杭 航, 王麗琨, 伍國鋒, 陳星宇
(貴州醫(yī)科大學附屬醫(yī)院急診醫(yī)學科/急診醫(yī)學教研室, 貴州 貴陽 550004)
?
羅格列酮預處理對凝血酶激活的小膠質細胞PPARγ、Nrf2及HO-1表達的影響*
杭航,王麗琨,伍國鋒△,陳星宇
(貴州醫(yī)科大學附屬醫(yī)院急診醫(yī)學科/急診醫(yī)學教研室, 貴州 貴陽 550004)
目的: 采用凝血酶激活新生大鼠神經膠質細胞,觀察羅格列酮預處理對小膠質細胞過氧化物酶體增殖物活化受體γ(PPARγ)、核因子E2相關因子2(Nrf-2)及血紅素加氧酶-1(HO-1)表達的影響。方法: 用新生SD大鼠的腦組織,體外培養(yǎng)原代小膠質細胞14 d左右分離收集細胞,分為:正常對照組、凝血酶刺激組、羅格列酮干預組(羅格列酮+凝血酶組)和維甲酸干預組(維甲酸+凝血酶組)進行實驗。分別采用免疫組化染色、real-time PCR和Western blot檢測PPARγ、Nrf2和HO-1的表達并進行統(tǒng)計分析。結果: 免疫組化染色顯示,與對照組比較,刺激組、羅格列酮+凝血酶組及維甲酸+凝血酶組的PPARγ、Nrf2和HO-1染色細胞數均增多。Real-time PCR結果顯示羅格列酮+凝血酶組PPARγ、Nrf2及HO-1的mRNA表達均顯著高于刺激組、對照組及維甲酸+凝血酶組(P<0.01),維甲酸+凝血酶組Nrf2及HO-1的mRNA表達均較刺激組和羅格列酮+凝血酶組降低(P<0.01)。Western blot 結果顯示,羅格列酮+凝血酶組PPARγ、Nrf2及HO-1的 蛋白表達也明顯高于刺激組、對照組及維甲酸+凝血酶組(P<0.01),維甲酸+凝血酶組Nrf2及HO-1的蛋白表達均較刺激組和羅格列酮+凝血酶組降低(P<0.01)。結論: 羅格列酮預處理后可增加凝血酶激活的小膠質細胞PPARγ、Nrf2及HO-1的表達,通過維甲酸預處理抑制Nrf2的表達后,其下游基因HO-1表達也受影響,說明PPARγ抗氧化作用可能是通過Nrf2調控下游基因實現(xiàn)的。
小膠質細胞; 腦出血; 羅格列酮; 過氧化物酶體增殖物活化受體γ; 核因子E2相關因子2; 血紅素加氧酶-1
腦出血占腦卒中發(fā)病率的8%~15%,其病理生理過程包括腦實質中血腫的形成及繼發(fā)性腦損害,其發(fā)病率、死亡率及致殘率均高居不下,目前尚無特效的治療方案[1]。腦出血后凝血系統(tǒng)被激活,所釋放的凝血酶(thrombin,TH)主要通過破壞血腦屏障、造成神經損傷以及參與炎癥反應這幾方面起作用,而產生一些細胞毒性物質,通過激活小膠質細胞和巨噬細胞產生氧自由基,從而誘發(fā)氧化應激反應,造成繼發(fā)性腦損傷[2-4]。過氧化物酶體增殖物活化受體γ(peroxisome proliferator-activated receptor γ,PPARγ)在激活小膠質細胞/巨噬細胞和降低氧化應激方面都起著非常重要的作用[5],增加PPARγ的作用將有助于提高小膠質細胞/巨噬細胞的吞噬功能及降低氧化應激反應從而減輕繼發(fā)性腦損害。不少研究已經發(fā)現(xiàn)PPARγ激動劑可減輕繼發(fā)性腦損傷,同時有一定的神經細胞保護作用[6-7]。羅格列酮(rosiglitazone,RGZ)是PPARγ的有效激動劑[8],腦出血后使用RGZ激活PPARγ可在轉錄水平上調抗氧化劑和銅鋅超氧化物歧化酶[9-10],如血紅素加氧酶-1(heme oxygenase 1,HO-1),從而增加細胞的氧化應激能力。核因子E2相關因子2(nuclear factor E2-related factor 2,Nrf2)是氧化應激的感受器,參與體內氧化應激反應,是氧化應激重要的轉錄激活因子。腦出血后PPARγ表達增加[8], Nrf2表達也增高,參與腦內氧化應激反應[11]。本研究組先前的工作發(fā)現(xiàn),羅格列酮預處理可使凝血酶刺激后的小膠質細胞PPARγ及HO-1表達增加[12],然而這些變化是否與Nrf2有關聯(lián)尚不清楚。
