張 弢, 王彥偉, 楊 杰, 袁方正圓, 張繼航, 黃 嵐
(第三軍醫(yī)大學(xué)新橋醫(yī)院全軍心血管病研究所,重慶 400037)
?
抑制囊泡轉(zhuǎn)運(yùn)對(duì)大鼠內(nèi)皮祖細(xì)胞增殖及鈣庫(kù)操縱性鈣內(nèi)流的影響*
張弢,王彥偉,楊杰,袁方正圓,張繼航,黃嵐△
(第三軍醫(yī)大學(xué)新橋醫(yī)院全軍心血管病研究所,重慶 400037)
目的: 研究囊泡轉(zhuǎn)運(yùn)在大鼠內(nèi)皮祖細(xì)胞(EPCs)增殖及鈣庫(kù)操縱性鈣內(nèi)流(SOCE)調(diào)控中的作用。方法: 密度梯度離心法分離獲取、并用acLDL-DiI和FITC-UEA-I熒光雙染鑒定脾源性EPCs。布雷菲德菌素A(BFA)抑制囊泡轉(zhuǎn)運(yùn),CCK-8法和實(shí)時(shí)無(wú)標(biāo)記細(xì)胞功能分析儀觀察EPCs增殖變化,流式細(xì)胞術(shù)檢測(cè)凋亡情況,并檢測(cè)囊泡轉(zhuǎn)運(yùn)關(guān)鍵蛋白ADP核糖基化因子GTP酶活化蛋白1(ARFGAP1)的表達(dá)。激光共聚焦顯微鏡觀察囊泡轉(zhuǎn)運(yùn)抑制后SOCE并用Western blot 檢測(cè)SOCC復(fù)合體蛋白表達(dá),進(jìn)一步采用RNA干擾的方式觀察囊泡轉(zhuǎn)運(yùn)對(duì)瞬時(shí)受體電位通道1(TRPC1)蛋白表達(dá)及SOCE的影響。結(jié)果: 雙染鑒定大鼠脾源性EPCs陽(yáng)性率為82.53%±6.12%。BFA顯著抑制EPCs的增殖但對(duì)凋亡無(wú)明顯影響,同時(shí)ARFGAP1表達(dá)也明顯降低,說(shuō)明EPCs的囊泡轉(zhuǎn)運(yùn)受到抑制。抑制EPCs囊泡轉(zhuǎn)運(yùn)顯著下調(diào)TRPC1的表達(dá),并降低SOCE。siTRPC1使EPCs的SOCE下降,但si-TRPC1預(yù)處理并抑制囊泡轉(zhuǎn)運(yùn)并沒(méi)有使EPCs的SOCE進(jìn)一步降低。結(jié)論: 抑制EPCs的囊泡轉(zhuǎn)運(yùn)可以抑制EPCs的增殖并通過(guò)下調(diào)TRPC1的表達(dá)降低SOCE水平。
內(nèi)皮祖細(xì)胞; 囊泡轉(zhuǎn)運(yùn); 瞬時(shí)受體電位通道1
血管內(nèi)皮損傷是動(dòng)脈粥樣硬化發(fā)生的病理基礎(chǔ),血管損傷后,鄰近的內(nèi)皮細(xì)胞對(duì)損傷的血管內(nèi)皮進(jìn)行有限的修復(fù)。既往研究證實(shí),內(nèi)皮損傷后內(nèi)皮祖細(xì)胞(endothelial progenitor cells,EPCs)——內(nèi)皮細(xì)胞的前體細(xì)胞——通過(guò)動(dòng)員到外周血,歸巢至損傷血管處,參與受損內(nèi)皮的修復(fù)。因此,研究?jī)?nèi)皮祖細(xì)胞增殖的相關(guān)機(jī)制顯得尤為重要。
本實(shí)驗(yàn)室早先的研究發(fā)現(xiàn)鈣庫(kù)操縱性鈣通道(store-operated Ca2+channels,SOCC)通過(guò)調(diào)控鈣庫(kù)操縱性鈣內(nèi)流(store-operated calcium entry,SOCE)影響EPCs的增殖等生物學(xué)功能[1]。間質(zhì)相互作用分子1(stromal interaction molecule 1,STIM1)作為SOCC的鈣離子感受器,感受內(nèi)質(zhì)網(wǎng)鈣庫(kù)鈣離子濃度變化,當(dāng)鈣庫(kù)耗竭時(shí)通過(guò)與細(xì)胞膜上鈣釋放激活鈣調(diào)因子1(calcium release-activated calcium modulator 1,Orai1)和/或瞬時(shí)受體電位通道1(transient receptor potential channel 1,TRPC1)相互作用,從而激活SOCE。