
也在(a,b)上單調(diào)上升(下降).而且,若f′/g′的單調(diào)性是嚴格的,則F和G的單調(diào)性也是嚴格的.
引理 2.2設(shè)r(n)和s(n)(n=0,1,2,…)都為實數(shù),冪級數(shù)


接下來,引理2.3(i),(ii)參見文[5]引理5.2(1),(2),引理2.3(iii)參見文[15]引理2.11(1),引理2.3(iv)參見文[5]引理5.4(1).
引理2.3對任意的r∈(0,1)及a∈(0,1/2),則




3 主要結(jié)果證明
F1(r)=f1(r)/f2(r),f1(0)=f2(0)=0.

由此,根據(jù)式(2)、引理2.1、引理2.3(ii)便知函數(shù)F1(r)的單調(diào)性.
顯然,F(xiàn)1(1-)=0,F(xiàn)1(0+)=2(1-a)/π.
(ii) 令
f3(r)=a[Ka(r)-Ea(r)]-(1-a)[Ea(r)-r′2Ka(r)],
f4(r)=[Ea(r)-r′2Ka(r)][Ka(r)-Ea(r)],
則
F2(r)=f3(r)/f4(r),f3(0)=f4(0)=0.

(9)

根據(jù)引理2.3(i)、引理2.3(iii)及引理2.3(iv)可知,函數(shù)f5(r)在(0,1)上嚴格單調(diào)下降.因此,由式(4)、式(9)、引理2.1可得F2(r)的單調(diào)性.
其次,由引理2.1、引理2.3可知,極限值

(iii)由式(1)-(4)可知


(10)
由式(2)及文[3]2.2(5)可知

故
這處傷口在右腰偏下方向,約有15公分,但傷口又被人用紅色絲線很整齊地縫了起來,如同趴了一條巨大的蜈蚣。老馬說:“這不是醫(yī)院縫的,但是縫的人顯然很細心?!碧鞖馊匀皇菬?,但秦明月徒然感到一陣寒意,他越來越感覺到這事非同小可。老馬又說:“這個傷口具體是什么原因還有待檢驗。”

(11)
利用式(10),(11)級數(shù)的展開式,可得


令c1(n)=a1(n)/b1(n),則有

?(2n+5)(n+a)(n-a+2)-(2n+1)(n+2)2
=-2(a-1)2n-5(a-1)2+1<0.
也即c1(n)關(guān)于n∈嚴格單調(diào)下降.因此,由引理2.2知,F(xiàn)3(r)在(0,1)上也是嚴格單調(diào)下降.易得:
F3(0+)=3(1-a)π/8,F(xiàn)3(1-)=sin(aπ)/2.
定理2的證明
(i) 令g1(r)=π/2-Ea(r),g2(r)=1-[r′2arthr]/r,則
G1(r)=g1(r)/g2(r), g1(0)=g2(0)=0.
求導(dǎo)得

其中F3(r)由定理1.(3)定義.故由定理1(3)及引理2.1可知,G1(r)在(0,1)上嚴格單調(diào)下降.由式(3)、引理2.1、定理1(3)易得

顯然,不等式(7)成立.
(ii)對G2(r)進行求導(dǎo)得
r′G′2(r)=g3(r)=g4(r)+g5(r),
其中

g5(r)=(1-2r2)Ka(r)K′a(r).

和
rr′2g5(r)=2(1-a)(1-2r2)g6(r)-4r2r′2Ka(r)K′a(r),

因此,對g3(r)求導(dǎo)得


其中g(shù)7(r)=g6(r)g8(r),g8(r)=1-2r2.

