索 琪,郭進利,王福紅a
(1.上海理工大學(xué)a.管理學(xué)院,b. 超網(wǎng)絡(luò)研究中心,上海 200093;2. 青島科技大學(xué)經(jīng)濟與管理學(xué)院,山東 青島 266061)
?
電視節(jié)目競爭關(guān)系的超網(wǎng)絡(luò)分析
索琪1a,2,郭進利1,王福紅1a
(1.上海理工大學(xué)a.管理學(xué)院,b. 超網(wǎng)絡(luò)研究中心,上海 200093;2. 青島科技大學(xué)經(jīng)濟與管理學(xué)院,山東 青島 266061)
給出了超網(wǎng)絡(luò)中點度、點超度、加權(quán)點度、邊度、超邊度、聚集系數(shù)、平均距離等拓撲特性的定義和計算公式。將電視節(jié)目定義為節(jié)點,將播出時間段定義為超邊,采用超網(wǎng)絡(luò)方法分析了電視節(jié)目的競爭關(guān)系。實證結(jié)果顯示,這些統(tǒng)計屬性的累計概率分布服從指數(shù)分布,說明多個隨機因素的相互作用導(dǎo)致了該超網(wǎng)絡(luò)的形成。其中,加權(quán)點度能夠更好地描述超網(wǎng)絡(luò)的競爭態(tài)勢。較小的平均距離和較大的聚集系數(shù)表明該超網(wǎng)絡(luò)符合小世界效應(yīng)。這些拓撲指標能夠較好地反映競爭超網(wǎng)絡(luò)所具有的特點,方法同樣適用于實證分析其它合作或競爭超網(wǎng)絡(luò)。
復(fù)雜網(wǎng)絡(luò);超圖;超網(wǎng)絡(luò);拓撲特性
近年來復(fù)雜網(wǎng)絡(luò)的研究引起了學(xué)者的廣泛關(guān)注。在許多實際問題中,可以把復(fù)雜系統(tǒng)單元之間的相互作用關(guān)系簡化表示為圖論中節(jié)點以及連接節(jié)點的邊的集合,這為復(fù)雜系統(tǒng)的建模提供了新的嘗試。1998年,Watts和Strogats提出了WS模型[1],1999年Barabasi和Albert提出了無標度網(wǎng)絡(luò)的BA模型[2],發(fā)現(xiàn)了實際網(wǎng)絡(luò)區(qū)別于規(guī)則網(wǎng)絡(luò)與隨機網(wǎng)絡(luò)的普遍性質(zhì),引發(fā)了復(fù)雜網(wǎng)絡(luò)研究的熱潮。隨后,復(fù)雜網(wǎng)絡(luò)的研究涉及到通訊、物理、信息、交通、生物等各個領(lǐng)域。大量學(xué)者研究了網(wǎng)絡(luò)的靜態(tài)拓撲屬性,并在此基礎(chǔ)上構(gòu)造了網(wǎng)絡(luò)模型, 提出了許多分析模型的方法[3]。
社會網(wǎng)絡(luò)研究中的合作和競爭網(wǎng)絡(luò),一直被認為是研究的重點。這類網(wǎng)絡(luò)研究常用二分圖描述,網(wǎng)絡(luò)中存在兩類節(jié)點,一類節(jié)點稱之為“項目”(act,如科研項目),另一類節(jié)點稱為“參與者”(actor,如科研人員) 。兩類節(jié)點間的一條邊代表一個參與者參加一個合作項目[4-5]。由于二分圖中兩類節(jié)點的異質(zhì)性,且每條連邊只能關(guān)聯(lián)兩個節(jié)點。研究同一類節(jié)點之間的相互作用關(guān)系是我們所關(guān)心的重點,如科研人員在項目中的合作關(guān)系,因此常把二分圖的邊向同一類節(jié)點投影,得到投影圖。但隨著網(wǎng)絡(luò)化的發(fā)展, 節(jié)點和連邊數(shù)量劇增,連邊類型的多樣化、結(jié)構(gòu)的復(fù)雜性,使得復(fù)雜網(wǎng)絡(luò)無法全面有效地描述現(xiàn)實網(wǎng)絡(luò)的特征。Berge[6]給出了超圖理論的基本概念和性質(zhì),由于超圖中的一條超邊可以包含多個節(jié)點,能夠更好地描述現(xiàn)實系統(tǒng)。因此,基于超圖理論的超網(wǎng)絡(luò)可以很好地描述各個節(jié)點之間的相互作用和影響。越來越多的學(xué)者將研究視角轉(zhuǎn)向用超網(wǎng)絡(luò)方法刻畫現(xiàn)實網(wǎng)絡(luò)這一領(lǐng)域。
