夏媛媛, 蔡長青, 盧椏楠, 甘慧泉, 周泉波
(1廣東醫(yī)學院,廣東 湛江 524023; 2廣東省第二人民醫(yī)院腫瘤二科,廣東 廣州 510317; 3中山大學孫逸仙紀念醫(yī)院麻醉科,廣東 廣州 510120; 4廣東省人民醫(yī)院檢驗科,廣東 廣州 510080;5中山大學孫逸仙紀念醫(yī)院肝膽胰外科,廣東 廣州 510120)
?
人胰腺癌細胞培養(yǎng)上清對樹突狀細胞TIM-3表達及其功能的影響*
夏媛媛1,2,蔡長青2△,盧椏楠3,甘慧泉4,周泉波5△
(1廣東醫(yī)學院,廣東 湛江 524023;2廣東省第二人民醫(yī)院腫瘤二科,廣東 廣州 510317;3中山大學孫逸仙紀念醫(yī)院麻醉科,廣東 廣州 510120;4廣東省人民醫(yī)院檢驗科,廣東 廣州 510080;5中山大學孫逸仙紀念醫(yī)院肝膽胰外科,廣東 廣州 510120)
目的: 研究人胰腺癌微環(huán)境對樹突狀細胞(DCs)T細胞免疫球蛋白及黏蛋白-3(TIM-3)表達及其功能的影響,初步探討腫瘤微環(huán)境調(diào)節(jié)DCs上TIM-3表達的可能機制。方法:流式細胞術(shù)檢測腫瘤浸潤樹突狀細胞(TIDC)以及癌旁組織、胰腺癌患者和健康人外周血誘導DCs上TIM-3的表達;觀察人胰腺癌細胞培養(yǎng)液上清對健康人外周血單個核細胞經(jīng)rhGM-CSF和rhIL-4誘導擴增制備DCs上 TIM-3表達的影響;酶聯(lián)免疫吸附法(ELISA)檢測TIM-3+DCs組和對照組的DCs分別與凋亡胰腺癌細胞Capan-2共培養(yǎng)上清中細胞因子IFN-β和IL-12水平。結(jié)果:胰腺癌組織中TIDC上TIM-3的表達明顯高于癌旁組織及患者和健康人外周血的DCs(P<0.01)。人胰腺癌細胞株Canpan-2、SW1990和Panc-1的上清液較人皮膚成纖維細胞Hs27顯著上調(diào)DCs上TIM-3表達(P<0.05),聯(lián)合阻斷VEGF、IL-10和PGE2可明顯降低Canpan-2細胞上清對DCs上TIM-3的上調(diào)作用(P<0.05)。TIM-3高表達DCs組較低表達組分泌的IL-12和IFN-β水平低,而阻斷TIM-3后,IFN-β和IL-12水平均升高(P<0.01)。而這種升高趨勢可在加入DNase和RNase后消失。結(jié)論:人胰腺癌TIDC上TIM-3表達升高導致其固有免疫功能受損;腫瘤細胞分泌的VEGF、IL-10和PGE2可能參與TIM-3的表達調(diào)控。
胰腺癌; 樹突狀細胞; 腫瘤微環(huán)境; T細胞免疫球蛋白及黏蛋白-3
胰腺癌是常見的消化系腫瘤之一,由于手術(shù)及放化療對治療效果的局限性[1],腫瘤免疫治療已成為新的研究熱點,腫瘤微環(huán)境對腫瘤的發(fā)生、發(fā)展以及免疫逃逸的影響更是引起人們的廣泛關(guān)注。目前認為,樹突狀細胞(dendritic cells,DCs)是功能最強大的專職抗原提呈細胞(antigen-presenting cells,APC)。腫瘤及其營造的微環(huán)境能夠通過各種機制導致DCs的分化和成熟障礙,抑制DCs抗原提呈和激活T細胞的能力[2-3]。研究表明[4-5]:T細胞免疫球蛋白及黏蛋白-3(T-cell immunoglobulin and mucin-3, TIM-3)對DCs參與的腫瘤免疫起負性調(diào)節(jié)作用。
那么,在胰腺癌中DCs是否表達TIM-3? TIM-3是否參與了胰腺癌DCs介導的固有免疫應答?腫瘤微環(huán)境通過何種途徑調(diào)節(jié)其表達?本課題通過觀察人胰腺癌組織中腫瘤浸潤樹突狀細胞(tumor-infiltrating dendritic cells,TIDC)上TIM-3的表達情況,分析胰腺癌細胞通過腫瘤微環(huán)境影響TIDC表型的可能因素,進一步探討TIM-3對TIDC 固有免疫的影響。為研究胰腺癌細胞免疫逃逸機制及尋找新的胰腺癌的免疫治療靶點打下基礎(chǔ)。
1材料
1.1主要試劑與儀器重組人粒-巨噬細胞集落刺激因子(rhGM-CSF)、重組人白細胞介素4(rhIL-4)、RPMI-1640和DMEM培養(yǎng)基(HyClone);胎牛血清(FBS)、0.25%胰蛋白酶(Gibco);淋巴細胞分離液(TBD);抗人CD1α單克隆抗體(monoclonal antibo-dy, mAb)、抗人S-100 mAb和IL-10 mAb(Abcam);免疫組化試劑盒(博士德生物公司);抗人CD11c-FITC抗體及同型對照抗體(BD);抗人TIM-3-PECy7抗體(eBioscience);TIM-3 阻斷抗體(BioLegend);VEGFR2 mAb(R&D);PGE2受體EP2封閉肽(AH6809)(Cayman);人IL-12和IFN-β ELISA試劑盒(Elabscience);CCK-8(Dojindo)。順鉑(cis-diaminodichloroplatin,DDP)凍干粉(齊魯制藥);AnnexinⅤ/PI凋亡檢測試劑盒(凱基公司);DNase和RNase(TaKaRa);流式細胞儀(FACSCalibur,BD);低速離心機和低溫高速離心機(Beckman);細胞培養(yǎng)箱(Forma Series Ⅱ, Thermo);超凈臺(VS-840K-U, 蘇凈);倒置普通光學顯微鏡和熒光顯微鏡(Nikon);酶標儀(Denley Dragon Wellscan MK2)。