Orai1和TRPC1是細(xì)胞膜上的通道蛋白,SOCC的重要組成部分。Orai1、TRPC1和STIM1對(duì)EPCs的SOCE起重要調(diào)節(jié)作用[2-3]。囊泡轉(zhuǎn)運(yùn)作為部分膜蛋白的重要運(yùn)輸方式[4]可能會(huì)影響Orai1和TRPC1的表達(dá)與轉(zhuǎn)運(yùn),進(jìn)一步調(diào)控SOCE。ADP核糖基化因子(ADP-ribosylation factor,ARF)是囊泡轉(zhuǎn)運(yùn)的關(guān)鍵成分,調(diào)控囊泡的生成。ARF只有和GTP結(jié)合時(shí)才具有活性。ARF主要參與蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)和高爾基體之間的轉(zhuǎn)運(yùn),對(duì)蛋白的分揀起到啟動(dòng)作用。本課題使用布雷菲德菌素A(brefeldin A,BFA)抑制細(xì)胞內(nèi)部ARF的活性,阻斷ARF與GTP的結(jié)合,從而特異性地抑制細(xì)胞內(nèi)囊泡轉(zhuǎn)運(yùn)。囊泡轉(zhuǎn)運(yùn)受抑制后,細(xì)胞增殖減弱,因此,細(xì)胞的增殖功能也常被用作評(píng)價(jià)囊泡轉(zhuǎn)運(yùn)抑制效率的重要參考。囊泡轉(zhuǎn)運(yùn)與調(diào)節(jié)TRPC1的膜表達(dá)密切相關(guān)[5],但其對(duì)SOCE及SOCC其它組成蛋白是否有影響尚未見報(bào)道。我們擬使用BFA抑制大鼠EPCs的囊泡轉(zhuǎn)運(yùn)觀察其對(duì)SOCC復(fù)合體組成蛋白表達(dá)和SOCE的影響,這將有助于找到全新的SOCC復(fù)合體調(diào)節(jié)靶點(diǎn),提高EPCs的血管修復(fù)能力,為血管損傷修復(fù)提供新的研究方向。
1動(dòng)物
成年雄性SD大鼠,重約150 g,SPF級(jí),購(gòu)自新橋醫(yī)院實(shí)驗(yàn)動(dòng)物中心。
2主要試劑
BFA購(gòu)自Selleck;DMEM低糖培養(yǎng)基和胎牛血清購(gòu)自Gibco;大鼠淋巴細(xì)胞分離液購(gòu)自天津?yàn)笊锕?;蛋白裂解液、CCK-8試劑和Fluo-3/AM購(gòu)自碧云天生物公司;STIM1和ARF GTP酶活化蛋白1(ARF GTPase-activating protein 1, ARFGAP1)抗體購(gòu)自CST;TRPC1-siRNA和Orai1抗體購(gòu)自Santa Cruz;TRPC1抗體購(gòu)自Abcam;LipofectamineTM2000由Invitrogen生產(chǎn)。
3主要方法
3.1脾源性大鼠EPCs的培養(yǎng)與鑒定參照本實(shí)驗(yàn)室前期工作方法[1],頸部脫臼法處死大鼠,無(wú)菌條件下取脾臟分離單個(gè)核細(xì)胞培養(yǎng)5~7 d。用acLDL-DiI和FITC-UEA-I熒光雙染鑒定EPCs。
3.2實(shí)時(shí)無(wú)標(biāo)記細(xì)胞功能分析儀(real-time cell analyzer instrument,RTCA)測(cè)定BFA對(duì)EPCs增殖能力的影響原代EPCs以每孔5×104個(gè)細(xì)胞密度接種至E-Plate L8,對(duì)照組和BFA組各設(shè)3個(gè)復(fù)孔。上樣后將E-Plate L8放到iCelligence系統(tǒng)上,系統(tǒng)會(huì)自動(dòng)掃描記錄細(xì)胞生長(zhǎng)全程。37 ℃、5% CO2培養(yǎng)48 h,換新鮮培養(yǎng)基并向BFA組中加入BFA(1 μmol/L),繼續(xù)培養(yǎng)至120 h。數(shù)據(jù)導(dǎo)入RTCAData Analysis Software 1.0進(jìn)行分析。