近年來, 有學(xué)者對超網(wǎng)絡(luò)的拓撲特征進行了研究。Estrada等[7]研究了超網(wǎng)絡(luò)的子圖中心度和聚集系數(shù)問題。Ghoshal等[8]研究了隨機三部超圖及其應(yīng)用。Zlatic等[9]分析了基于三部超圖模型的統(tǒng)計特性。倪子建等[10]提出以超網(wǎng)絡(luò)模型描述維基內(nèi)容本體,對網(wǎng)絡(luò)的重要拓撲屬性進行了分析。王建偉等[11]給出了點度分布、聚類系數(shù)、平均距離等拓撲屬性的定義。胡楓等[12]構(gòu)建了一種超網(wǎng)絡(luò)動態(tài)演化模型,并介紹了這個模型的一些基本拓撲性質(zhì)。目前雖然有學(xué)者對于超網(wǎng)絡(luò)模型中的一些基本拓撲指標給出了定義,但對加權(quán)點度、平均距離、聚類系數(shù)等重要指標尚未形成統(tǒng)一的定義和計算方法。因此,在其他學(xué)者的研究基礎(chǔ)上,本文擬將復(fù)雜網(wǎng)絡(luò)的基本拓撲指標推廣到超網(wǎng)絡(luò)中。由于復(fù)雜網(wǎng)絡(luò)可以視為超網(wǎng)絡(luò)中的一個特例——2-均齊超網(wǎng)絡(luò)(即每條超邊只關(guān)聯(lián)兩個節(jié)點)。因此,定義和計算的基本原則是,一方面應(yīng)該反映出超網(wǎng)絡(luò)中的每條超邊可以包含任意個節(jié)點這個不同于復(fù)雜網(wǎng)絡(luò)的特性;另一方面當(dāng)每條超邊只包含兩個節(jié)點時,定義應(yīng)該可以退化到復(fù)雜網(wǎng)絡(luò)。此外,國內(nèi)外文獻中鮮有結(jié)合統(tǒng)計特性來進行超網(wǎng)絡(luò)的實證研究。
大多數(shù)情況下,實際參與同一項目的多個參與者之間普遍存在著競爭關(guān)系[13],以中央電視臺的15套節(jié)目頻道為例,為搶占收視率市場,在同一時間段播出的電視節(jié)目之間存在著激烈的競爭關(guān)系。本文在描述超網(wǎng)絡(luò)拓撲特性的指標的基礎(chǔ)上,結(jié)合央視數(shù)據(jù)進行實證分析,電視節(jié)目超網(wǎng)絡(luò)屬于典型的競爭超網(wǎng)絡(luò),定量化研究這種競爭關(guān)系,可以更好地描述超網(wǎng)絡(luò)中節(jié)點間的競爭態(tài)勢。
1.1超網(wǎng)絡(luò)的概念
采用不同方法描述復(fù)雜系統(tǒng),可以分別得到二分圖、投影圖和超圖。V代表參與者節(jié)點,T代表項目節(jié)點,圖1a描述了6個參與者參與5個項目的合作關(guān)系;圖1b描述了6個參與者之間的兩兩合作關(guān)系;圖1c中將每個項目看作1條超邊,描述了多個參與者同時參與項目的關(guān)系??梢?,超圖可以更好地描述現(xiàn)實系統(tǒng)。
1.2超網(wǎng)絡(luò)的拓撲特性
1) 點度
超網(wǎng)絡(luò)中,節(jié)點與節(jié)點通過超邊連接。節(jié)點i的點度Di定義為與i直接鄰接的節(jié)點個數(shù)。如在圖1c中,Dv1=3,Dv3=4。
2) 加權(quán)點度