1.2標本來源人胰腺癌患者手術(shù)標本及外周血4例均來源中山大學孫逸仙紀念醫(yī)院肝膽外科,瘤體重量4.20~7.82 g,平均6.04 g。患者年齡48~70歲,平均60.25歲,男7例、女2例,均符合腫瘤手術(shù)切除指征,未發(fā)現(xiàn)遠處轉(zhuǎn)移,術(shù)后病理診斷為胰腺癌;癌旁組織取自距腫瘤切緣2~3 cm的正常胰腺組織。健康人外周血濃縮白細胞來源于廣州市中心血站。
本研究符合醫(yī)學倫理學標準,經(jīng)醫(yī)院倫理委員會批準,得到患者家屬的知情同意。
1.3細胞株來源人胰腺癌細胞株SW1990、Capan-2、Panc-1及人皮膚成纖維細胞(human skin fibroblast) Hs27由中山大學孫逸仙紀念醫(yī)院肝膽外科實驗室提供。
2方法
2.1人胰腺癌組織免疫組化檢測將人胰腺癌組織及癌旁胰腺組織手術(shù)標本進行常規(guī)固定、包埋、切片,分別用鼠抗CD1α單抗及鼠抗S-100單抗作為Ⅰ抗,生物素化的羊抗鼠IgG作為Ⅱ抗,參照SABC免疫組化試劑盒書說明書對胰腺癌組織及癌旁組織切片進行免疫組織化學染色,DAB顯色后在光學顯微鏡下觀察染色結(jié)果。
2.2人胰腺癌組織及癌旁組織中浸潤性DCs的制備手術(shù)新鮮腫瘤組織經(jīng)0.25%胰蛋白酶和0.04%Ⅳ型膠原酶37 ℃充分消化,組織碎塊研磨,200目孔徑鋼網(wǎng)濾過收集單細胞懸液,洗滌,調(diào)整細胞密度1×1010/L,淋巴細胞分離液分離細胞后調(diào)整細胞密度為1×109/L,37 ℃、5% CO2細胞培養(yǎng)箱中培養(yǎng)過夜,次日收集懸浮細胞,洗滌,用含2%FBS的PBS重懸細胞。
2.3外周血DCs的誘導及體外培養(yǎng)胰腺癌患者及健康人外周血經(jīng)淋巴細胞分離液分離單個核細胞(peripheral blood mononuclear cells,PBMC),用含10% FBS的RPMI-1640培養(yǎng)液重懸細胞,調(diào)整為(2~3)×109/L,加入6孔板(每孔2 mL),37 ℃、5% CO2細胞培養(yǎng)箱培養(yǎng)4 h,洗去懸浮的淋巴細胞,取貼壁單個核細胞加入含10% FBS的RPMI-1640培養(yǎng)液,補充終濃度為100 μg/L的 rhGM-CSF和50 μg/L 的rhIL-4,每3 d換液并補充相應濃度的rhGM-CSF、rhIL-4,第6天收獲未成熟的樹突狀細胞(immature dendritic cells, imDC),備用。臺盼蘭染色,檢測活細胞率。
2.4流式細胞術(shù)檢測DCs表面TIM-3的表達各組DCs用流式洗液(PBS加入2% FBS)洗2次后,重懸并分別加入抗人TIM-3-PECy7抗體和抗人CD11c-FITC抗體,4 ℃避光孵育30 min, 洗滌2次后上機檢測。
2.5流式細胞術(shù)分選CD11c+DCs將外周血誘導培養(yǎng)獲得的imDC 用CD11c-FITC抗體標記,4 ℃避光孵育30 min, PBS再洗2次后上流式細胞儀進行CD11c+DCs的無菌分選,鑒定純度。分選獲得CD11c+DCs離心濃縮(1 000 r/min,5 min),用含10% FBS的RPMI-1640培養(yǎng)液重懸,備用。分選流式細胞儀嚴格執(zhí)行無菌維護流程[6]。
2.6細胞培養(yǎng)及胰腺癌細胞培養(yǎng)上清的制備人胰腺癌細胞株(Capan-2、SW1990、Panc-1)與人皮膚成纖維細胞株(HS27)在含10% FBS的RPMI-1640培養(yǎng)液中,37 ℃、5% CO2細胞培養(yǎng)箱培養(yǎng),常規(guī)傳代。將胰腺癌細胞株與Hs27細胞經(jīng)胰酶消化后,以5×108/L密度接種于10 cm培養(yǎng)皿中(10 mL),37 ℃、5% CO2培養(yǎng)48 h后收集培養(yǎng)上清,離心(1 500 r/min, 5 min)去除細胞碎片,微孔濾膜(0.22 μm)過濾后分裝,-80 ℃保存?zhèn)溆谩?/p>
2.7胰腺癌細胞培養(yǎng)液上清對DCs表達TIM-3的影響健康人外周血單核細胞體外誘導培養(yǎng)至第6天生成的imDC,分成2組,第1組分別加入含有25%的3種胰腺癌細胞上清的培養(yǎng)液,第2組加入含25% HS27細胞上清的培養(yǎng)液,培養(yǎng)48 h, 收集各組DCs,流式細胞術(shù)檢測TIM-3的表達情況。