本實驗的目的在于采用羅格列酮預處理小膠質細胞,觀察凝血酶激活的小膠質細胞PPARγ、Nrf2和HO-1表達的影響,并初步探討其相互關系。
1實驗材料
1.1動物來源健康SD大鼠乳鼠,雌雄均可,1~3日齡,由貴州醫(yī)科大學動物實驗中心提供。
1.2主要試劑與材料北美胎牛血清(fetal bovine serum,F(xiàn)BS)、DMEM/F12培養(yǎng)基、胰酶(含EDTA,0.25%)、青霉素-鏈霉素溶液及GlutaMax(Gibco);多聚L-賴氨酸、DNase I和羅格列酮(Sigma);TH(湖南一格公司);OX42抗體(Abcam);4%多聚甲醛、山羊抗兔Ⅱ抗FITC、封閉山羊血清和抗熒光衰減封片劑(索萊寶公司);DAPI染色液(泛博公司);PPARγ、Nrf2和HO-1抗體(Proteintech);哺乳動物蛋白抽提試劑盒、SDS-PAGE上樣緩沖液、Tris-Glycine轉膜緩沖液和Tris-Glycine SDS電泳緩沖液(康為世紀公司);cDNA合成試劑盒和real-time PCR試劑盒(Thermo)。
2實驗方法
2.1原代細胞培養(yǎng)新生1~3 d的SD大鼠(110只),由貴州醫(yī)科大學動物實驗中心提供。將出生1~3 d的SD大鼠無菌條件下處死,取出腦組織,剝離腦膜和血管,用0.25%的胰酶消化液消化后過濾離心,用完全培養(yǎng)基進行細胞沉淀懸浮后計數細胞,以2×105個接種至培養(yǎng)瓶內。24 h后全量換液并根據細胞代謝情況,約3 d換液1次,繼續(xù)培養(yǎng)至14 d左右,采用恒溫搖床振搖法分離細胞,將上層培養(yǎng)液收集后以4×104/cm2的密度接種至預先用0.01%的多聚賴氨酸包被好的培養(yǎng)板中培養(yǎng)。24 h后細胞貼壁完全,用小膠質細胞特異性抗體OX42進行免疫細胞化學染色鑒定純度。陽性率>95%即可用于后續(xù)實驗。
將培養(yǎng)成功的細胞,隨機分為4個組,分別為正常對照組、凝血酶刺激組、羅格列酮干預組(RGZ+TH組)和維甲酸干預組(RA+TH組)。給藥方案:對照組加入與刺激組所加凝血酶等體積的培養(yǎng)基,刺激組加入凝血酶(2×104U/L)處理24 h,RGZ+TH組予25 μmol/L的羅格列酮對小膠質細胞預處理1 h,之后加入凝血酶(2×104U/L),共同作用小膠質細胞24 h,RA+TH組用維甲酸(1 μmol/L)預處理1 h后再用凝血酶(2×104U/L)刺激小膠質細胞24 h。