在計算節(jié)點i的點度時僅考慮與該節(jié)點直接鄰接的節(jié)點個數(shù),而未考慮到鄰接節(jié)點的強度。將節(jié)點i與節(jié)點j的權(quán)值Wij定義為同時包含節(jié)點i與節(jié)點j的超邊數(shù)量。則節(jié)點i的加權(quán)點度Si為
(1)
Ni為節(jié)點i的鄰接節(jié)點集合。如在圖1c中,v3,v5同時出現(xiàn)在超邊E1,E3中,則Wv3v5=2,而Wv3v1=1,Wv3v4=1,Wv3v6=1,因此,Sv3=5。
3) 點超度
節(jié)點i的點超度DHi表示包含該節(jié)點的超邊條數(shù)。如在圖1c中,DHv1=2,DHv3=2,DHv6=3。
4) 超邊度
超網(wǎng)絡(luò)中,同一節(jié)點可能在多條超邊中出現(xiàn)。超邊度DEi定義為與超邊Ei直接鄰接的其它超邊條數(shù)。如在圖1c中,v5同時屬于超邊E1,E3,E5,則E1,E3,E5是鄰接的,v4同時屬于超邊E1,E2,E4,則E1,E2,E4是鄰接的,DE1=4,DE5=2。
5) 超邊超度
超邊Ei的超邊超度DHEi表示該超邊所包含的節(jié)點個數(shù)。如在圖1c中,DHE1=4,DHE3=3。
6) 平均距離
在超網(wǎng)絡(luò)中,節(jié)點i與節(jié)點j的距離Dij定義為連接i和j的最短路徑上的超邊數(shù)目,即i與j相連所需通過的最少超邊數(shù)。如在圖1c中,節(jié)點v1到節(jié)點v6的一條最短路徑為v1E1v4E4v6,則Dv1v6=2。N為超網(wǎng)絡(luò)中的節(jié)點數(shù)量,平均距離描述了節(jié)點間的連通程度。超網(wǎng)絡(luò)的平均距離〈D〉為
對于m-均齊超網(wǎng)絡(luò)
(2)
對于無自連超網(wǎng)絡(luò)
(3)
對于一般超網(wǎng)絡(luò)
(4)
由于式(4)中分母以指數(shù)函數(shù)形式增長,因此計算出的平均距離〈D〉值較小,為更好地描述超網(wǎng)絡(luò)中節(jié)點的連通程度,定義一般超網(wǎng)絡(luò)的網(wǎng)絡(luò)效率E為
(5)
7) 集聚系數(shù)
平均聚集系數(shù)是指在超網(wǎng)絡(luò)中與同一節(jié)點連接的兩個節(jié)點之間通過超邊也相互連接的平均概率,該系數(shù)用于刻畫超網(wǎng)絡(luò)的局域結(jié)構(gòu)性質(zhì)。
假設(shè)節(jié)點i與Di個節(jié)點通過超邊直接相連,Di個節(jié)點間實際存在的超邊數(shù)為Mi,這Di個節(jié)點間可能存在的最大超邊數(shù)為Di(Di-1)/2,由此定義節(jié)點i的聚集系數(shù)Ci為
(6)
復(fù)雜網(wǎng)絡(luò)的“集聚”可以認為是由一些“三角形連接”組成的。對于超網(wǎng)絡(luò)而言,“集聚”認為是由一些“超三角形連接”組成的。一個超三角形是指由3個不同的節(jié)點和3個不同的超邊組成的序列[7],如在圖1c中,v1E1v3E3v5E5v1是一個超三角形,而v1E1v3E3v5E1v1由于存在相同超邊,因此不是超三角形。定義2路為長度為2的路,即由3個不同節(jié)點和兩個不同的超邊構(gòu)成的序列,如v1E1v3E3v5是一個2路。因此,節(jié)點i的聚集系數(shù)Ci也可以定義為
(7)
其中,NiΔ為與節(jié)點i相連的“超三角形”數(shù)目,NiΛ為與節(jié)點i相連的“2路”數(shù)目。
超網(wǎng)絡(luò)的平均聚集系數(shù)為
(8)