2.8阻斷胰腺癌細胞培養(yǎng)液上清中VEGF、IL-10和PGE2對DCs表達TIM-3的影響收集體外誘導培養(yǎng)至第6天生成的imDC,分為4組,第1、2、3組在含25%Capan-2細胞上清的培養(yǎng)液中分別加入anti-VEGFR2抗體、anti-IL-10抗體和PGE2受體EP2封閉肽,第4組在含25%Capan-2細胞上清的培養(yǎng)液中聯(lián)合加入anti-VEGF-R2抗體、anti-IL-10抗體和PGE2受體EP2封閉肽,培養(yǎng)48 h,流式細胞術(shù)檢測TIM-3的表達情況。
2.9CCK-8法測藥物細胞毒性試驗取對數(shù)生長期的胰腺癌細胞,胰酶消化后1 000 r/min離心5 min后棄上清,用10% FBS的RPMI-1640重懸細胞,調(diào)整細胞密度為5×107/L,每孔取100 μL種96孔板,放置于37 ℃、5% CO2細胞培養(yǎng)箱培養(yǎng)24 h,待細胞貼壁后,加入10 μL含不同濃度藥物的培養(yǎng)基,每種濃度設(shè)5個復孔,培養(yǎng)24 h后吸棄含藥物的培養(yǎng)基,每孔加入100 μL新鮮含10% FBS的RPMI-1640培養(yǎng)液及10 μL CCK-8,孵育1 h后觀察顯色程度,酶標儀測定在450 nm處的吸光度(A)值。GraphPad Prism 5軟件計算藥物不同濃度抑制率,得到IC50。
2.10DCs與凋亡的Capan-2細胞共培養(yǎng)的分組取對數(shù)生長期的Capan-2細胞,分別按不同濃度加入DDP,作用時間分別為12、24、36、48 h,胰酶消化收集細胞,按AnnexinⅤ/PI凋亡檢測試劑盒說明書操作,流式細胞術(shù)測細胞凋亡率,篩選出DDP作用Capan-2細胞的最佳作用濃度和時間。將健康人外周血單核細胞經(jīng)體外誘導培養(yǎng)、流式分選的CD11c+DCs分成4組,第1組加入含有25%Capan-2細胞上清的培養(yǎng)液培養(yǎng)48 h, 第2組加入含25%成纖維細胞上清的培養(yǎng)液培養(yǎng)48 h,第3組在第1組基礎(chǔ)上再加入TIM-3單克隆抗體。將前3組DCs與用順鉑處理后凋亡的Capan-2細胞按5∶1比例混勻共培養(yǎng) 24 h,第4組在第3組處理的DCs基礎(chǔ)上與DNase和RNase處理的凋亡Capan-2細胞共培養(yǎng),收集各組培養(yǎng)液,4 ℃、1 500 r/min離心10 min,取上清液,待測。
2.11ELISA檢測各組DCs分泌的細胞因子IFN-β和IL-12的水平在酶標包被板上設(shè)立標準孔,每組2個復孔,具體步驟按試劑說明書進行,運用酶標儀自動分析檢測結(jié)果,讀出具體檢測值。實驗重復3次,取平均值作為最終結(jié)果。
3統(tǒng)計學處理
采用SPSS 13.0軟件,對所有數(shù)據(jù)均進行正態(tài)性檢驗, 正態(tài)分布的計量資料以均數(shù)±標準差(mean±SD) 表示,組間比較采用單因素方差分析(one-way ANOVA),方差齊組間多重比較采用LSD分析,方差不齊組間多重比較采用Dunnett’s T3分析。以P<0.05為差異有統(tǒng)計學意義。
1胰腺癌組織及癌旁組織中DCs的觀察
免疫組化觀察9例癌旁胰腺組織和胰腺癌組織中均發(fā)現(xiàn)有浸潤的CD1α+S-100+DCs,見圖1。
2胰腺癌患者TIDC、癌旁組織中DCs、外周血及健康人外周血DCs上TIM-3表達的比較
流式細胞術(shù)檢測結(jié)果顯示胰腺癌組織中TIDC上TIM-3表達為(71.79±11.74)%,高于癌旁組織中、胰腺癌患者及健康人外周血DCs上TIM-3表達,數(shù)據(jù)分別為(11.46±6.68)%、(9.38±3.94)%和(4.10±2.24)%,差異顯著(P<0.01)。臺盼蘭染色檢測各組DCs存活率均大于93%,見圖2。
Figure 1.Immunohistochemistry detection of TIDC from pancreatic cancer tissues and adjacent tissues in human. A: CD1α+DCs in para-carcinoma tissue; B: S-100+DCs in para-carcinoma tissue; C: CD1α+DCs in pancreatic cancer tissue; D: S-100+DCs in pancreatic cancer tissue; E: CD1α+DCs in pancreatic cancer tissue; F: S-100+DCs in pancreatic cancer tissue (A~D:×100; E, F:×400).
圖1胰腺癌腫瘤組織及癌旁組織中分布的DCs