2.2原代小膠質細胞的鑒定將分離后的細胞接種于細胞爬片上24 h,經PBS液洗滌,用4%的多聚甲醛固定15 min后,用0.25% Triton通透20 min,PBS洗3遍,每次3 min,10%正常山羊血清封閉;加入I抗為小鼠抗大鼠CD11b/c 單克隆抗體(1∶50),37 ℃孵育2 h,PBS洗3遍,每次3 min;加入II抗為山羊抗小鼠FITC (1∶100)37 ℃避光孵育1 h,PBS洗3遍,每次3 min;DAPI染核5 min,最后加入抗熒光淬滅封片劑封片。用激光共聚焦顯微鏡觀察、攝片。以上染色均用PBS及正常牛血清代替I抗作為對照染色。2.3免疫細胞化學染色觀察PPARγ、Nrf2和HO-1的表達 分別將對照組、刺激組、RGZ+TH組和RA+TH組4組已爬片細胞予PBS液洗滌,4%多聚甲醛固定15 min,再用0.25% Triton通透20 min,PBS洗滌,10%正常山羊血清封閉;加入I 抗為PPARγ抗體(1∶50),4 ℃孵育過夜,PBS洗3遍,每次3 min;加入 II抗為山羊抗小鼠FITC (1∶100)37 ℃避光孵育1 h,PBS洗3遍,每次3 min;DAPI染核5 min,最后加入抗熒光淬滅封片劑封片。用激光共聚焦顯微鏡觀察、攝片。以上染色均用PBS及正常牛血清代替I抗作為對照染色。同樣方法,將I抗換成Nrf2和HO-1抗體(1∶50),觀察各組Nrf2和HO-1變化情況。2.4Real-time PCR檢測PPARγ、Nrf2和HO-1的mRNA表達將分離后的原代培養(yǎng)的小膠質細胞以每孔1×106個接種于6孔板,培養(yǎng)24 h后,分為4組處理。處理后的細胞用預冷PBS洗2次后,加入TRIzol 1 mL裂解細胞,用槍頭充分吹打混勻。室溫放置后,加入氯仿,劇烈振蕩,再次室溫靜置后,4 ℃、12 000 r/min離心10 min;吸取上清加入異丙醇沉淀RNA,輕輕混勻,室溫靜置;以12 000 r/min、4 ℃離心10 min;棄上清, 75%乙醇洗滌RNA 2次, 4 ℃、7 500 r/min 離心5 min,棄上清,室溫放置干燥5 min;加入20 μL DEPC水,用槍頭吹打充分; 取2 μL RNA樣品于ND2000下測核酸濃度以及A260/A280比值以了解RNA純度,比值在1.8~2.2者可用于下一步實驗;根據A260值計算RNA含量。將提出的RNA按逆轉錄試劑盒說明書進行逆轉錄成cDNA,PPARγ、Nrf2及HO-1引物(上海生工設計并合成)序列見表1,以β-actin為內參照,按照PCR反應說明書進行PCR反應。
表1 引物序列
2.5蛋白印跡法檢測PPARγ、Nrf2和HO-1的蛋白表達 根據細胞覆蓋率按照一定比例加入細胞抽提試劑,吹打均勻,吸出蛋白液至1.5 mL EP管中,冰上孵育20 min,10 000 r/min離心20 min后收集上清,-80 ℃冰箱保存。蛋白定量后取4倍體積樣品緩沖液,95 ℃變性10 min。蛋白上樣量為每孔30 μg,10% SDS-PAGE 電泳,將蛋白電轉移至0.45 μm PVDF膜上,依分子量大小切取條帶,加入封閉液室溫下震蕩2 h 后,取相應條帶分別加入 I 抗兔抗鼠PPARγ多克隆抗體(1∶500)、兔抗鼠Nrf2多克隆抗體(1∶200)和兔抗鼠HO-1多克隆抗體(1∶200)4 ℃過夜。室溫孵育1 h后, 分別加入 II 抗(生物素標記羊抗兔IgG,1∶200)室溫孵育1 h,將孵育好 II 抗的膜在漂洗液中洗滌5次,每次5 min。ECL反應5 min,曝光,顯影定影。經X膠片曝光顯影。圖片掃描保存電腦文件。
3統(tǒng)計學處理
使用SPSS 13.0 統(tǒng)計軟件進行統(tǒng)計學分析。計量資料數據均采用均數±標準差(mean±SD)表示。多樣本均數比較采用單因素方差分析,其中滿足方差齊性的采用Fisher方差分析,方差不齊的采用近似F檢驗Welch法;多樣本均數間兩兩比較滿足方差齊性的采用SNK法檢驗,方差不齊的采用Dunnett’s T3檢驗。以P<0.05 為差異有統(tǒng)計學意義。
