]Lisjak M, Srivastava N, Teklic T, et al. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation[J]. Plant Physiol Biochem, 2010, 48(12):931-935.

        [12]劉菁, 侯智慧, 趙方貴, 等. H2S參與ABA誘導(dǎo)的蠶豆氣孔關(guān)閉[J]. 西北植物學(xué)報, 2011, 31(2):298-304.

        [13]李洪旺, 車永梅, 侯麗霞, 等. Ca2+位于H2O2上游參與H2S誘導(dǎo)的擬南芥氣孔關(guān)閉過程[J]. 植物生理學(xué)報, 2015, 51(1):51-56.

        [14]Wang LX, Ma XY, Che YM, et al. Extracellular ATP mediates H2S-regulated stomatal movements and guard cell K+current in a H2O2-dependent manner in Arabidopsis[J]. Sci Bull, 2015, 60(4):419-427.

        [15]張丹丹, 車永梅, 侯麗霞, 等. G蛋白位于H2O2上游參與H2S誘導(dǎo)的擬南芥氣孔關(guān)閉過程[J]. 植物生理學(xué)報, 2013, 49(2):181-187.

        [16]Papanatsiou M, Scuffi D, Blatt MR, et al. Hydrogen sulfide regulates inward-rectifying K+channels in conjunction with stomatal closure[J]. Plant Physiol, 2015, 168:29-35.

        [17]王蘭香, 侯智慧, 侯麗霞, 等. H2O2介導(dǎo)的H2S產(chǎn)生參與干旱誘導(dǎo)的擬南芥氣孔關(guān)閉[J]. 植物學(xué)報, 2012, 47(3):217-225.

        [18]車永梅, 鄒雪, 王蘭香, 等. H2S位于SOS上游參與鹽脅迫誘導(dǎo)的擬南芥氣孔關(guān)閉[J]. 植物生理學(xué)報, 2012, 48(11):1098-1104.

        [19]侯智慧, 車永梅, 王蘭香, 等. H2S位于H2O2下游參與乙烯誘導(dǎo)擬南芥氣孔關(guān)閉過程[J]. 植物生理學(xué)報, 2012, 48(12):1193-1199.

        [20]侯智慧, 劉菁, 侯麗霞, 等. H2S可能作為H2O2的下游信號介導(dǎo)茉莉酸誘導(dǎo)的蠶豆氣孔關(guān)閉[J]. 植物學(xué)報, 2011, 46(4):396-406.

        [21]Scuffi D, álvarez C, Laspina N, et al. Hydrogen sulfide generated by L-Cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure[J]. Plant Physiol, 2014, 166:2056-2076

        [22]吳延朋, 李洪旺, 侯麗霞, 等. ABC轉(zhuǎn)運(yùn)體位于H2S上游參與鹽脅迫誘導(dǎo)的擬南芥氣孔關(guān)閉[J]. 植物生理學(xué)報, 2014, 50(4):401-406.

        [23]Jin Z, Xue S, Luo Y, et al. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis[J]. Plant Physiol Biochem, 2013, 62:41-46.

        [24]Liu J, Hou ZH, Liu GH, et al. Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stoma l closure in Vicia faba L.[J]. J Interg Agr, 2012, 11(10):1644-1653.

        [25]Mostofa1 NG, Saegusa D, Fujita F, et al. Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+balance,mineral homeostasis and oxidative metabolism under excessive salt stress[J]. Front Plant Sci, 2015, 6:1055.

        [26]Christou A, Manganaris GA, Papadopoulos I, et al. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways[J]. J Exp Bot, 2013, 64(7):1953-1966.

        [27]Shi HT, Ye TT, Chan ZL. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass(Cynodon dactylon(L).Pers.)[J]. Plant Physiol Bioch, 2013, 71:226-234.

        [28]Yu LX, Zhang CJ, Shang HQ, et al. Exogenous hydrogen sulfide enhanced antioxidant capacity, amylase activities and salt toleranceof cucumber hypocotyls and radicles[J]. J Interg Agr, 2013, 12(3):445-456.

        [29]Wang YQ, Li L, Cui WT, et al. Hydrogen sulfide enhances alfalfa(Medicago sativa)tolerance against salinity during seed germination by nitric oxide pathway[J]. Plant Soil, 2012, 351:107-119.

        [30]Chen J, Wang WH, Wu FH, et al. Hydrogen sulfide enhances salt tolerance through nitric oxidemediated maintenance of ion homeostasis in barley seedling roots[J]. Sci Rep, 2015;5:12516.

        [31]Lai DW, Mao Y, Zhou H, et al. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+loss in seedlings of Medicago sativa[J]. Plant Sci, 2014, 225(8):117-129.