中國中央電視臺(China Central Television,CCTV)是中國官方電視媒體之一,擁有最多的收視人群。目前開播15套中文電視節(jié)目,節(jié)目內(nèi)容覆蓋各個領(lǐng)域,收視群體覆蓋各地區(qū)、各年齡段的廣大人群。近年來電視節(jié)目競爭日趨激烈,由于不同頻道在同一時段會播放不同的電視節(jié)目,各個節(jié)目憑借其精彩的內(nèi)容爭奪觀眾收視率市場,因此同一時段播出的各個節(jié)目之間存在競爭關(guān)系。數(shù)據(jù)來源于中央電視臺官方網(wǎng)站(http://cctv.cntv.cn,http://tv.cntv.cn/epg),數(shù)據(jù)收集時間為2014年4月30日。該網(wǎng)站可以按播出日期、頻道搜索各節(jié)目的播出時間。由于每個時間段播出的電視節(jié)目數(shù)量、內(nèi)容存在較大差異,從而影響該時間段的電視節(jié)目的收視率,因此需要對不同時間段進行分析。研究發(fā)現(xiàn),每周播出的電視節(jié)目相對穩(wěn)定,因此以周為單位可以更完整地分析電視節(jié)目編排的整體特點。為方便統(tǒng)計,以2 h為一單位對每天的播出時間離散化處理,分段初始點從周一0點開始,結(jié)束點為周日的22點,一周共分為84個播出時間段。實證分析包含了15個中文頻道的227個播出時間相對穩(wěn)定的節(jié)目數(shù)據(jù)。
用超網(wǎng)絡(luò)描述央視電視節(jié)目系統(tǒng),將播出時間段定義為超邊,則該超網(wǎng)絡(luò)含有84條超邊;將電視節(jié)目定義為節(jié)點,則含有227個節(jié)點。電視節(jié)目在某個時間段播出,則稱該節(jié)點包含于該超邊中。以《新聞聯(lián)播》節(jié)目為例(http://cctv.cntv.cn/lm/xinwenlianbo/20140430.shtml),其首播時間為每天的19∶00,重播時間為每天的21:00,則其對應(yīng)的節(jié)點包含在所屬時間段對應(yīng)的14條超邊中。分析發(fā)現(xiàn),227個節(jié)目中有122個只有首播,沒有重播;其余105個節(jié)目會重播,且重播的總次數(shù)達到494,約占總播出次數(shù)的1/3左右。因此,重播的節(jié)目也是整體節(jié)目編排的一個重要組成部分,在初始超網(wǎng)絡(luò)構(gòu)建時不區(qū)分首播和重播時間的影響,在3.6節(jié)中將進一步分析節(jié)目重播時間的選取特點。此外,除《新聞聯(lián)播》等5個新聞類節(jié)目在CCTV1綜合頻道和CCTV13新聞頻道同時播出外,其余節(jié)目均以獨播頻道播放。因此,文中忽略同一節(jié)目在不同頻道播放時對收視率的影響。由于很多電視節(jié)目會在不同時間段播出,導(dǎo)致超邊會連接起來,構(gòu)成了本文討論的電視節(jié)目超網(wǎng)絡(luò)。
3.1點度分布
如果兩個節(jié)目在同一時段內(nèi)播出,則它們屬于同一超邊,表示兩個節(jié)目在一個特定時間段內(nèi)的競爭關(guān)系。點度的大小反映了與該節(jié)目具有競爭關(guān)系的節(jié)點數(shù)目。統(tǒng)計結(jié)果顯示,平均點度為43.5。其中點度最大的節(jié)目為《新聞聯(lián)播》,點度值為127,該節(jié)目的播出時間為周一到周日的19點,由于其每周播出7次,且每天在黃金時段播出,必然導(dǎo)致與該節(jié)目競爭的節(jié)點數(shù)目較多。其中點度最小的節(jié)目為《人口》,點度值為5,其播出時間為每周二的2點,由于其每周僅播出1次,且在凌晨時間播出,必然導(dǎo)致與該節(jié)目競爭的節(jié)點數(shù)較少。
點度累計概率分布如圖2所示,對曲線擬合發(fā)現(xiàn)其服從分段指數(shù)分布,擬合的指數(shù)函數(shù)分別為
(9)
3.2加權(quán)點度分布
