李志鵬 劉晗璐 司華哲 鮑 坤 李光玉
(中國農(nóng)業(yè)科學(xué)院特產(chǎn)研究所經(jīng)濟(jì)動(dòng)物研究室,長春130112)
?
不同粗飼料條件下梅花鹿瘤胃甲烷菌結(jié)構(gòu)的比較分析
李志鵬劉晗璐司華哲鮑坤李光玉*
(中國農(nóng)業(yè)科學(xué)院特產(chǎn)研究所經(jīng)濟(jì)動(dòng)物研究室,長春130112)
本研究旨在基于高通量測序技術(shù)分析比較采食3種常見粗飼料梅花鹿瘤胃甲烷菌結(jié)構(gòu)。選取3只2歲齡的裝有永久性瘤胃瘺管的成年雄性梅花鹿為研究對(duì)象,采用3×3拉丁方設(shè)計(jì),分別飼喂以柞樹葉(OL組)、玉米秸稈(CS組)和玉米青貯(CI組)為主要粗飼料的飼糧。預(yù)試期為1周,正試期為4周。采用引物A519F、A976R擴(kuò)增瘤胃甲烷菌16S rRNA基因V3~V4區(qū),基于Illumina Miseq PE250平臺(tái)進(jìn)行測序。結(jié)果表明:9個(gè)樣本共獲得600 352條高質(zhì)量的甲烷菌16S rRNA基因序列,基于97%相似性共歸為111個(gè)分類操作單元(OTU)。覆蓋度指數(shù)表明本試驗(yàn)樣品覆蓋了瘤胃99%的甲烷菌。分類分析結(jié)果表明甲烷短桿菌屬(Methanobrevibacterspp.)[OL組:(97.80±6.00)%;CS組:(97.10±1.50)%;CI組:(87.50±5.50)%]是梅花鹿瘤胃優(yōu)勢甲烷菌,但采食3種粗飼料梅花鹿瘤胃甲烷菌在種水平的分布有差異。CI組Methanosphaerastadtmanae相對(duì)豐度顯著高于OL組與CS組(P<0.05)。OL組與CI組Methanobrevibactermillerae相對(duì)豐度高于CS組(P>0.05),OL組與CS組Methanobrevibacterboviskoreani相對(duì)豐度高于CI組(P>0.05),而CS組與CI組Methanobrevibacterolleyae相對(duì)豐度高于OL組(P>0.05)。本研究發(fā)現(xiàn)Methanobrevibacterspp.是梅花鹿瘤胃優(yōu)勢甲烷菌。
梅花鹿;甲烷菌;Methanobrevibacterspp.;粗飼料
甲烷是一種與全球氣候變化密切相關(guān)的溫室氣體。據(jù)統(tǒng)計(jì),畜牧業(yè)貢獻(xiàn)了全球9%~18%的溫室氣體排放,其中反芻動(dòng)物排放占有率為80%,同時(shí)反芻動(dòng)物的甲烷形成過程也導(dǎo)致機(jī)體損失2%~12%的凈能量[1-2]。因此,反芻動(dòng)物的甲烷排放越來越受到人們的關(guān)注。對(duì)反芻動(dòng)物而言,甲烷主要是由瘤胃甲烷菌利用飼料消化過程中所產(chǎn)生的中間代謝產(chǎn)物,如氫氣、甲酸、甲醇及甲胺等,還原二氧化碳而生成的。因此,研究反芻動(dòng)物瘤胃甲烷菌結(jié)構(gòu)能夠?yàn)榧淄檎{(diào)控提供依據(jù)。梅花鹿(Cervusnippon)是我國的一種珍稀名貴鹿科反芻動(dòng)物,鹿茸是成年梅花鹿的主要產(chǎn)品,具有很高的藥用經(jīng)濟(jì)價(jià)值。因此,研究梅花鹿瘤胃甲烷菌結(jié)構(gòu)有助于了解甲烷菌在梅花鹿瘤胃生態(tài)中的作用。目前,國內(nèi)外學(xué)者基于非培養(yǎng)技術(shù)已經(jīng)研究了多種反芻動(dòng)物瘤胃甲烷菌結(jié)構(gòu),結(jié)果表明宿主特異性可能是影響瘤胃甲烷菌結(jié)構(gòu)的一個(gè)重要因素[3-4]。