3.3CCK-8法測(cè)定BFA對(duì)EPCs增殖能力的影響根據(jù)說(shuō)明書,將原代EPCs以每孔5 000個(gè)的密度接種至96孔板,每組4個(gè)復(fù)孔。設(shè)置不同濃度BFA組(0.01、0.1、0.5、1、10、100 μmol/L),37 ℃、5% CO2培養(yǎng)24 h,棄原培養(yǎng)基,每孔加100 μL不含血清DMEM培養(yǎng)基和10 μL CCK-8溶液,37 ℃孵育2 h后酶標(biāo)儀測(cè)定450 nm波長(zhǎng)的吸光度,重復(fù)3次。
3.4流式細(xì)胞術(shù)檢測(cè)凋亡率預(yù)處理好EPCs,收集各組細(xì)胞上清液,PBS洗滌并用胰酶消化貼壁細(xì)胞3 min,終止消化后與先前收集的對(duì)應(yīng)組上清液細(xì)胞混合,PBS洗滌3次制備1×106的細(xì)胞懸液,加Anne-xin V和PI染色,上流式細(xì)胞儀檢測(cè)凋亡率。
3.5細(xì)胞內(nèi)鈣離子濃度的測(cè)定共聚焦培養(yǎng)皿上接種原代EPCs,培養(yǎng)至細(xì)胞融合率超過(guò)80%,加5 nmol/L的Fluo-3/AM,37 ℃避光孵育30 min。換新鮮DMEM培養(yǎng)基繼續(xù)孵育40 min,無(wú)鈣PBS洗滌3次加1 mL無(wú)鈣PBS,激光共聚焦顯微鏡下觀察(激發(fā)波長(zhǎng)488 nm,發(fā)射波長(zhǎng)530 nm)細(xì)胞的熒光強(qiáng)度。
3.6蛋白印跡實(shí)驗(yàn)細(xì)胞裂解液處理EPCs提取總蛋白,BCA法測(cè)量蛋白濃度。10% SDS-PAGE分離蛋白,50 μg蛋白上樣量,120 V恒壓電泳至目的蛋白與其它蛋白明顯分離,后以90 V、90 min將分離膠上蛋白電轉(zhuǎn)至PVDF膜。電轉(zhuǎn)后5%的脫脂奶粉封閉,4 ℃條件下I抗孵育過(guò)夜,TBST洗滌3次,加II抗37 ℃孵育1 h,TBST洗滌3次,ECL顯色。
3.7TRPC1-siRNA轉(zhuǎn)染EPCs6孔板培養(yǎng)EPCs至細(xì)胞融合率達(dá)到70%以上,換成無(wú)青霉素和鏈霉素的含20%胎牛血清的DMEM低糖培養(yǎng)基繼續(xù)培養(yǎng)24 h。250 μL轉(zhuǎn)染培養(yǎng)基稀釋4 μg TRPC1-siRNA,另外250 μL轉(zhuǎn)染培養(yǎng)基稀釋5 μL LipofectamineTM2000,后將兩者混合,于室溫下靜置20 min。再將500 μL混合液加入6孔板單孔,37 ℃、5% CO2培養(yǎng)6 h后換成2 mL的含血清DMEM低糖培養(yǎng)基繼續(xù)培養(yǎng)48 h。最后通過(guò)Western blot檢測(cè)轉(zhuǎn)染效率。
4統(tǒng)計(jì)學(xué)處理
使用SPSS 19.0軟件進(jìn)行分析,數(shù)據(jù)表示為均數(shù)±標(biāo)準(zhǔn)差(mean±SD),多組間比較使用單因素方差分析,兩組之間比較使用t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1BFA對(duì)EPCs增殖的影響
BFA是囊泡轉(zhuǎn)運(yùn)的特異性抑制劑,為了探索BFA合適的作用濃度,我們用0.1~100 μmol/L不同濃度BFA處理EPCs并觀察對(duì)增殖的影響。如圖1所示,BFA濃度為1 μmol/L時(shí)細(xì)胞增殖明顯受到抑制。為了進(jìn)一步探索合適的BFA作用時(shí)間,我們用1 μmol/L BFA處理細(xì)胞后利用RTCA技術(shù)動(dòng)態(tài)觀察細(xì)胞增殖情況,發(fā)現(xiàn)24 h 時(shí)BFA處理組與對(duì)照組比較差異有統(tǒng)計(jì)學(xué)顯著性(P<0.05)??紤]到藥物對(duì)細(xì)胞的其它影響,我們選擇把濃度為1 μmol/L 的BFA處理24 h作為后續(xù)實(shí)驗(yàn)的處理?xiàng)l件。