Figure 2.Expression of TIM-3 on surface of TIDC isolated from human pancreatic cancer and of myeloid dendritic cells (MDC) from peripheral blood. A: TIM-3 expression on DCs from pancreatic cancer tissues [TIDC(Pt)], para-carcinoma tissues[PcDC(Pt)] and peripheral blood of the same patients [MDC(Pt)]or healthy population [MDC(HP)], analyzed by flow cytometry. Numbers in top right quadrants indicate percentages of TIM-3+CD11c+cells among CD11c+cells. B: percentages of TIM-3+CD11c+cells among CD11c+cells in the 4 groups. Mean±SD.n=4.**P<0.01vsTIDC(Pt).
圖2分離自胰腺癌組織的TIDC及體外誘導的MDC表面TIM-3的表達
3胰腺癌細胞培養(yǎng)液上清對DCs表面TIM-3表達的影響
流式細胞術(shù)檢測結(jié)果顯示:含25%Capan-2、SW1990和Panc-1胰腺癌細胞培養(yǎng)液上清的3組DCs上TIM-3的相對表達量分別為(44.52±8.62)%、(52.05±6.48)%和(47.90±10.38)%,均高于Hs27細胞組TIM-3相對表達量[(12.67±4.27)%](P<0.05)。而含胰腺癌細胞上清的3組數(shù)值比較無顯著差異,見圖3。
Figure 3.Expression of TIM-3 on surface of DCs treated for 48 h with supernatants of Capan-2, SW1990 and Panc-1 tumor cells or Hs27 cells (25% in total medium). Mean±SD.n=4.*P<0.05vsHs27.
圖3胰腺癌細胞及Hs27細胞上清對DCs上TIM-3表達的影響
4阻斷胰腺癌上清中VEGF、IL-10和PGE2對DCs表達TIM-3的影響
分別在含25% Capan-2細胞上清的培養(yǎng)液中加入anti-VEGF-R2抗體、anti-IL-10抗體和PGE2受體EP2封閉肽,培養(yǎng)imDC 48 h后,流式細胞術(shù)檢測DCs上 TIM-3相對表達量,3組表達率分別為(38.09±5.87)%、(43.12±5.08)%和(39.53±4.60)%,與未加抗體組[(44.52±8.62)%]比較,有降低趨勢,但差異無統(tǒng)計學意義;聯(lián)合阻斷3種細胞因子作用后,TIM-3的表達水平明顯下調(diào)[(27.44±5.55)%](P<0.05),但并未完全抑制其表達,見圖4。
5DCs與凋亡胰腺癌細胞Capan-2共培養(yǎng)上清中細胞因子IFN-β、IL-12水平
CCK-8法測得DDP對Capan-2胰腺癌細胞24 h的IC50為13.6 mg/L。2倍IC50(27.2 mg/L)的DDP,作用于Capan-2細胞,12 h開始凋亡增加,36 h凋亡逐漸達到高峰值,48 h后以晚期凋亡和壞死為主(圖5),于是選擇27.2 mg/L作用36 h為DDP致Capan-2細胞凋亡的濃度和時間。凋亡Capan-2細胞與各組CD11c+DCs(流式分選CD11c+DCs純度>98%,圖6)共培養(yǎng),TIM-3高表達DCs組(Capan-2上清組)、TIM-3低表達DCs組(Hs27上清組)、TIM-3高表達DCs+TIM-3 mAb組和TIM-3高表達DCs+DNase+RNase組上清中細胞因子IL-12和IFN-β水平比較結(jié)果見圖7。
Figure 4.Expression of TIM-3 on surface of DCs treated with VEGF, IL-10 and PGE2inhibitors.A: expression of TIM-3 on surface of DCs treated for 48 h with supernatants of Capan-2 cells untreated or treated with anti-VEGFR2 (vascular endothelial growth factor receptor 2), anti-IL-10 and EP2 blocker (EP2 receptor bloking peptide) alone, or a combination of all three inhibitors; B: percentages of TIM-3+CD11c+cells among CD11c+cells in the 5 groups. Mean±SD.n=4.*P<0.05vscombination.