        [32] Li J, Jia H, Wang J, et al. Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root[J]. Protoplasma, 2014, 251(4):899-912.

        [33]Shan CJ, Zhang SL, Li DF, et al. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress[J]. Acta Physiol Plant, 2011,33:2533-2540.

        [34]Zhang H, Ye YK, Wang SH, et al. Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress[J]. Plant Growth Regul,2009, 58:243-250.

        [35]Jin Z, Shen J, Qiao Z, et al. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana[J]. Biochem Biophys Res Co,2011, 414(3):481-486.

        [36]Shi HT, Ye TT, Han N, et al. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis[J]. J Interg Plant Biol, 2015, 57(7):628-640.

        [37]Ziogas V, Tanou G, Belghazi M, et al. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants[J]. Plant Mol Biol, 2015, 89:433-450.

        [38]Shen J, Xing T, Yuan H, et al. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions[J]. PLoS One, 2013, 8(10):e77047.

        [39]Stuiver CEE, De Kok LJ, Kuiper PJC. Freezing tolerance and biochemical changes in wheat shoots as affected by H2S fumigation[J]. Plant Physiol Biochem, 1992, 30:47-55.

        [40]Li ZG, Ding XJ, Du PF. Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline[J]. J Plant Physiol, 2013, 170:741-747.

        [41]Li L, Wang YQ, Shen WB. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots[J]. Biometals, 2012(25):617-631.

        [42]Chen XD, Chen Q, Zhang XM, et al. Hydrogen sulfide mediates nicotine biosynthesis in tobacco(Nicotiana tabacum)under high temperature conditions[J]. Plant Pysiol Bioch, 2016, 104:174-179.

        [43]Li ZG. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize(Zea mays L.)seedlings[J]. Plant Signal Behav,2015, 10(9):e1051278.

        [44]Zhang H, Tan ZQ, Hu LY, et al. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings[J]. J Integr Plant Biol, 2010, 52:556-567.

        [45]Zhang H, Hu LY, Hu KD, et al. Hydrogen sulfide promotes wheat seed germination and alleviates the oxidative damage against copper stress[J]. J Integr Plant Biol, 2008, 50:1518-1529.

        [46]Zhang H, Hu LY, Li P, et al. Hydrogen sulfide alleviated chromium toxicity in wheat[J]. Biologia Plantrum, 2010, 54(4):743-747.

        [47]Dawood M, Cao FB, Jahangir MM, et al. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley[J]. J Hazard Mater, 2012, 209-210:121-128.

        [48]Ali B, Gill R, Yang S, et al. Hydrogen sulfide alleviates admiuminduced morpho-physiological and ultrastructural changes in Brassica napus[J]. Ecotoxicol Environ Saf, 2014, 110:197-207.

        [49]Ali B, Song MJ, Hu WZ, et al. Hydrogen sulfide alleviates leadinduced photosynthetic and ultrastructural changes in oil seed rape[J]. Ecotoxicol Environ Saf, 2014, 102:25-33.

        [50]Ali B, Mwamba TM, Gill RA, et al. Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide[J]. Plant Growth Regul, 2014:74:261-273.

        [51]Ali B, Qian P, Sun R, et al. Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant[J]. Environ Sci Pollut Res, 2015, 22:3068-3081.

        [52]Sun J, Wang RJ, Zhang X, et al. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells[J]. Plant Physiol Bioch, 2013(65):67-74.

        [53]Zhang LP, Pei YX, Wang HJ, et al. Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis[J]. Oxid Med Cell Longev, 2015, 2015:804603.

        [54]Cui WT, Chen HP, Zhu KK, et al. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced(Homo)glutathione and reactive oxygen species homeostases[J]. Plos One, 2014, 9(10):e109669.

        [55]Shi H, Ye T, Chan Z. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass(Cynodon dactylon(L). Pers. )[J]. Plant Physiol Bioch, 2014, 74:99-107.

        [56]Li ZG, Gong M, Xie H, et al. Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco(Nicotiana tabacum L.)suspension cultured cells and involvement of Ca2+and calmodulin[J]. Plant Sci, 2012, 185-186:185-189.

        [57]Fang HH, Jing T, Liu ZQ, et al. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica[J]. Cell Calcium, 2014, 56(6):472-481.

        [58]Bloem E, Haneklaus S, Kesselmeier Jr, et al. Sulfur fertilization and fungal infections affect the exchange of H2S and COS from agricultural crops[J]. J Agric Food Chem, 2012, 60(31):7588-7596.

        [59]Bloem E, Riemenschneider A, Volker J, et al. Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. [J]. J Exp Bot, 2004,55(406):2305-2312.