注(i)當a=1/2時,定理2(1)推廣了文[14]定理1.2(1)中關(guān)于第二類完全橢圓積分的結(jié)論,對廣義Hersch-Pfluger偏差函數(shù)的精確上界的初等估計有重要意義.
(ii)當a=1/2時,定理2(2)推廣了文[13]引理2.1(1)中關(guān)于第一類完全橢圓積分的結(jié)論,并對廣義Ramanujan模方程解的不等式的證明有重要作用.
[1]Abramowitz M,Stegun I A. Handbook of mathematical functions with formulas,graphs and mathematical tables[M] . New York:Dover Publication,1965: 253-294.
[2]王飛,周培桂,馬曉艷.Γ-函數(shù)的幾個性質(zhì)及應(yīng)用[J]. 浙江理工大學(xué)學(xué)報,2014,31(5):576-579.
[3]Qiu S L,Vuorinen M. Handbook of complex analysis:special function in geometric function theory [M].Elsevier B.V North Holland Press:2005:621-659.
[4]Anderson G D,Vamanamurthy M K, Vuorinen M. Conformal invariants, inequalities, and quasiconformal mappings [M].New York:John Wiley & Sons,1997:32-47.
[5]Anderson G D, Qiu S L,Vamanamurthy M K, Vuorinen M. Generalized elliptic integrals and modular equations[J]. Pacific J.Math,2000,192(1): 1-37.
[6]Lawden D F. Elliptic functions and applications[ M].NewYork:Springer-Verlng, 1989:50-64.
[7]Qiu S L, Vuorinen M. Landen inequalities for Hypergeometric function[J].Nagoya Math.J,1999 ,154:31-56.
[8]Qiu S L, Vuorinen M. Duplication inequalities for the ratios of hypergeometric functions[J].Forum Math, 2000,12: 109-133.
[9]馬曉艷,裘松良.廣義橢圓積分的性質(zhì)[J].浙江理工大學(xué)學(xué)報,2007,24(2):200-205.
[10]Qiu S L. Grotzsch ring and Ramanujan's modular equations[J]. ActaMathecatica,Sinica,New Series, 2000, 43(2):283-290.
[11]Ma X Y, Chu Y M, Wang F. Monotonicity and inequalities for the generalized distortion function[J].Acta Mathematica Scientia,2013,33B(6):1759-1766.
[12]Wang G D, Zhang X H, Chu Y M. Inequalities for the generalized elliptic integrals and modular functions [J]. J.Math.Anal.Appl,2007, 331:1275-1283.
[13]Anderson G D, Qiu S L, Vuorinen M. Modular equations and distortion functions[J]. Jounal of Ramanujan, 2009,18:147-169.
[14]Wang M K, Qiu S L, Chu Y M, Jiang Y P. Generalized Hersch-Pfluger distortion function and complete integrals[J].J.Math.Anal.Appl,2012, 385:221-229.
[15]屠國燕.廣義橢圓積分與Ramanujan模方程解的性質(zhì)[D].浙江理工大學(xué)碩士學(xué)位論文,杭州:浙江理工大學(xué),2010.
Monotonicity and Inequalities for The Generalized Elliptic Integrals
WANGFei1,ZHOUPei-gui2,MAXiao-yan3
(1. Mathematics Teaching and Research Section, Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou 310053, China;2. College of Science and Art, Zhejiang Sci-Tech University, Hangzhou 311121, China;3. School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China)
Some monotonicity properties of certain combinations of these functions defined in terms of the generalized elliptic integrals and some elementary functions are mainly obtained by monotone L’ Hpital rule, and from which some precise inequalities are obtained. Meanwhile, some known results are generalized for the generalized elliptic integrals, these results will be used to study the generalized Gr?tzsch ring function, Ramanujan’s modular equations and the solutions of them.
monotonicity; generalized elliptic integrals; precise inequalities; modular equation
2015-12-10;[修改日期] 2016-03-06
國家自然科學(xué)基金資助項目(11171307);浙江省教育廳科研項目基金(Y201328799);浙江機電職業(yè)技術(shù)學(xué)院科研項目(A027116026)
王飛(1985-),男,碩士,講師,從事擬共形映射及特殊函數(shù)研究.Email:wf509529@163.com.
馬曉艷(1979-),女,碩士,副教授,從事擬共形映射及特殊函數(shù)研究.Email:mxy@zstu.edu.cn
O174
C
1672-1454(2016)03-0077-06