圖4抑制胰腺癌細胞培養(yǎng)液上清中VEGF、IL-10和PGE2對DCs表達TIM-3的影響
Figure 5.The percentages of apoptotic Capan-2 cells induced by DDP (27.2 mg/L) at different time points. UT: untreated.
圖52倍IC50(27.2 mg/L)的DDP作用不同時間后Capan-2細胞的凋亡情況
近期有學者研究報道,肺癌及結(jié)直腸腺癌荷瘤小鼠腫瘤組織浸潤的DCs及晚期肺癌、胃腺癌等患者腫瘤相關(guān)性DCs (tumor-associated DCs,TADC) 均高表達TIM-3,而癌旁組織、脾和外周血中DCs表面TIM-3低表達或幾乎不表達[5]。TIM-3表達與核酸介導的固有免疫密切相關(guān)。
TIM-3是2002 年Monney 等[7]發(fā)現(xiàn)并鑒定的Th1細胞表面的含免疫球蛋白和黏蛋白結(jié)構(gòu)域的跨膜蛋白。TIM-3 可通過與其天然配體半乳糖凝集素-9結(jié)合,誘導Th1、Th17及Tc細胞凋亡或抑制其分化[8]。研究顯示TIM-3還表達于多種固有免疫細胞亞群包括人NK細胞、巨噬細胞、未成熟的DCs[9-10]。而目前人胰腺癌TADC上TIM-3表達情況未見有報道。
Figure 6.Purity of CD11c+DCs detected by flow cytometry after sorting. The left curve indicates the control antibody-labeled DCs, while the right M1 indicates percentage of CD11c+DCs labeled by fluoresence.
圖6流式細胞術(shù)分選CD11c+DC的純度檢測
Figure 7.TIM-3 suppressed IL-12 and IFN-β production in DCs. The levels of IL-12 and IFN-β produced by four groups of dendritic cells after co-culture with apopto-tic Capan-2 cells at the ratio of 5∶1 for 24 h, detected by ELISA. A: Capan-2 Sup+DCs; B: Hs27 Sup+DCs; C: Capan-2 Sup+DCs+TIM-3 mAb; D: Capan-2 Sup+DCs+TIM-3 mAb+DNase+RNase. Mean±SD.n=4.**P<0.01vsC;▲▲P<0.01vsB.
圖7DCs上TIM-3表達對IL-12和IFN-β分泌的影響
本研究通過免疫組化發(fā)現(xiàn)胰腺癌患者腫瘤組織中存在大量浸潤性CD1α+S-100+DCs。我們進一步研究發(fā)現(xiàn):胰腺癌組織中TIDC上TIM-3的表達明顯高于癌旁組織中DCs及患者和健康人外周血DCs,提示胰腺癌局部微環(huán)境可能與DCs上TIM-3 表達增高有關(guān)。研究腫瘤微環(huán)境中TIDC表型及功能狀態(tài)變化的原因,有助于深入認識腫瘤免疫逃逸機制,找到促進機體抗腫瘤免疫應答的治療方法。
許多研究表明TIDC的分化和成熟發(fā)生障礙與腫瘤復雜的微環(huán)境關(guān)系密切[2-3]。在胰腺癌組織中,癌細胞可以產(chǎn)生細胞因子(如TGF-β、IL-10和IL-6),又可以表達表面分子(如VEGF、Fas-L、PD-L1和IDO)[11-13],腫瘤微環(huán)境內(nèi)還存在許多免疫抑制細胞(如CAFs、tolerogenic DCs、MDSCs、immunosuppressive TAMs和Treg cells)[14],這些免疫抑制細胞可通過消耗精氨酸、產(chǎn)生ROS和NO來抑制抗腫瘤免疫,與Treg細胞分泌的轉(zhuǎn)化生長因子 β(transforming growth factor β, TGF-β)和白細胞介素10(interleukin-10,IL-10)等共同形成一個免疫抑制環(huán)境,影響DCs分子表型和功能。