本實(shí)驗(yàn)室前期研究發(fā)現(xiàn)普雷沃氏菌屬(Prevotellaspp.)是梅花鹿瘤胃優(yōu)勢細(xì)菌[5],而瘤胃細(xì)菌是為甲烷菌生長提供底物的一類重要微生物。因此,梅花鹿瘤胃可能棲息著獨(dú)特的甲烷菌群落結(jié)構(gòu)。另外,飼糧組成也顯著影響著瘤胃甲烷菌組成及豐度。玉米秸稈和玉米青貯是家養(yǎng)梅花鹿常用粗飼料,柞樹葉是放牧條件下梅花鹿喜歡采食的一種富含單寧的粗飼料。本實(shí)驗(yàn)室前期研究發(fā)現(xiàn)富含單寧的植物飼料降低反芻動(dòng)物甲烷產(chǎn)量并影響其瘤胃甲烷菌結(jié)構(gòu)[6]。這表明采食柞樹葉、玉米秸稈和玉米青貯這3種粗飼料的梅花鹿的瘤胃甲烷菌結(jié)構(gòu)可能有所不同。因此,本研究擬對(duì)采食上述3種粗飼料的梅花鹿的瘤胃甲烷菌結(jié)構(gòu)進(jìn)行比較分析,旨在為調(diào)控梅花鹿瘤胃甲烷產(chǎn)量提供理論基礎(chǔ)。
1.1試驗(yàn)動(dòng)物及樣品采集
選取3只2歲齡的裝有永久性瘤胃瘺管的成年雄性梅花鹿為研究對(duì)象,平均體重120 kg,單只單圈飼養(yǎng)于中國農(nóng)業(yè)科學(xué)院特產(chǎn)研究所茸鹿試驗(yàn)基地。采用3×3拉丁方設(shè)計(jì),3只試驗(yàn)動(dòng)物分別飼喂以柞樹葉(OL組)、玉米秸稈(CS組)和玉米青貯(CI組)為粗飼料的飼糧,每只梅花鹿每天飼喂相同精飼料2.0 kg,粗飼料在飼糧中約占50%(干物質(zhì)基礎(chǔ)),飼糧組成及營養(yǎng)水平見表1。試驗(yàn)動(dòng)物每天定時(shí)定量飼喂2次,自由飲水。每只試驗(yàn)動(dòng)物每種粗飼料預(yù)飼1周,正試期為4周。試驗(yàn)期末通過瘤胃瘺管采集瘤胃內(nèi)容物(約為200 g),置于冰盒中迅速帶回實(shí)驗(yàn)室,保存于-80 ℃冰箱備用。
表1 飼糧組成及營養(yǎng)水平(風(fēng)干基礎(chǔ))
1)每千克預(yù)混料中含有Contained the following per kg of premix: MgO 7.6 g,ZnSO43.6 g,MnSO4·H2O 4.3 g,F(xiàn)eSO4·H2O 5.3 g,NaSeO33.1 g,CaHPO4517 g,VA 248 400 IU,VB10.009 2 g,VB20.069 g,VB120.138 mg,VD3496.8 IU,VE 82.8 IU,VK30.023 g,葉酸 folic acid 2.3 mg,泛酸鈣 calcium pantothenate 115 g,煙酸 nicotinic acid 0.162 g。
2)實(shí)測值Measured values。
1.2瘤胃內(nèi)容物總基因組DNA提取
1.3PCR擴(kuò)增與Illumina Miseq測序
采用引物A519F(5′-CAGCMGCCGCGGTAA-3′)和A976R(5′-CCGGCGTTGAMTCCAATT-3′)[7]擴(kuò)增甲烷菌16S rRNA基因V3~V4區(qū)。PCR產(chǎn)物純化后送至上海美吉生物醫(yī)藥科技有限公司進(jìn)行PCR產(chǎn)物定量、DNA序列修飾、文庫構(gòu)建及Illumina Miseq PE250平臺(tái)測序。
1.4數(shù)據(jù)處理與生物信息學(xué)分析