Figure 1.BFA inhibited the proliferation of EPCs detected by CCK-8 assay after the cells were exposed to different concentrations of BFA (A), and the proliferation of the cells at different time points after treated with BFA (1 μmol/L) was detected (B). Mean±SD.n=4.*P<0.05vscontrol group.
圖1BFA抑制EPCs增殖
2BFA對(duì)EPCs凋亡的影響
如圖2所示,對(duì)照組的凋亡率為8.73%±0.63%,BFA處理組的凋亡率為9.67%±0.29%,2組間差異無(wú)統(tǒng)計(jì)學(xué)顯著性,從而說(shuō)明EPCs增殖降低不是因?yàn)榈蛲鲆稹?/p>
3BFA對(duì)ARFGAP1蛋白表達(dá)的影響
我們用濃度為1 μmol/L 和0.1 μmol/L的BFA分別 處理EPCs,觀察ARFGAP1的表達(dá)變化,結(jié)果顯示,1 μmol/L處理組的 ARFGAP1表達(dá)明顯低于對(duì)照組(P<0.05),見圖3。
Figure 2.BFA had no influence on the apoptosis of EPCs. Apoptosis was detected by flow cytometry after treatment with BFA (1 μmol/L). Mean±SD.n=3.
圖2BFA對(duì)EPCs凋亡無(wú)影響
Figure 3.BFA down-regulated the expression of ARFGAP1. EPCs were treated with various concentrations (0.1 and 1 μmol/L) of BFA. The expression of ARFGAP1 was detected by Western blot. Mean±SD.n=3.*P<0.05vscontrol group.
圖3BFA下調(diào)ARFGAP1表達(dá)
4抑制囊泡轉(zhuǎn)運(yùn)對(duì)SOCE以及細(xì)胞內(nèi)鈣濃度的影響
如圖4所示,BFA處理組所激發(fā)的SOCE波峰明顯低于對(duì)照組,細(xì)胞內(nèi)游離鈣離子濃度同樣明顯低于對(duì)照組(P<0.05)。
Figure 4.Vesicular transport inhibition reduced SOCE and concentration of intracellular calcium. EPCs, incubated with or without BFA (1 μmol/L) for 24 h, were treated with thapsigargin (TG; 2 μmol/L) to induce the release of intracellular calcium store in a calcium-free solution (left peak of A), followed by Ca2+(2 mmol/L)to induce calcium [Ca2+] inward (right peak of A). At the same time, the average value of intracellular calcium ([Ca2+]i) was detected (B). Mean±SD.n=5.*P<0.05vscontrol group.