我們通過研究人胰腺癌細胞培養(yǎng)液上清對DCs上TIM-3表達的影響,結(jié)果發(fā)現(xiàn)含有Capan-2、SW1990和Panc-1 3種胰腺癌細胞株上清的培養(yǎng)液對DCs上TIM-3表達均有不同程度上調(diào)作用;當在Capan-2細胞上清中聯(lián)合加入VEGFR2 mAb、IL-10 mAb和PGE2受體EP2阻斷劑時, DCs上TIM-3表達量有明顯下調(diào),但并未完全抑制其表達,而分別單獨加入VEGFR2 mAb、IL-10 mAb和PGE2受體EP2阻斷劑后,TIM-3表達則并無明顯下調(diào),提示胰腺癌微環(huán)境中參與DCs表達TIM-3調(diào)節(jié)的因素可能是多方面的,其中VEGF、IL-10及炎癥因子PGE2等可能共同參與了對DCs上TIM-3表達的正性調(diào)節(jié)。且已有研究表明在體內(nèi)腫瘤免疫抑制微環(huán)境中這些細胞因子相互影響,對DCs的調(diào)節(jié)作用更為廣泛。VEGF是一種重要的血管生成刺激因子,由腫瘤細胞釋放后,對腫瘤的血管生成起著關(guān)鍵作用,還可以抑制CD34+前體細胞向DCs的分化, 在抑制腫瘤微環(huán)境中TIDC 的成熟過程中發(fā)揮著重要作用,導致腫瘤逃避機體的免疫監(jiān)視[15]。而IL-10能抑制DCs 的分化成熟及抗原提呈能力、表達免疫抑制性受體[16],同時IL-10 的分泌又受到TGF-β的影響,TGF-β可顯著促進IL-10 的分泌[17]。另外免疫炎性反應也是腫瘤微環(huán)境的重要特征之一,在人和小鼠腫瘤內(nèi)腫瘤相關(guān)巨噬細胞(tumor-assocciated macrophages,TAMs),能夠產(chǎn)生大量的炎性細胞因子,腫瘤本身在 Toll樣受體(Toll-like recepters,TLRs)配體激活后也會產(chǎn)生大量炎性細胞因子[18],PGE2在大腸癌、原發(fā)性胃癌、乳腺癌等多種腫瘤組織中均發(fā)現(xiàn)高表達[19-21],是腫瘤微環(huán)境中重要的炎癥因子,參與了TIDC免疫抑制的發(fā)生[22]并且PGE2可通過EGFR-MAPK信號通路上調(diào)VEGF的表達[22-23];復雜的腫瘤免疫抑制的微環(huán)境[24-25],使得腫瘤局部免疫應答逐漸趨于負性調(diào)節(jié),形成免疫耐受是導致腫瘤細胞免疫逃逸的重要原因。
綜上所述,腫瘤微環(huán)境中負性免疫抑制因子及炎癥因子可能是造成TIDC上TIM-3表達上調(diào)的原因之一。
本研究還初步探討了TIM-3對TIDC功能的影響。IL-12是一種Th1型細胞因子,主要由成熟樹突狀細胞產(chǎn)生,是Th0細胞向Th1細胞分化的主要誘導因子,參與腫瘤細胞免疫,與NK細胞、T淋巴細胞等協(xié)同發(fā)揮抗腫瘤作用[26-29]。INF-β屬于Ⅰ型干擾素,能促進CD4+T細胞分泌IFN-γ,可激活NK細胞,進一步增強NK細胞非特異性殺傷靶細胞的作用。檢測IFN-β和IL-12水平,可以反映DCs固有免疫功能。細胞毒性藥物DDP是胰腺癌化療的一線用藥,能引起腫瘤細胞凋亡,同時會釋放內(nèi)源性核酸分子(DNA或RNA)導抗腫瘤的免疫應答[30]。我們通過實驗發(fā)現(xiàn)TIM-3+DCs與凋亡胰腺癌細胞Capan-2共培養(yǎng)后上清中細胞因子IL-12和IFN-β水平較對照組水平低,而阻斷TIM-3后,IFN-β和IL-12水平明顯升高,但加入DNase和RNase后,這種升高趨勢被消除,提示胰腺癌微環(huán)境中TIDC上表達的TIM-3可能參與了核酸介導的固有免疫應答的負性調(diào)節(jié),TIDC上TIM-3 的高表達可能抑制了化療誘導的腫瘤細胞死亡后釋放的內(nèi)源性核酸對DCs固有免疫免疫應答的激活,這也可能是導致胰腺癌對化療產(chǎn)生耐藥原因之一。而阻斷TIM-3是否可以增強胰腺癌化療的效果、促進胰腺癌核酸疫苗抗腫瘤免疫應答有待于體內(nèi)實驗的驗證。
本研究結(jié)果表明:TIM-3是胰腺癌腫瘤微環(huán)境中DCs固有免疫激活的負性調(diào)節(jié)因子之一;腫瘤細胞分泌的VEGF、IL-10和PGE2可能參與了對TIM-3表達的調(diào)控。研究為胰腺癌以DCs為基礎(chǔ)的免疫治療提供新的思路。但是,引起TIM-3高表達的轉(zhuǎn)錄因子及其下游的信號通路如何?在不同組織環(huán)境TIM-3通過什么途徑對固有免疫、適應性免疫進行調(diào)節(jié)?如何改善免疫抑制性的微環(huán)境提高DCs抗腫瘤效應?這一系列問題都有待進一步探索。
[1]Tanemura M, Miyoshi E, Nagano H, et al.Cancer immunotherapy for pancreatic cancer utilizing α-gal epitope/natural anti-Gal antibody reaction[J].World J Gastroenterol, 2015,21(40):11396-11410.