對(duì)雙端測序?qū)υ紨?shù)據(jù)進(jìn)行質(zhì)量控制,舍棄低質(zhì)量序列(50個(gè)連續(xù)堿基平均質(zhì)量<25、序列長度<50的序列)。采用軟件Flash連接通過質(zhì)量控制的序列對(duì)應(yīng)的兩端序列(錯(cuò)配率為0),獲得分析序列。采用QIIME1.7.0軟件包分析梅花鹿瘤胃甲烷菌多樣性[8]。根據(jù)條形碼(barcode)信息對(duì)序列進(jìn)行拆分,同時(shí)根據(jù)以下條件剔除低質(zhì)量序列:1)序列最短長度為400 bp,最長長度為500 bp;2)50個(gè)連續(xù)堿基最低質(zhì)量為25;3)barcode序列最大錯(cuò)誤數(shù)為0;4)序列中同聚物最大長度為6;5)引物錯(cuò)配率為0。采用Usearch61根據(jù)97%序列相似性將所有序列歸為操作分類單元(operational taxonomic unit,OTU)[9]。OTU代表序列與Greengenes數(shù)據(jù)庫[10]進(jìn)行PyNAST比對(duì),采用Chimera Slayer軟件去除嵌合體[11]。選取至少出現(xiàn)在5個(gè)樣品中的OTU序列構(gòu)建OTU表。選取每個(gè)OTU代表序列,利用Blast程序在NCBI中搜索相似性最高序列,對(duì)OTU序列進(jìn)行分類。采用QIIME1.7.0軟件包計(jì)算菌群豐富度指數(shù)(Chao1指數(shù))、覆蓋度指數(shù)(coverage index)及多樣性指數(shù)[香農(nóng)-威納(Shannon-Wiener)指數(shù)和辛普森(Simpson)指數(shù)][8]。
以嗜熱菌(Aquifexpyrophilus)為外群,選取21種甲烷菌16S rRNA基因序列和所有OTU代表序列,利用MEGA 5.05軟件中的ClustalW比對(duì)后輸出為同一長度序列,利用Kimura-two參數(shù)矩陣模型和鄰接(neighbor-joining,NJ)法進(jìn)行系統(tǒng)發(fā)育分析,設(shè)置Bootstrap值為1 000[12]。FigTree v1.4.0軟件顯示發(fā)育樹。
1.5統(tǒng)計(jì)分析
基于SigmaPlot 12.0軟件采用三因素方差分析對(duì)不同組別甲烷菌的相對(duì)豐度進(jìn)行顯著性檢驗(yàn),甲烷菌相對(duì)豐度和多樣性指數(shù)等數(shù)據(jù)結(jié)果表示為平均值±標(biāo)準(zhǔn)誤,P<0.05為差異顯著。
2.1測序結(jié)果與多樣性指數(shù)
本試驗(yàn)中9個(gè)樣本共獲得600 352條高質(zhì)量甲烷菌16S rRNA基因序列,每個(gè)樣品的平均序列數(shù)為66 705。以97%序列相似性為閾值,600 352個(gè)序列歸為111個(gè)OTU。樣品覆蓋度指數(shù)表明試驗(yàn)所得OTU代表了瘤胃中99%的甲烷菌,滿足后續(xù)分析。3組中豐富度指數(shù)(Chao1指數(shù))和多樣性指數(shù)(Shannon-Wiener指數(shù)和Simpson指數(shù))無顯著差異(P>0.05),但CS組與CI組Shannon-Wiener指數(shù)和Simpson指數(shù)較OL組有升高的趨勢(表2)。
表2 高通量測序數(shù)據(jù)概況
同列數(shù)據(jù)肩標(biāo)無字母或相同字母表示差異不顯著(P>0.05),不同小寫字母表示差異顯著(P<0.05)。
In the same column, values with no or the same letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05).