1細胞培養(yǎng)結果
膠質細胞混合培養(yǎng)至9 d左右細胞分層明顯,相差顯微鏡下觀察底層細胞充分鋪展,緊密接觸,為星形膠質細胞,其上層主要為散在分布的阿米巴樣細胞,胞體圓形,透光性較底層細胞好,經振搖法分離出來的小膠質細胞產量為1.2×106個,存活率≥95%, OX42染色陽性,陽性細胞(純度)≥95%,見圖1。
2PPARγ的表達
2.1免疫組化結果對照組、刺激組、RGZ+TH組及RA+TH組PPARγ均著色,對照組PPARγ可見胞質均勻著色(綠色),DAPI染核可見藍色;刺激組PPARγ染色細胞數較對照組增多,胞質著色加深;RGZ+TH組PPARγ染色細胞數較對照組和刺激組明顯增多,且以細胞核染色為顯著,說明羅格列酮干預后可促進PPARγ表達增多并且使得其表達向核內轉移, RA+TH組PPARγ染色細胞數與刺激組無明顯差別,部分細胞著色在胞核加深,見圖2。
Figure 1.The expression of OX42 detected by immunofluorescence for identification of microglia (×200).
圖1免疫組化法檢測OX42的表達鑒定小膠質細胞
Figure 2.PPARγ expression in the microglias observed by immunofluorescence (×400).
圖2免疫組化檢測PPARγ的表達
2.2PPARγ的mRNA表達4組間PPARγ的mRNA表達量相對值差異具有統(tǒng)計學意義(P<0.01);刺激組與RA+TH組之間差異無統(tǒng)計學顯著性,其余組兩兩間比較差異有統(tǒng)計學顯著性(P<0.05),見圖3。
2.3PPARγ蛋白的表達4組間PPARγ蛋白表達量相對值差異有統(tǒng)計學顯著性(P<0.01);刺激組與RA+TH組之間差異無統(tǒng)計學顯著性,其余組兩兩間比較差異有統(tǒng)計學顯著性(P<0.05),見圖4。
3Nrf2的表達
3.1免疫組化結果 對照組Nrf2染色為陰性,F(xiàn)ITC可見幾乎沒有細胞著色,DAPI染色后可見細胞核,融合后見染色細胞數低;刺激組Nrf2染色細胞數較對照組明顯增多,胞質呈綠色,著色均勻,融合后可見細胞染色率較高;RGZ+TH組Nrf2染色細胞數較正常組、刺激組及RA+TH組增多,且胞質深染,提示羅格列酮干預后可促進Nrf2的表達;RA+TH組Nrf2染色細胞數及染色程度較RGZ+TH組及刺激組明顯減少,見圖5。
Figure 3.The mRNA expression of PPARγ in the microglia with different treatments. Mean±SD.n=20.**P<0.01vscontrol;##P<0.01vsRGZ+TH.
圖3Real-time PCR檢測PPARγ的mRNA表達
Figure 4.The protein expression of PPARγ in the microglia with different treatments. Mean±SD.n=10.**P<0.01vscontrol;##P<0.01vsRGZ+TH.
圖4Western blot檢測PPARγ蛋白的表達
Figure 5.Nrf2 expression in the microglia observed by immunofluorescence (×400).