[2]Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells[J]. Annu Rev Immunol,2007, 25:267-296.
[3]巴俊慧, 吳本權(quán),王艷紅,等.MUC1 mRNA 體外負載樹突狀細胞誘導細胞毒性T 細胞對非小細胞肺癌的殺傷作用[J].中國病理生理雜志,2014,30(9):1574-1579.
[4]Golden-Mason L, Palmer BE, Kassam N, et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+and CD8+T cells[J]. J Virol, 2009, 83(18):9122-9130.
[5]Chiba S, Baghdadi M, Akiba H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1[J]. Nat Immunol,2012,13(9):832-842.
[6]劉錫娟,丁慧榮,田志華,等. FACSAria流式細胞儀無菌操作分選高純度細胞亞群[J]. 安徽醫(yī)科大學學報,2014,49(12):1811-1814.
[7]Monney L,Sabatos CA,Gaglia JL,et al.Th1-specific cell surface protein TIM-3 regulatesmacrophage activation and severity of an autoimmune disease[J]. Nature,2002,415(6871):536-541.
[8]Tembhre MK, Parihar AS, Sharma A,et al.Participation of T cell immunoglobulin and mucin domain-3 (TIM-3) and its ligand (galectin-9) in the pathogenesis of active generalized vitiligo[J].Immunol Res,2015,62(1):23-34.
[9]Anderson AC, Anderson DE, Bregoli L,et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells[J]. Science, 2007, 318(5853):1141-1143.
[10]Han G,Chen G,Shen B,et al. Tim-3: an activation mar-ker and activation limiter of innate immune cells[J]. Front Immunol,2013,4:449.
[11]Teraoka H, Sawada T,Nishihara T,et al. Enhanced VEGF production and decreased immunogenicity induced by TGF-beta 1 promote liver metastasis of pancreatic cancer[J]. Br J Cancer,2001, 85(4):612-617.
[12]Morse MA, Hall JR, Plate JM. Countering tumor-induced immunosuppression during immunotherapy for pancreatic cancer[J]. Expert Opin Biol Ther,2009,9(3):331-339.
[13]Loos M, Giese NA, Kleeff J,et al. Clinical significance and regulation of the costimulatory molecule B7-H1 in pancreatic cancer[J].Cancer Lett, 2008,268(1):98-109.
[14]Koido S, Homma S, Hara E, et al. Regulation of tumor immunity by tumor/dendritic cell fusions[J]. Clin Dev Immunol, 2010,2010:516768.
[15]Gabrilovich DI,Ishida T, Ohm JE,et al. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function[J]. Clin Cancer Res,1999,5(10):2963-2970.
[16]劉崢嶸,張敏,黎緯明,等.IL-10誘導小鼠樹突狀細胞耐受的分子機制[J].中國病理生理雜志,2008, 24(2):374-378.
[17]Allavena P, Piemonti L, Longoni D, et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophage[J]. Eur J Immunol,1998,28(1):359-369.
[18]He W,Liu Q,Wang L,et al. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance[J].Mol Immunol,2007,44(11): 2850-2859.
[19]Jaffe BM,Parker CW,Philpott GW.Immunochemical measurement of prostaglandin or prostaglandin-like activity from normal and neoplastic cultured tissue[J].Surg Forum,1971,22:90-92.
[20]Uefuji K,Ichikura T,Mochizuki H.Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer[J].Clin Cancer Res,2000,6(1):135-138.
[21]Watson J,Chuah SY.Prostaglandins,steroids and human mammary cancer[J].Eur J Cancer Clin Oncol,1985,21(9):1051-1055.
[22]Obermajer N,Muthuswamy R,Lesnock J,et al.Positive feedback between PGE2and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells[J].Blood,2011,118(20):5498-5505.
[23]Ding YB,Shi RH,Tong JD,et al.PGE2 up-regulates vascular endothelial growth factor expression in MKN28 gastric cancer cells via epidermal growth factor receptor signaling system[J].Exp Oncol,2005,27(2):108-113.
[24]Shevach EM. Mechanisms of Foxp3+T regulatory cell-mediated suppression[J]. Immunity, 2009,30(5):636-645.
[25]Mougiakakos D, Choudhury A, Lladser A, et al. Regulatory T cells in cancer[J]. Adv Cancer Res,2010,107:57-117.