2.2采食不同粗飼料梅花鹿瘤胃甲烷菌組成
111個(gè)OTU代表序列與Genbank數(shù)據(jù)庫序列進(jìn)行Blast分析,結(jié)果如圖1所示。結(jié)果表明,這些序列歸屬為:甲烷短桿菌屬(Methanobrevibacterspp.),OL組、CS組與CI組瘤胃中比例分別為(97.80±6.00)%、(97.10±1.50)%、(87.50±5.50)%;甲烷球菌屬(Methanosphaeraspp.),OL組、CS組與CI組瘤胃中比例分別為(2.09±0.51)%、(2.60±1.34)%、(9.40±2.45)%;甲烷粒菌屬(Methanocorpusculumspp.),OL組、CS組與CI組瘤胃中比例分別為(0.01±0.01)%、(0.02±0.00)%、(2.60±2.00)%;Methanomethylophilusspp.,OL組、CS組與CI組瘤胃中比例分別為(0.01%±0.00)%、(0.10%±0.01)%、(0.50±0.30)%。甲烷短桿菌屬序列在種水平分類(表3)發(fā)現(xiàn),OL組、CS組和CI組中分別有(63.50±20.00)%、(37.20±20.00)%和(63.00±10.00)%的OTU與Methanobrevibactermillerae的16S rRNA相似(相似性:97%~99%);OL組、CS組和CI組分別有(29.40±20.00)%、(38.80±20.00)%和(4.70±3.00)%的OTU與Methanobrevibacterboviskoreani的16S rRNA相似(相似性:95%~99%);OL組、CS組和CI組分別有(4.30±2.00)%、(18.40±10.00)%和(16.80±10.00)%的OTU與Methanobrevibacterolleyae的16S rRNA相似(相似性:97%~98%);OL組、CS組和CI組分別有(0.20±0.10)%、(1.30±0.90)%和(1.40±0.90)%的OTU與Methanobrevibacterwoesei的16S rRNA相似(相似性:95%~97%);OL組、CS組和CI組分別有(0.20±0.09)%、(1.10±0.80)%和(1.20±1.00)%的OTU與Methanobrevibacterruminantium的16S rRNA相似(相似性:97%~99%)。甲烷球菌屬中,OL組、CS組和CI組分別有(1.70±0.50)%、(2.20±1.00)%和(7.50±1.00)%的OTU與Methanosphaerastadtmanae的16S rRNA相似(相似性:96%~99%);OL組、CS組和CI組分別有(0.39±0.09)%、(0.40±0.30)%和(1.90±0.70)%的OTU與Methanosphaeracuniculi的16S rRNA相似(相似性:95%~96%)。甲烷粒菌屬中,OL組、CS組和CI組分別有(0.010±0.005)%、(0.020±0.004)%和(2.600±2.000)%的OTU與Methanocorpusculumlabreanum的16S rRNA相似(相似性:98%)。另外,OL組、CS組和CI組中分別有(0.010±0.004)%、(0.100±0.010)%和(0.500±0.300)%的OTU與CandidatusMethanomethylophilusalvus的16S rRNA相似(相似性:93%~98%)。而且,CI組中Methanosphaerastadtmanae相對(duì)豐度顯著高于OL組與CS組(P<0.05)。
2.3梅花鹿瘤胃甲烷菌16S rRNA基因系統(tǒng)進(jìn)化分析
系統(tǒng)發(fā)育分析(圖2)表明,111個(gè)OTU聚為三大簇。99個(gè)OTU與Methanobrevibacterspp.和Methanosphaeraspp.聚為一簇;OTU83和OTU84與Methanomethylophilusalvus和Methanomassiliicoccusluminyensis聚為一簇;OTU79與Methanocorpusculumlabreanum聚為一簇。