圖5免疫組化檢測Nrf2的表達
3.2Nrf2的mRNA表達4組間Nrf2 mRNA表達量相對值差異具有統(tǒng)計學顯著性(P<0.01);各組兩兩間比較差異有統(tǒng)計學顯著性(P<0.05),見圖6。3.3Nrf2蛋白的表達4組間Nrf2蛋白表達量相對值差異具有統(tǒng)計學顯著性(P<0.01);各組兩兩間比較差異有統(tǒng)計學顯著性(P<0.05),見圖7。
Figure 6.The mRNA expression of Nrf2 in the microglia with different treatments. Mean±SD.n=10.**P<0.01vscontrol;##P<0.01vsRGZ+TH.
圖6Real-time PCR 檢測Nrf2 mRNA的表達
Figure 7.The protein expression of Nrf2 in the microglia with different treatments.Mean±SD.n=10.**P<0.01vscontrol;##P<0.01vsRGZ+TH.
圖7Western blot檢測Nrf2蛋白的表達
4HO-1的表達
4.1免疫組化結果對照組HO-1染色為陰性,F(xiàn)ITC可見幾乎沒有細胞著色,DAPI染色后可見細胞核,融合后見染色細胞數低;刺激組HO-1染色細胞數較對照組明顯增多,胞質呈綠色,融合后可見細胞染色率較高;RGZ+TH組HO-1染色細胞數較正常組、刺激組增多,胞質、胞核均著色,部分細胞胞核深染,提示羅格列酮干預后可促進HO-1的表達,RA+TH組細胞染色率較RGZ+TH組減少,染色程度也較淺,見圖8。
4.2HO-1的mRNA表達4組間HO-1 mRNA表達量相對值差異具有統(tǒng)計學顯著性(P<0.01);各組兩兩間比較差異有統(tǒng)計學顯著性(P<0.05),見圖9。
4.3HO-1蛋白的表達4組間HO-1蛋白表達量相對值差異具有統(tǒng)計學顯著性(P<0.01);各組兩兩間比較差異有統(tǒng)計學顯著性(P<0.05),見圖10。
綜合上述實驗結果,提示凝血酶刺激小膠質細胞可誘導PPARγ、Nrf2和HO-1的表達,而羅格列酮預處理后PPARγ、Nrf2和HO-1的表達增加更為顯著,維甲酸預處理后Nrf2和HO-1的表達下降。Nrf2和PPARγ均參加腦內氧化應激反應,Nrf2有助于神經保護和腦缺血后腦損傷的改善[13-14],而腦出血后PPARγ則主要通過減少氧化應激、炎癥和解毒的分子的生成,從而中和許多有毒物質介導的繼發(fā)性腦傷害。PPARγ在小膠質細胞的激活和降低氧化應激方面都起著至關重要的作用[9]。PPARγ被激活后,一方面可通過轉錄水平上調細胞表面清道夫受體CD36,來幫助小膠質細胞和巨噬細胞通過吞噬或內吞作用來清除壞死或凋亡的細胞殘骸[15-16];另一方面,激活的PPARγ可通過轉錄水平上調抗氧化劑和銅鋅超氧化物歧化酶[5],如HO-1、SOD等,從而增加細胞的抗氧化功能。噻唑烷二酮類藥物(如羅格列酮)是PPARγ有效的激動劑[17]。本課題組前期研究表明,腦出血后血腫周圍腦組織發(fā)生一系列的病理生理變化,包括谷氨酸含量增加、基質金屬蛋白酶表達增多、血腦屏障通透性升高等,而且使用羅格列酮激活PPARγ從而減輕繼發(fā)性腦損害方面的研究取得了一定的實驗成果[18-23]。然而,對于使用羅格列酮激活PPARγ減輕氧化應激反應從而降低腦損傷程度的機制尚不明確。本實驗中,使用羅格列酮后PPARγ表達增加,其下游HO-1 mRNA及蛋白表達均增加,這樣便增加了腦細胞的抗氧化應激能力。
在腦出血后的抗氧化應激反應過程中,Nrf2可以誘導抗氧化應激有關組件的產生、減少過氧化物的形成、增加CD36的吞噬功能以及增加對紅細胞碎片的吞噬作用。近期研究表明,Nrf2在抗氧化應激能力的提升、增加吞噬功能以及促進血腫吸收方面發(fā)揮重要作用[7]。Nrf2-ARE通路是體內內源性抗氧化系統(tǒng)中非常重要的一條通路,其中抗氧化反應元件(antioxidant response element,ARE)與Nrf2結合并起著關鍵作用[24],而PPARγ和Nrf2的相互作用可能涉及多種機制。首先,PPAR反應元件(PPAR response element, PPRE)和ARE共存在相同的基因,如CD36[25-27]和過氧化氫酶;其次,Nrf2和PPARγ之間存在著相互的轉錄調控,如Nrf2基因包含著PPRE[28],而PPARγ基因也包含著ARE[29-30]。