        [60]王文杰, 車永梅, 郭秀萍, 等. H2S位于H2O2下游介導(dǎo)葡萄抗霜霉病過程[J]. 植物病理學(xué)報, 2013, 5:475-485.

        [61] Ulker B, Shahid Mukhtar M, Somssich IE. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways[J]. Planta, 2007, 226(1):125-137.

        [62]Wang RK, Cao ZH, Hao YJ. Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples[J]. Physiol Plant, 2014, 150(1):76-87.

        (責(zé)任編輯 李楠)

        Hydrogen Sulfide Functions in Regulation of Stomatal Movement and Stress Response in Plant

        CHE Yong-mei HOU Li-xia SUN Yan-jun LIU Xin
        (Key Laboratory of Plant Biotechnology in Universities of Shandong Province,College of Life Sciences,Qingdao Agricultural University,Qingdao 266109)

        Hydrogen sulfide(H2S),a recently characterized gaseous signal molecule,mediates stomatal closure induced by abscisic acid(ABA),ethylene(ETH)etc.,and participates in plant responses to adverse environmental stresses such as salt,drought and heavy metal stresses. H2S interacts with Ca2+,H2O2and nitric oxide(NO)signal molecules in regulation of stomatal movement. Exogenous H2S improves the resistance to diverse stresses by increasing antioxidant enzyme activity,up-regulating gene expression,and promoting accumulation of compatible substances such as proline and soluble sugars in plants. In this paper,the latest research progresses in the functions and molecular mechanisms of H2S in the regulation of stomatal movement and response to diverse stresses are summarized and discussed.

        H2S;stomatal movement;stress response;signal transduction

        2016-07-27

        國家自然科學(xué)基金項(xiàng)目(31572107,31170237)

        車永梅,女,副教授,研究方向:植物逆境生理;E-mail:yongmeiche@163.com

        劉新,女,教授,碩士生導(dǎo)師,研究方向:植物逆境信號轉(zhuǎn)導(dǎo);E-mail:liuxin6080@126.com

        猜你喜歡
        清除劑逆境外源
        具有外源輸入的船舶橫搖運(yùn)動NARX神經(jīng)網(wǎng)絡(luò)預(yù)測
        超越逆境
        做人與處世(2022年6期)2022-05-26 10:26:35
        分子診斷實(shí)驗(yàn)室核酸污染清除方法研究
        How adversity makes you stronger逆境如何讓你更強(qiáng)大
        普立萬推出PET包裝用新款低霧氧氣清除劑
        杭州化工(2020年2期)2020-01-16 15:26:40
        外源鉛脅迫對青稞生長及鉛積累的影響
        外源鈣對干旱脅迫下火棘種子萌發(fā)的影響
        外源添加皂苷對斑玉蕈生長發(fā)育的影響
        活性氧非酶促清除劑對老化種子的影響
        道路廢舊標(biāo)線的處理方法及其研究進(jìn)展
        安徽建筑(2014年6期)2014-08-15 00:50:38
        日本不卡不二三区在线看 | 精品久久香蕉国产线看观看亚洲| 免费人成视频在线观看网站| 百合av一区二区三区| 日韩av一区在线播放| 人妻少妇精品视频一区二区三区l| 久久天天躁狠狠躁夜夜不卡| 极品美女扒开粉嫩小泬| 日韩不卡av高清中文字幕| 在线不卡av一区二区| 国产精品国产三级国产av品爱网 | 欧美丰满少妇xxxx性| 亚洲精品国产成人| 国产主播无套内射一区| 日韩精品人妻一区二区三区蜜桃臀| 久久久久久夜精品精品免费啦| 真人作爱免费视频| 国产精品爆乳在线播放| 极品新婚夜少妇真紧| 国产婷婷丁香久久综合| 中文字幕久久熟女人妻av免费| 亚洲一区二区三区四区精品在线 | 91中文人妻丝袜乱一区三区| 中文字幕人妻精品一区| 国产又大又黑又粗免费视频| 亚洲av无码成人精品区在线观看| 蜜臀aⅴ永久无码一区二区| 在线观看视频免费播放| 国产精品久久国产精品99| 夜夜综合网| 亚洲精品在线观看自拍| 久久精品丝袜高跟鞋| 最好看的最新高清中文视频| 午夜无码熟熟妇丰满人妻| 一道之本加勒比热东京| 国产色在线 | 亚洲| 亚洲国产福利精品一区二区 | 国产午夜福利久久精品| 欧美三级不卡视频| 亚洲视频在线中文字幕乱码| 色综合天天综合网国产成人网 |