圖4抑制囊泡轉(zhuǎn)運(yùn)降低SOCE和細(xì)胞內(nèi)鈣濃度
5抑制囊泡轉(zhuǎn)運(yùn)對(duì)SOCC主要組成蛋白表達(dá)的影響
TRPC1、Orai1和STIM1是SOCC復(fù)合體的主要組成分子,其表達(dá)的改變能夠明顯影響SOCE。我們研究發(fā)現(xiàn)抑制囊泡轉(zhuǎn)運(yùn)會(huì)下調(diào)TRPC1的表達(dá),但對(duì)Orai1和STIM1的表達(dá)無(wú)明顯抑制,見圖5。
Figure 5.Vesicular transport inhibition down-regulated the expression of TRPC1. The EPCs were treated with BFA (1 μmol/L), and then the main proteins of SOCC complex were detected. Mean±SD.n=5.*P<0.05vscontrol group.
圖5抑制囊泡轉(zhuǎn)運(yùn)下調(diào)TRPC1表達(dá)
6TRPC1-siRNA轉(zhuǎn)染EPCs后對(duì)鈣流的影響
TRPC1-siRNA轉(zhuǎn)染后,TRPC1表達(dá)明顯受到抑制(P<0.01),而后我們檢測(cè)抑制TRPC1對(duì)EPCs的SOCE水平的影響,發(fā)現(xiàn)其明顯低于對(duì)照組,進(jìn)一步在抑制TRPC1的基礎(chǔ)上同時(shí)抑制囊泡轉(zhuǎn)運(yùn),SOCE的水平與單獨(dú)抑制TRPC1無(wú)明顯差異。我們還觀察了有鈣環(huán)境下EPCs的鈣內(nèi)流水平變化情況,發(fā)現(xiàn)單獨(dú)抑制TRPC1和抑制囊泡轉(zhuǎn)運(yùn)都會(huì)降低鈣內(nèi)流水平,而同時(shí)抑制TRPC1和囊泡轉(zhuǎn)運(yùn)鈣內(nèi)流水平與單獨(dú)抑制TRPC1無(wú)明顯差異。這說(shuō)明了抑制囊泡轉(zhuǎn)運(yùn)引起的SOCE降低與TRPC1相關(guān),見圖6。
Figure 6.Vesicular transport inhibition decreased the levels of SOCE in the EPCs via regulation of TRPC1. The expression of TRPC1 was detected by Western blot after transfection with siTRPC1 (A). EPCs were treated with TG (2 μmol/L) to induce the release of intracellular calcium-store in a calcium-free solution (left peak of B), followed by Ca2+to induce calcium inward (right peak of B). Meanwhile, the calcium current was detected after EPCs were treated with Ca2+(C). Mean±SD.n=6.*P<0.05vscontrol group.