點度僅反映與該節(jié)目具有競爭關(guān)系的節(jié)點個數(shù),而未考慮到競爭強度。由于每個節(jié)目平均每周播放6.5次,導(dǎo)致節(jié)目之間會在不同時間段內(nèi)出現(xiàn)多次競爭現(xiàn)象,將權(quán)值Wij定義為同時包含節(jié)目i與節(jié)目j的時段個數(shù),則加權(quán)點度Si可以表示出節(jié)目i與其它節(jié)目的競爭總次數(shù)。結(jié)果顯示,平均加權(quán)點度為114.8,即每個節(jié)目每周平均與其它節(jié)目發(fā)生114.8次競爭。該值較大,原因在于很多電視節(jié)目每周在不同時段播出多次,而每個時段中又包含很多節(jié)目。顯然,加權(quán)點度包含比點度更多的信息。
加權(quán)點度累計概率分布如圖3所示,擬合的指數(shù)函數(shù)為
y=1.093 9e-0.009 5x(R2=0.988 2)
(10)
3.3點超度分布
點超度的大小反映了一個節(jié)目在一周內(nèi)的播出次數(shù),表明該節(jié)目在電視節(jié)目超網(wǎng)絡(luò)中的競爭力大小。統(tǒng)計結(jié)果表明,平均點超度為6.5,即平均每個節(jié)目每周播放6.5次。從數(shù)據(jù)看,45個節(jié)目每周只播出一次,且非黃金時間的節(jié)目編排變化較大。43個節(jié)目每周播出七次,且每天在相對固定的時間段播出。還有部分節(jié)目因其內(nèi)容比較精彩,受視面廣,一周多次播出,導(dǎo)致其點超度值比較大。
點超度的累計概率分布如圖4所示,擬合的指數(shù)函數(shù)為
y=1.250 8e-0.175 3x(R2=0.983 3)
(11)
3.4點度、加權(quán)點度和點超度之間的關(guān)系
點超度對應(yīng)于每個節(jié)目的播出次數(shù),點度對應(yīng)于與該節(jié)目有競爭關(guān)系的節(jié)點數(shù)目,加權(quán)點度對應(yīng)于與該節(jié)目有競爭關(guān)系的節(jié)點競爭總次數(shù)。三者都反映了節(jié)目的競爭力,三者是否存在一定的關(guān)聯(lián)呢?圖5 所示,點度和點超度是正相關(guān)的,加權(quán)點度和點超度也是正相關(guān)的。說明當(dāng)節(jié)點在多個時段內(nèi)播出時,此節(jié)點具有更大的競爭力。節(jié)目播出次數(shù)越多,則與其競爭的節(jié)目數(shù)量和競爭總次數(shù)都會越多。研究其統(tǒng)計關(guān)系可知,雖然點度和加權(quán)點度均能描述超網(wǎng)絡(luò)中的這種競爭關(guān)系和結(jié)構(gòu),但用加權(quán)點度能更準確地描述超網(wǎng)絡(luò)的競爭結(jié)果。
3.5超邊度分布
如果兩個節(jié)目在同一時間段播出,則其通過超邊連接。統(tǒng)計結(jié)果顯示,平均超邊度為54。其中超邊度最大的時間段為周二的18~20點,超邊度為79,由于黃金時段內(nèi)的節(jié)目數(shù)量較多,很多節(jié)目也會在其它時段播出,必然導(dǎo)致超邊度較大。超邊度最小的時間段為周一的2~4點,超邊度為26,由于凌晨時段內(nèi)的節(jié)目數(shù)量較少,必然導(dǎo)致超邊度較小。
超邊度累計概率分布如圖6所示,對曲線擬合發(fā)現(xiàn)其服從分段指數(shù)分布,擬合的指數(shù)函數(shù)分別為
(12)
3.6超邊超度分布