前期有研究發(fā)現(xiàn)維甲酸可以抑制Nrf2的表達[31-32]。 本實驗中,凝血酶激活后的小膠質細胞PPARγ和Nrf2增加,其下游基因HO-1也增加,使用羅格列酮后見PPARγ、Nrf2和HO-1增加更為顯著,然而使用維甲酸后,PPARγ表達與凝血酶激活表達差異無統(tǒng)計學顯著性,Nrf2和HO-1的表達下降明顯,PPARγ的下游基因是HO-1,因此推斷PPARγ有可能通過Nrf2調控后者的產生,從而發(fā)揮抗氧化應激作用。
Figure 8.HO-1 expression in the microglia observed by immunofluorescence (×400).
圖8免疫組化檢測HO-1的表達
Figure 9.The mRNA expression of HO-1 in the microglia with different treatments. Mean±SD.n=10.**P<0.01vscontrol;##P<0.01vsRGZ+TH.
圖9Real-time PCR檢測HO-1的mRNA表達
Figure 10.The protein expression of HO-1 in the microglia with different treatments. Mean±SD.n=10.**P<0.01vscontrol;##P<0.01vsRGZ+TH.
圖10Western blot檢測HO-1蛋白的表達
綜上所述,凝血酶激活小膠質細胞可以誘導PPARγ、Nrf2和HO-1表達增加;羅格列酮預處理后,凝血酶激活的小膠質細胞PPARγ、Nrf2和HO-1的表達明顯增加;使用維甲酸預處理后Nrf2下降,其下游基因HO-1也下降;推測PPARγ可能部分通過Nrf2作用其下游基因,從而發(fā)揮其抗氧化作用,這一課題有待進一步研究。
[1]Zhao XR, Gonzales N, Aronowski J. Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB[J]. CNS Neurosci Ther, 2015, 21(4):357-366.
[2]Mracsko E, Veltkamp R. Neuroinflammation after intra-cerebral hemorrhage[J]. Front Cell Neurosci, 2014, 8:388.
[3]Jesberger JA, Richardson JS. Oxygen free radicals and brain dysfunction[J]. Int J Neurosci, 1991, 57(1-2):1-17.
[4]Han N, Ding SJ, Wu T, et al. Correlation of free radical level and apoptosis after intracerebral hemorrhage in rats[J]. Neurosci Bull, 2008, 24(6):351-358.
[5]Zhao X, Aronowski J. The role of PPARγ in stroke[M]//Chen J, Hu X, Stenzel-Poore M, et al. Immunological mechanisms and therapies in brain injuries and stroke. New York: Springer, 2014:301-320.
[6]張婧媛,張艷橋,張一娜,等. PPAR-γ激動劑減輕缺氧性大鼠神經細胞損傷的作用機制[J]. 中國病理生理雜志, 2009, 25(1):89-92.
[7]喬保華,高建新,王芬,等. PPARγ激動劑吡格列酮減少大鼠創(chuàng)傷性腦損傷后的神經損傷和膠質增殖[J]. 中國病理生理雜志, 2010, 26(5):912-916.
[8]Zhao X, Sun G, Zhang J, et al. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages[J]. Annal Neurol, 2007, 61(4):352-362.