圖6抑制囊泡轉(zhuǎn)運(yùn)通過(guò)調(diào)控TRPC1減弱EPCs的SOCE
既往研究發(fā)現(xiàn),囊泡轉(zhuǎn)運(yùn)是細(xì)胞的基本生理過(guò)程之一,調(diào)控著細(xì)胞內(nèi)多種物質(zhì)的轉(zhuǎn)運(yùn),囊泡轉(zhuǎn)運(yùn)受到抑制時(shí)細(xì)胞增殖會(huì)相應(yīng)地下降。我們用囊泡轉(zhuǎn)運(yùn)抑制劑BFA處理EPCs發(fā)現(xiàn)增殖受到明顯抑制,推測(cè)囊泡轉(zhuǎn)運(yùn)可能受到抑制,但有文獻(xiàn)報(bào)道BFA還可以誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激引起凋亡[6],因此我們觀察了BFA對(duì)EPCs凋亡的影響,結(jié)果顯示BFA處理對(duì)EPCs凋亡無(wú)明顯影響,說(shuō)明EPCs增殖的抑制主要由囊泡轉(zhuǎn)運(yùn)的抑制引起。與此同時(shí)我們檢測(cè)了囊泡轉(zhuǎn)運(yùn)相關(guān)蛋白ARFGAP1的表達(dá)情況,它的主要作用是調(diào)節(jié)囊泡形成以及膜轉(zhuǎn)運(yùn)過(guò)程,其表達(dá)水平的變化可以間接反映胞內(nèi)囊泡轉(zhuǎn)運(yùn)情況[7],進(jìn)一步證實(shí)了 EPCs的增殖抑制主要由囊泡轉(zhuǎn)運(yùn)受到抑制引起。
我們的研究發(fā)現(xiàn),抑制大鼠EPCs的囊泡轉(zhuǎn)運(yùn), EPCs的鈣釋放激活通道電流和細(xì)胞內(nèi)鈣濃度均明顯降低,說(shuō)明抑制囊泡轉(zhuǎn)運(yùn)降低SOCE。為了探索SOCE降低的相關(guān)機(jī)制,我們觀察了BFA對(duì)SOCC復(fù)合體主要組成蛋白(Orai1、STIM1和TRPC1)表達(dá)的影響,結(jié)果顯示TRPC1表達(dá)明顯下調(diào),而Orai1和STIM1表達(dá)無(wú)明顯變化,故我們推測(cè)抑制囊泡轉(zhuǎn)運(yùn)對(duì)SOCE的影響可能與TRPC1有關(guān)。繼而我們利用基因技術(shù)干擾TRPC1表達(dá)并觀察BFA對(duì)SOCE的影響,結(jié)果顯示與siTRPC1組相比,干擾TRPC1后加BFA處理SOCE無(wú)明顯變化,說(shuō)明抑制囊泡轉(zhuǎn)運(yùn)通過(guò)下調(diào)TRPC1表達(dá),進(jìn)而導(dǎo)致SOCE的降低。我們的發(fā)現(xiàn)首次闡明了囊泡轉(zhuǎn)運(yùn)與SOCE之間的關(guān)系,并對(duì)相關(guān)機(jī)制進(jìn)行了初步探索。
我們的研究主要通過(guò)BFA抑制ARF分子來(lái)實(shí)現(xiàn)對(duì)囊泡轉(zhuǎn)運(yùn)的調(diào)控。ARF廣泛存在于真核細(xì)胞中,對(duì)于膜轉(zhuǎn)運(yùn)具有關(guān)鍵性的調(diào)節(jié)作用[7]。它主要作用于囊泡的形成起始階段,通過(guò)調(diào)控招募囊泡的生物合成蛋白以及修飾跨膜蛋白來(lái)實(shí)現(xiàn)此功能。ARF與其它調(diào)節(jié)型GTP結(jié)合蛋白一樣,在GTP和GDP的循環(huán)之間起到分子開關(guān)的作用[8],當(dāng)ARF與GTP結(jié)合時(shí)才具有活性,而這種活性狀態(tài)能夠被BFA所阻斷[9]。研究表明BFA可以競(jìng)爭(zhēng)性抑制ARF與GTP的結(jié)合從而導(dǎo)致囊泡前體COPI受阻,使蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)中堆積,不能正常轉(zhuǎn)運(yùn)到高爾基體[10],通過(guò)此方式運(yùn)輸?shù)哪さ鞍滓矡o(wú)法正常轉(zhuǎn)運(yùn)到細(xì)胞膜上進(jìn)一步發(fā)揮生物學(xué)功能。