超邊超度的大小即同一個時間段內(nèi)播出多少個電視節(jié)目,粗略表明了不同時間段的競爭力大小。顯然,超邊超度越大,競爭越激烈。如圖7a所示,通過對一周的節(jié)目分析發(fā)現(xiàn),每天的不同時段內(nèi)的節(jié)目數(shù)量變化規(guī)律基本一致。平均超邊超度為17.6,說明平均每個時間段內(nèi)有17.6個節(jié)目播出。超邊超度最大的時間段為周五20~22點,超邊超度值為32,該時段節(jié)目數(shù)量達到圖中最高點。由于下一天是周末,大量工作的人會選擇休閑在家,適宜的節(jié)目編排可以引發(fā)收視高峰,因此該時段競爭激烈。超邊超度最小的時間段為周一的2~4點,超邊度為4。由于通宵時間是收視率最低的時段,這個時段節(jié)目數(shù)量達到最低,進一步分析節(jié)目內(nèi)容,大部分是重播節(jié)目。從超邊超度的變化趨勢看,每天的6~8點清晨時段節(jié)目數(shù)量達到一個小高峰,這一時段的節(jié)目板塊以滿足觀眾的信息需求為主;8~12點主要播放生活服務(wù)類節(jié)目,基本針對白天比較空閑的家庭主婦和老年人;中午的午休時間制造了一個小高峰,以新聞、信息等節(jié)目為主;黃昏時段的受眾定位于青少年兒童;18~22點為收視黃金時段,節(jié)目播出數(shù)量逐步達到高峰。
超邊超度的累計概率分布如圖8所示,對曲線擬合發(fā)現(xiàn)其服從分段指數(shù)分布,擬合的指數(shù)函數(shù)分別為
(13)
為進一步分析電視節(jié)目編排的整體特點,基于節(jié)目的首播時間進行了統(tǒng)計,得到同一時間段首播的電視節(jié)目數(shù)量,如圖7b所示,總體來講,呈現(xiàn)和圖7a類似的趨勢。進一步對比發(fā)現(xiàn),每天的18~22點重播的節(jié)目數(shù)量最少,說明在收視黃金時段,為搶占收視率,各節(jié)目都以全新的內(nèi)容去吸引觀眾;而每天的0~2點,6點~10點重播的節(jié)目數(shù)量較多,且6~10點重播的節(jié)目內(nèi)容基本為新聞、健康、科普類節(jié)目。
3.7度分布及超度分布的特征描述
由統(tǒng)計結(jié)果可知,電視節(jié)目超網(wǎng)絡(luò)的點度、加權(quán)點度、點超度、超邊超度的累計概率分布都可以很好的用指數(shù)分布擬合。由指數(shù)分布的性質(zhì)可知,大部分節(jié)點的連接數(shù)目大致相同,連接數(shù)目比平均數(shù)高很多或者低很多的節(jié)點極少存在,差別不像冪律分布那樣明顯。這說明電視節(jié)目網(wǎng)絡(luò)中的節(jié)目編排相對均勻,總體上能較好地滿足觀眾的收視需求。
當(dāng)節(jié)點之間的連接完全隨機時,網(wǎng)絡(luò)的演化呈指數(shù)分布,這意味著電視節(jié)目超網(wǎng)絡(luò)的演化過程中有很多隨機因素。電視節(jié)目在進行編排時,在分析電視受眾的特征、收視的時間規(guī)律及收視內(nèi)容偏好的基礎(chǔ)上,需要在內(nèi)容和時間上進行整合。在實踐中,不僅要考慮單個節(jié)目的競爭優(yōu)勢,還要考慮與相鄰時段的節(jié)目的相適性,有效整合各種電視資源以形成頻道的競爭優(yōu)勢。目的是在最合適的時間播出最佳的內(nèi)容呈現(xiàn)給最需要的受眾。從播出時間上,根據(jù)特定觀眾的收視習(xí)慣,日播節(jié)目一般安排在每天同一時間,以培養(yǎng)相對穩(wěn)定的收視群體。區(qū)別于日播節(jié)目,周播的節(jié)目主要集中在周末播出,內(nèi)容則更側(cè)重娛樂性和參與性,這樣可以開拓周末的收視空間,符合觀眾周末愿意看一些視野開闊、輕松娛樂節(jié)目的需求。從播出內(nèi)容上,晨間和中午一般會播放新聞及信息服務(wù)類節(jié)目;上午一般重播前一天晚上的精彩節(jié)目或以老年人為目標受眾的節(jié)目;下午二至四點播放專業(yè)性較強的節(jié)目;四至六點播放少兒、學(xué)生節(jié)目;一些名牌、重點節(jié)目會在黃金時段播出;深夜播出情感類訪談節(jié)目或重播節(jié)目。