[9]Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury[J]. Stroke, 2011, 42(6):1781-1786.
[10]Jin J, Albertz J, Guo Z, et al. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington′s disease[J]. J Neurochem, 2013, 125(3):410-419.
[11]Zhao X, Sun G, Ting SM, et al. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance[J]. J Neurochem, 2014, 133(1):144-152.
[12]陳星宇,伍國鋒. 羅格列酮對凝血酶激活的小膠質細胞保護作用的研究[C]//中華醫(yī)學會,中華醫(yī)學會神經病學分會.中華醫(yī)學會第十七次全國神經病學學術會議論文匯編(下). 2014:672.
[13]Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles[J]. Genes Cells, 2003, 8(4):379-391.
[14]Giudice A, Montella M. Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention[J]. Bioessays, 2006, 28(2):169-181.
[15]Villegas I, Martín AR, Toma W, et al. Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, protects against gastric ischemia-reperfusion damage in rats: role of oxygen free radicals generation[J]. Eur J Pharmacol, 2004, 505(1-3):195-203.
[16]Asada K, Sasaki S, Suda T, et al. Antiinflammatory roles of peroxisome proliferator-activated receptor gamma in human alveolar macrophages[J]. Am J Respir Crit Care Med, 2004, 169(2):195-200.
[17]Krentz AJ, Friedmann PS. Type 2 diabetes, psoriasis and thiazolidinediones[J]. Int J Clin Pract, 2006, 60(3):362-363.
[18]Wu G, Li C, Wang L, et al. Minimally invasive procedures for evacuation of intracerebral hemorrhage reduces perihematomal glutamate content, blood-brain barrier permeability and brain edema in rabbits[J]. Neurocrit Care, 2011, 14(1):118-126.
[19]Wu G, Sheng F, Wang L, et al. The pathophysiological time window study of performing minimally invasive procedures for the intracerebral hematoma evacuation in rabbit[J]. Brain Res, 2012, 1465:57-65.
[20]Wu G, Wang L, Hong Z, et al. Effects of minimally invasive procedures for removal of intracranial hematoma on matrix metalloproteinase expression and blood-brain barrier permeability in perihematomal brain tissues[J]. Neurol Res, 2011, 33(3):300-306.
[21]Wu G, Wang L, Hong Z, et al. Effects of minimally invasive techniques for evacuation of hematoma in basal ganglia on cortical spinal tract from patients with spontaneous hemorrhage: observed by diffusion tensor imaging[J]. Neurol Res, 2010, 32(10):1103-1109.
[22]Wu G, Wang L, Liu J, et al. Minimally invasive procedures reduced the damages to motor function in patients with thalamic hematoma: observed by motor evoked potential and diffusion tensor imaging[J]. J Stroke Cerebrovasc Dis, 2013, 22(3):232-240.
[23]Wu G, Zhong W. Effect of minimally invasive surgery for cerebral hematoma evacuation in different stages on motor evoked potential and thrombin in dog model of intracranial hemorrhage[J]. Neurol Res, 2009, 32(2):127-133.
[24]Nguyen T, Huang HC, Pickett CB. Transcriptional regulation of the antioxidant response element.Activation by Nrf2 and repression by MafK[J]. J Biol Chem, 2000, 275(20):15466-15473.
[25]Ishii T, Itoh K, Ruiz E, et al. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal[J]. Circ Res, 2004, 94(5):609-616.
[26]Kwak MK, Itoh K, Yamamoto M, et al. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymesinvivoby the cancer chemoprotective agent, 3H-1, 2-dithiole-3-thione[J]. Mol Med, 2001, 7(2):135-145.
[27]Girnun GD, Domann FE, Moore SA, et al. Identification of a functional peroxisome proliferator-activated receptor response element in the rat catalase promoter[J]. Mol Endocrinol, 2003, 16(12):2793-2801.
[28]Shih AY, Imbeault S, Barakauskas V, et al. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stressinvivo[J]. J Biol Chem, 2005, 280(24):22925-22936.