TRPC通道蛋白受囊泡轉(zhuǎn)運(yùn)相關(guān)蛋白的調(diào)控,從而影響其在細(xì)胞膜上的定位和功能發(fā)揮。有文獻(xiàn)報(bào)道,正常細(xì)胞內(nèi)異源性表達(dá)TRPC1對(duì)SOCE無(wú)明顯影響[11],而抑制正常細(xì)胞內(nèi)的TRPC1蛋白表達(dá)則會(huì)明顯降低SOCE[12],這可能說(shuō)明TRPC1只有轉(zhuǎn)運(yùn)到細(xì)胞膜上才能發(fā)揮功能。最近的研究還發(fā)現(xiàn)TRPC1只有轉(zhuǎn)運(yùn)到細(xì)胞膜上并且正確錨定到功能位點(diǎn)與輔助蛋白結(jié)合才能形成有功能的通道,囊泡轉(zhuǎn)運(yùn)在這一過(guò)程發(fā)揮了重要作用[13-14]。我們的研究發(fā)現(xiàn),在EPCs上抑制囊泡轉(zhuǎn)運(yùn),能夠明顯降低TRPC1的表達(dá),進(jìn)而降低SOCE, EPCs的增殖也同時(shí)受到了抑制。本實(shí)驗(yàn)室前期研究已經(jīng)證明了通過(guò)下調(diào)SOCE可以降低EPC的增殖,但是抑制囊泡轉(zhuǎn)運(yùn)是否是通過(guò)調(diào)節(jié)SOCE來(lái)影響EPCs的增殖目前還不清楚,因而我們將在下一階段的實(shí)驗(yàn)來(lái)進(jìn)行驗(yàn)證。
本研究發(fā)現(xiàn)抑制EPCs的囊泡轉(zhuǎn)運(yùn)可以抑制EPCs的增殖并通過(guò)下調(diào)TRPC1的表達(dá)影響SOCC復(fù)合體的功能從而降低SOCE的水平。這說(shuō)明囊泡轉(zhuǎn)運(yùn)可以作為SOCC復(fù)合體的一種全新的調(diào)控靶點(diǎn)從而影響EPCs生物學(xué)功能。在未來(lái)的研究中我們可以對(duì)TRPC1蛋白囊泡轉(zhuǎn)運(yùn)過(guò)程的進(jìn)一步探索來(lái)實(shí)現(xiàn)對(duì)TRPC1功能的調(diào)控,從而為臨床心血管疾病的治療提供全新的分子靶標(biāo)。
[1]Kuang C, Yu Y, Wang K, et al. Knockdown of transient receptor potential canonical-1 reduces the proliferation and migration of endothelial progenitor cells[J]. Stem Cells and Development, 2012, 21(3):487-496.
[2]Li Z, Liu L, Deng Y, et al. Graded activation of CRAC channel by binding of different numbers of STIM1 to Orai1 subunits[J]. Cell Res, 2010, 21(2):305-315.
[3]Cong X, Wang W, Zhu X, et al. Silence of STIM1 attenuates the proliferation and migration of EPCs after vascular injury and its mechanism[J]. Asian Pacific J Trop Med, 2014, 7(5):373-377.
[4]Kawada D, Kobayashi H, Tomita T, et al. The yeast Arf-GAP Glo3p is required for the endocytic recycling of cell surface proteins[J]. Biochim Biophys Acta, 2015, 1853(1):144-156.
[5]de Souza LB, Ong HL, Liu X, et al. Fast endocytic recycling determines TRPC1-STIM1 clustering in ER-PM junctions and plasma membrane function of the channel[J]. Biochim Biophys Acta, 2015, 1853(10 Pt A):2709-2721.
[6]Wlodkowic D, Skommer J, Pelkonen J. Brefeldin A triggers apoptosis associated with mitochondrial breach and enhances HA14-1- and anti-Fas-mediated cell killing in follicular lymphoma cells[J]. Leuk Res, 2007, 31(12):1687-1700.
[7]East MP, Kahn RA. Models for the functions of Arf GAPs[J]. Semi Cell Dev Biol, 2011, 22(1):3-9.
[8]Kobayashi N, Kon S, Henmi Y, et al. The Arf GTPase-activating protein SMAP1 promotes transferrin receptor endocytosis and interacts with SMAP2[J]. Biochem Biophys Res Commun, 2014, 453(3):473-479.