[26]Minkis K, Kavannagh DG, Alter G, et al.Type 2 bias of T cell expanded from the blood of melanoma patients switched to type1 by IL-12p70 mRNA-transfected dendritic cells[J]. Cacer Res, 2008, 68(22): 9441-9450.
[27]Sinigaglia F, D’Ambrosio D, Panina-Bordignon P,et al. Regulation of the IL-12/IL-12R axis: a critical step in T-helper cell differentiation and effector function[J]. Immunol Rev, 1999, 170(8):65-72.
[28]Dowell AC, Oldham KA, Bhatt RI, et al. Long-term proliferation of functional human NK cells, with conversion of CD56dimNK cells to a CD56brightphenotype, induced by carcinoma cells co-expressing 4-1BBL and IL-12[J].Cancer Immunol Immunother, 2012,61(5):615-628.
[29]Tugues S, Burkhard SH, Ohs I,et al.New insights into IL-12-mediated tumor suppression[J].Cell Death Differ, 2015,22(2):237-246.
[30]Emens LA.Chemotherapy and tumor immunity: an unexpected collaboration[J].Front Biosci, 2008,13(1):249-257.
(責任編輯: 林白霜, 羅森)
Effect of human pancreatic cancer cell supernatant on expression of TIM-3 and function of dendritic cells
XIA Yuan-yuan1,2, CAI Chang-qing2, LU Ya-nan3, GAN Hui-quan4,ZHOU Quan-bo5
(1GuangdongMedicalCollege,Zhanjiang524023,China;2DepartmentⅡofOncology,TheSecondPeople’sHospitalofGuangdongProvince,Guangzhou510317,China;3DepartmentofAnesthesiology,SunYat-senMemorialHospital,SunYat-senUniversity,Guangzhou510120,China;4DepartmentofClinicalLaboratory,GuangdongGeneralHospital,Guangzhou510080,China;5DepartmentofHepatopancreatobiliarySurgery,SunYat-senMemorialHospital,SunYat-senUniversity,Guangzhou510120,China.E-mail:cchangq@163.com;zhquanbo@126.com)
AIM: To investigate the influence and mechanisms of human pancreatic cancer tumor microenvironments on T-cell immunoglobulin mucin-3 (TIM-3) expression and function of dendritic cells (DCs). METHODS: Tumor-infiltrating dendritic cells (TIDC) and para-carcinoma tissue DCs were isolated by Ficoll-Hypaque density centrifugation from trypsinized pancreatic carcinoma tissues, and the peripheral blood mononuclear cells were isolated from pancreatic cancer patients or healthy people. The expression of TIM-3 on DCs was detected by flow cytometry. DCs isolated from healthy people peripheral blood mononuclear cells were induced by rhGM-CSF and IL-4. The expression of TIM-3 in the DCs treated with the culture supernatants of Capan-2, SW1990 and Panc-1 pancreatic cancer cells or human skin fibroblast (Hs27) cells for 48 h, and in the DCs treated with supernatants of Capan-2 cells, anti-VEGF-R2, anti-IL-10 and EP2 receptor blocking peptide were evaluated by flow cytometry. The releases of IFN-β and IL-12 in the culture supernatants of DCs pretreated with monoclonal antibody (mAb) to TIM-3 or DNase+RNase, followed by stimulation with apoptotic Capan-2 cells, were detected by ELISA. RESULTS: DCs in tumor microenvironments had higher expression of TIM-3 than the DCs from para-carcinoma tissues and pancreatic cancer patient or healthy people peripheral blood (P<0.01). TIM-3 expression in the DCs treated with the culture supernatants of Capan-2, SW1990 and Panc-1 pancreatic cancer cells for 48 h was much higher than that in Hs27 cells (P<0.05). Treatment with a combination of anti-VEGF-R2, anti-IL-10 and EP2 receptor blocking peptide largely diminished the upregulation of TIM-3 on the DCs mediated by Capan-2 cell supernatants (P<0.05). The concentrations of IFN-β and IL-12 in the DCs with high expression level of TIM-3 were lower than those in the DCs with low TIM-3 expression level. Treatment with mAb to TIM-3 resulted in much more IFN-β and IL-12 releases (P<0.01), but DNase+RNase made this effect disappear. CONCLUSION: TIM-3 serves as a negative regulator of DCs innate immune responses in the pancreatic cancer microenvironments. The secretion of soluble factors to tumor microenvironment by pancreatic cancer cells, including IL-10, VEGF and PGE2, may contribute to the regulation of TIM-3 expression.
Pancreatic cancer; Dendritic cells; Tumor microenvironment; T-cell immunoglobulin and mucin-3
1000- 4718(2016)04- 0628- 09
2015- 11- 02
2016- 01- 13
國家自然科學基金資助項目(No.81000917;No.81370059)
Tel: 020-89168114; E-mail: cchangq@163.com; zhquanbo@126.com
R730.23
A
10.3969/j.issn.1000- 4718.2016.04.009
雜志網(wǎng)址: http://www.cjpp.net