[29]Cho HY, Gladwell W, Wang X, et al. Nrf2-regulated PPARγ expression is critical to protection against acute lung injury in mice[J]. Am J Respir Crit Care Med , 2010, 182(2):170-182.
[30]Park EY, Cho IJ, Kim SG. Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathioneS-transferase gene by the peroxisome proliferator-activated receptor-γ and retinoid X receptor heterodimer[J]. Cancer Res, 2004, 64(10):3701-3713.
[31]Yin XP, Chen ZY, Zhou J, et al. Mechanisms under-lying the perifocal neuroprotective effect of the Nrf2-ARE signaling pathway after intracranial hemorrhage[J]. Drug Des Dev Ther, 2015, 9:5973-5986.
[32]de Bittencourt Pasquali MA, de Ramos VM, Albanus RD, et al. Gene expression profile of NF-κB, Nrf2, glycoly-tic, and p53 pathways during the SH-SY5Y neuronal differentiation mediated by retinoic acid[J]. Mol Neurobiol, 2016, 53(1):423-435.
(責任編輯: 盧萍, 羅森)
Rosiglitazone pretreatment influences expression of PPARγ, Nrf2 and HO-1 in thrombin-activated microglia
HANG Hang, WANG Li-kun, WU Guo-feng, CHEN Xing-yu
(DepartmentofEmergencyMedicine,TheAffiliatedHospitalofGuizhouMedicalUniversity,Guiyang550004,China.E-mail:wuguofeng3013@sina.com)
AIM: To observe the effect of rosiglitazone (RGZ) pretreatment on the expression of peroxisome proliferator-activated receptor γ (PPARγ), nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the microglia cells activated by thrombin. METHODS: Microglia cells were obtained from the brain tissues of the newborn rats and were primarily culturedinvitro. After cultured for 14 d, the microglia cells were used in the experiment. The isolated microglia cells were randomly divided into normal control group, thrombin stimulation group (TH group), rosiglitazone intervention group (RGZ+TH group) and retinoic acid intervention group (RA+TH group). The expression of PPARγ, Nrf2 and HO-1 was observed by immunocytochemistry, real-time PCR and Western blot.RESULTS: The number of positive staining cells of PPARγ, Nrf2 and HO-1 in TH group, RGZ+TH group and RA+TH group were increased remarkably as compared with control group. The significant increases in PPARγ, Nrf2 and HO-1 were observed in RGZ+TH group compared with other groups. The mRNA expression of PPARγ, Nrf2 and HO-1 in RGZ+TH group was increased significantly as compared with TH group, control group or RA+TH group (P<0.01), Besides, the mRNA expression of Nrf2 and HO-1 in RA+TH group was decreased as compared with TH group or RGZ+TH group (P<0.01). The protein levels of PPARγ, Nrf2 and HO-1 in RGZ+TH group were significantly increased as compared with TH group, control group or RA+TH group (P<0.01). The protein expression of Nrf2 and HO-1 in RA+TH group was decreased as compared with TH group or RGZ+TH group (P<0.01).CONCLUSION: Rosiglitazone pretreatment might increase the expression of PPARγ, Nrf2 and HO-1 in the microglia cells activated by thrombin. By inhibiting the expression of Nrf2 after RA pretreatment, the expression of the downstream geneHO-1 is also influenced. The anti-oxidative stress effects of rosiglitazone might be achieved partly by modulating Nrf2 to control the downstream geneHO-1.
Microglia; Cerebral hemorrhage; Rosiglitazone; Peroxisome proliferator-activated receptor γ; Nuclear factor E2-related factor 2; Heme oxygenase-1
1000- 4718(2016)04- 0671- 09
2015- 11- 03
2016- 01- 28
國家自然科學基金資助項目(No. 81460185/H09106);貴州省科技基金資助項目(No. 2013-2043)
Tel: 0851-86752545; E-mail: wuguofeng3013@sina.com
R459.7
A
10.3969/j.issn.1000- 4718.2016.04.015
雜志網址: http://www.cjpp.net