[9]Ismail SA, Vetter IR, Sot B, et al. The structure of an Arf-ArfGAP complex reveals a Ca2+regulatory mechanism[J]. Cell, 2010, 141(5):812-821.
[10]Hsu VW, Yang J. Mechanisms of COPI vesicle formation[J]. FEBS Lett, 2009, 583(23):3758-3763.
[11]de Souza LB, Ambudkar IS. Trafficking mechanisms and regulation of TRPC channels[J]. Cell Calcium, 2014, 56(2):43-50.
[12]Bodiga VL, Kudle MR, Bodiga S. Silencing of PKC-α, TRPC1 or NF-κB expression attenuates cisplatin-induced ICAM-1 expression and endothelial dysfunction[J]. Biochem Pharmacol, 2015, 98(1):78-91.
[13]Hong C, Kim J, Jeon J, et al. Gs cascade regulates canonical transient receptor potential 5 (TRPC5) through cAMP mediated intracellular Ca2+release and ion channel trafficking[J]. Biochem Biophys Res Commun, 2012, 421(1):105-111.
[14]Cayouette S, Bousquet SM, Francoeur N, et al. Involvement of Rab9 and Rab11 in the intracellular trafficking of TRPC6[J]. Biochim Biophy Acta, 2010, 1803(7):805-812.
(責(zé)任編輯: 陳妙玲, 羅森)
Influences of vesicular transport inhibition on proliferation and store-operated calcium entry in rat endothelial progenitor cells
ZHANG Tao, WANG Yan-wei, YANG Jie, YUAN Fang-zheng-yuan, ZHANG Ji-hang, HUANG Lan
(InstituteofCardiovascularDiseasesofPLA,XinqiaoHospital,ThirdMilitaryMedicalUniversity,Chongqing400037,China.E-mail:huanglan260@126.com)
AIM: To investigate the effects of vesicular transport inhibition on the proliferation and regulation of store-operated calcium entry (SOCE) in rat endothelial progenitor cells (EPCs). METHODS: EPCs were isolated from the rats with density-gradient centrifugation and confirmed via double fluorescence staining with acLDL-DiI and FITC-UEA-I. After inhibition of vesicular transport with brefeldin A (BFA), the proliferation of EPCs was measured by CCK-8 assay and real-time cell analyzer instrument, apoptosis was analyzed by flow cytometry, and the expression of ADP-ribosylation factor GTPase-activating protein 1 (ARFGAP1), a key protein to vesicular transport, was also detected. SOCE was observed under laser scanning confocal microscope after the vesicular transport was inhibited, and the protein expression of SOCC complex was determined by Western blot. Furthermore, the influences of vesicular transport inhibition on the expression of transient receptor potential channel 1 (TRPC1) and SOCE were examined with a RNA interference method. RESULTS: The acLDL-DiI and FITC-UEA-I double positive rate of the cells was 82.53%±6.12%. BFA insult significantly inhibited the proliferation of EPCs and down-regulated the expression of ARFGAP1, and no influence on the apoptosis of the EPCs was observed, suggesting that vesicular transport of EPCs was inhibited. Vesicular transport inhibition remarkably down-regulated the expression of TRPC1 and decreased SOCE level. No evident difference in the level of SOCE between siTRPC1 group and siTRPC1+BFA group, in which the cells were pretreated with siTRPC1 before BFA addition, was observed. CONCLUSION: Vesicular transport inhibition in EPCs reduces the proliferation of EPCs and decreases SOCE level through down-regulation of TRPC1.
Endothelial progenitor cells; Vesicular transport; Transient receptor potential channel 1
1000- 4718(2016)04- 0591- 06
2015- 12- 31
2016- 03- 07
國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81370211)
Tel: 023-68755601; E-mail: huanglan260@126.com
R329.25
A
10.3969/j.issn.1000- 4718.2016.04.003
雜志網(wǎng)址: http://www.cjpp.net