為增大節(jié)目的影響力,很多節(jié)目會進行重播,但重播時間都會避開黃金時間。采取差異化的節(jié)目編排策略,可以全天候滿足不同觀眾不斷變化的收視需求。由于需要考慮的具體因素較多,互相又缺乏關(guān)聯(lián),相當(dāng)于隨機選取,這應(yīng)該是大部分競爭網(wǎng)絡(luò)的共同特征。反之,如果電視節(jié)目超網(wǎng)絡(luò)的分布符合冪律分布,則說明該超網(wǎng)絡(luò)存在較多弊端,如出現(xiàn)很多節(jié)目在一個時段播出或很多時段沒有節(jié)目播出的情況,這是不符合實際的。
3.8平均距離
實證發(fā)現(xiàn),電視節(jié)目超網(wǎng)絡(luò)的直徑為4。平均距離描述了超網(wǎng)絡(luò)中節(jié)點間的平均分離程度,根據(jù)2-均齊超網(wǎng)絡(luò)的計算公式,平均距離為1.8,也就是說平均每個節(jié)目只需要經(jīng)過不到2條超邊就能和其它任何一個節(jié)目聯(lián)系起來,這符合小世界效應(yīng)。根據(jù)一般超網(wǎng)絡(luò)中的效率計算公式,電視節(jié)目超網(wǎng)絡(luò)的效率為49.5。
3.9聚集系數(shù)
超網(wǎng)絡(luò)共有節(jié)點227個,超邊84條,網(wǎng)絡(luò)密度很大,節(jié)點之間聯(lián)系緊密。該網(wǎng)絡(luò)的平均聚集系數(shù)為0.69,表明該超網(wǎng)絡(luò)聚類性質(zhì)很高,兼具小世界效應(yīng)。有34個節(jié)目的聚集系數(shù)為1,這些節(jié)目每周只播出一次,與其同時播出的節(jié)目相對固定,因此構(gòu)成大的聚集系數(shù)。相反,聚集系數(shù)最小的值為0.32,為《新聞聯(lián)播》,由于該節(jié)目在黃金時段播出,且每周多次播出,而每個時段播出的節(jié)目數(shù)量和內(nèi)容都有較大差異,導(dǎo)致聚類系數(shù)較小。
本文以中央電視臺15套頻道的電視節(jié)目數(shù)據(jù)為例,將電視節(jié)目定義為節(jié)點,將播出時間段定義為超邊,構(gòu)造了電視節(jié)目超網(wǎng)絡(luò),該方法可以有效刻畫出超網(wǎng)絡(luò)中的參與者在各個項目中的競爭關(guān)系。我們得到了該超網(wǎng)絡(luò)的點度、點超度、加權(quán)點度、邊度、超邊度等幾種統(tǒng)計性質(zhì)。實證結(jié)果顯示,這些統(tǒng)計屬性的累計概率分布均服從指數(shù)分布,說明多個隨機因素導(dǎo)致了該超網(wǎng)絡(luò)的形成。節(jié)目編排相對均勻,總體上能較好地滿足觀眾的收視需求。平均距離和聚集系數(shù)指標同樣適用于描述超網(wǎng)絡(luò)的連通和聚集程度。以上研究表明,在超圖基礎(chǔ)上研究競爭超網(wǎng)絡(luò)的拓撲特性是可行的,文中提出的指標和方法也可用于實證分析其它合作或競爭網(wǎng)絡(luò)。
未來研究工作將進一步探討超網(wǎng)絡(luò)的描述方法,并在此基礎(chǔ)上分析其動態(tài)演化機理。
[1]Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks [J]. Nature, 1998, 393(6684): 440-442.
[2]Barabási A L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509-512.
[3]郭進利. 復(fù)雜網(wǎng)絡(luò)和人類行為動力學(xué)演化模型 [M].北京: 科學(xué)出版社,2013.
[4]Wasserman S, Faust K. Social Network Analysis: Methods and Applications [M]. Cambridge: Cambridge University Press, 1994.
[5]Ramasco J J, Dorogavtsev S N, Pastor-Satorras R. Self-organization of collaboration networks [J]. Physical Review E, 2004, 70(3): 036106.
[6]Berge C . Graphs and hypergraphs [M] .New York: Elsevier, 1973.
[7]Estrada E, Rodríguez-Velázquez J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A, 2006, 364: 581-594.
[10]倪子建, 榮莉莉, 劉泉. 基于超網(wǎng)絡(luò)的維基百科內(nèi)容知識本體演化研究[J]. 管理科學(xué)學(xué)報,2013, 16(12): 68-78.
Ni Zijian, Rong Lili, Liu Quan. Study on evolving hypernetwork model of Wiki ontology[J]. Journal of Management Sciences in China, 2013, 16(12): 68-78.
[11]Wang J W, Rong L L, Deng Q H, et al. Evolving hypernetwork model [J]. The European Physical Journal B, 2010,77(4): 493-498.
[12]胡楓, 趙海興, 馬秀娟. 一種超網(wǎng)絡(luò)演化模型構(gòu)建及特性分析[J]. 中國科學(xué),2013, 43(1): 16-22.
Hu Feng, Zhao Haixing, Ma Xiujuan. An evolving hypernetwork model and its properities[J]. Scientia Sinica, 2013, 43(1): 16-22.
[13]Jiang Jifa, Cheng Zhixin. The complete strategic classification for a cooperation-competition model in the WWW market [J]. Physical A, 2006, 363 (2): 527-536.
[14]Denning P J. What is computer science?[J]. American Scientist, 1985, 73(1): 16-19.
[15]Estrada E, Rodriguez-Velazquez J A. Subgraph centrality in complex networks[J]. Physical Review E, 2005, 71(5): 056103.
[16]王眾托. 關(guān)于超網(wǎng)絡(luò)的一點思考[J]. 上海理工大學(xué)學(xué)報,2011,33(3): 229-237.
Wang ZhongTuo. Reflection on supernetwork[J]. J. University of Shanghai for Science and Technology, 2011, 33(3):229-237.
(責(zé)任編輯耿金花)
The Hypernetwork Analysis of the Television Programs Competitive Relationships
SUO Qi1a, 2, GUO Jinli1, WANG Fuhong1a
(1. a.Business School, b.Center for Supernetwork Research University of Shanghai for Science and Technology, Shanghai 200093, China;2. School of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061, China)
The node degrees, weighted node degrees, node hyperdegrees, hyperedge degrees, hyperedge hyperdegrees, average distance and clustering coefficient are proposed in the paper. TV programs are defined as nodes and broadcasting time periods are defined as hyperedges. By using hypernetwork analysis of television programs competitive relationships, we find that the cumulative probability distributions can be described by an exponential distribution. It shows that random factors result in the formation of the hypernetwork. The competition of the supernetwork can be better described by weighted node degrees. The average distance is small and the clustering coefficient is large. These parameters conform to the characteristics of small-world network. These topological characteristics may be useful for the studies of competitive hypernetworks. The methods proposed can also be used for other empirical studies.
complex network;hypergraph;hypernetwork;topological characteristics
1672-3813(2016)03-0033-07;DOI:10.13306/j.1672-3813.2016.03.005
2014-06-13;
2014-08-12
國家自然科學(xué)基金 (71571119);國家統(tǒng)計科學(xué)研究項目(2015LZ249);山東省統(tǒng)計科研重點課題(KT15059)
索琪(1980-),女,黑龍江哈爾濱人,博士研究生,講師,主要研究方向為復(fù)雜網(wǎng)絡(luò)、超網(wǎng)絡(luò)。
郭進利(1960-),男,陜西西安人,博士,教授,主要研究方向為復(fù)雜網(wǎng)絡(luò)、人類行為動力學(xué)。
T94
A