瘤胃是自然界中多樣且復(fù)雜的生態(tài)系統(tǒng),其中棲息有大量的細(xì)菌、甲烷菌、真菌、原蟲和少量噬菌體等。瘤胃微生物通過復(fù)雜的協(xié)同作用將飼料中的有機(jī)聚合物降解為單體并最終轉(zhuǎn)化為揮發(fā)性脂肪酸、二氧化碳和氫氣,其中揮發(fā)性脂肪酸是宿主的主要能量來源。瘤胃甲烷菌能夠利用二氧化碳作為碳源,氫作為主要的電子供體形成發(fā)酵副產(chǎn)物——甲烷。甲烷的生成能避免瘤胃氫氣壓強(qiáng)升高而引起的電子轉(zhuǎn)移反應(yīng)中微生物酶活性受到抑制,尤其是還原型輔酶Ⅰ脫氫酶(NADH),當(dāng)NADH積累一定程度會(huì)抑制瘤胃發(fā)酵的正常進(jìn)行,因此甲烷的生成能夠保證瘤胃發(fā)酵系統(tǒng)的有序進(jìn)行[13]。然而,甲烷的形成不但會(huì)導(dǎo)致機(jī)體能量的損失,而且會(huì)產(chǎn)生溫室效應(yīng)[1-2]。因此,明確瘤胃甲烷菌結(jié)構(gòu)對(duì)于理解瘤胃發(fā)酵及調(diào)控都具有重要意義。本研究首次采用高通技術(shù)深入研究了采食3種粗飼料梅花鹿瘤胃甲烷菌的結(jié)構(gòu),這一研究結(jié)果將為調(diào)控梅花鹿瘤胃甲烷生成,減少甲烷排放量提供依據(jù)。
首先,本研究發(fā)現(xiàn)梅花鹿瘤胃優(yōu)勢甲烷菌為Methanobrevibacterspp.,這與國內(nèi)外在其他草食動(dòng)物,如委內(nèi)瑞拉綿羊[14]、非洲野生黑斑羚[15]、北美地區(qū)荷斯坦牛[16-17]和中國德昌水牛瘤胃[18]等上的研究結(jié)果一致,表明Methanobrevibacterspp.在草食動(dòng)物前腸甲烷形成中起重要作用。其次,本研究證明Methanobrevibactermillerae是梅花鹿瘤胃優(yōu)勢甲烷菌,這與鹿科動(dòng)物矮鹿的研究結(jié)果[7]相同,但與牛科反芻動(dòng)物卻有一定差異,比如,委內(nèi)瑞拉綿羊瘤胃主要甲烷菌是Methanobrevibactergottschalkii[14],北美荷斯坦牛[16-17]與挪威馴鹿瘤胃[19]優(yōu)勢甲烷菌是Methanobrevibacterruminantium,印度水牛[20]、中國青藏高原奶牛和牦牛瘤胃[21]瘤胃古菌C簇(RCC)最豐富,這些共性與差異性說明宿主特異性可能對(duì)瘤胃甲烷菌的種水平有顯著影響。已有研究表明甲烷菌的發(fā)育型或菌株型在影響瘤胃甲烷生成量方面可能起著更為重要的作用[22],然而,瘤胃甲烷產(chǎn)量又受到細(xì)菌型[23]及瘤胃體積大小[24]的影響。因此,這提示我們瘤胃甲烷產(chǎn)量的調(diào)控可能需要基于瘤胃微生態(tài)和宿主多角度考慮。Methanobrevibactermillerae是一種能夠以氫氣或甲酸作為電子供體還原二氧化碳生成甲烷的甲烷菌[25],而梅花鹿與矮鹿瘤胃優(yōu)勢細(xì)菌Prevotellaspp.是一類通過琥珀酸或丙烯酸途徑利用氫氣生成丙酸的細(xì)菌[26]。這說明瘤胃內(nèi)氫氣流轉(zhuǎn)代謝可能是影響Methanobrevibactermillerae豐度的一個(gè)重要因素。有關(guān)Prevotellaspp.與Methanobrevibactermillerae之間的關(guān)系值得深入研究。RCC是一類與Methanomassiliicoccusluminyensis和CandidatusMethanomethylophilusalvus相似性低的甲烷菌,它們在瘤胃中的比例大約為15.8%[3],能以甲胺類化合物或甲醇為底物生成甲烷,但不能利用二氧化碳,而且是調(diào)控反芻動(dòng)物甲烷產(chǎn)量的目標(biāo)甲烷菌[27-28]。RCC在梅花鹿瘤胃的豐度不足1%表明梅花鹿瘤胃甲烷產(chǎn)量可能較低。
OL=柞樹葉組,CS=玉米秸稈組,CI=玉米青貯組。
OL=Oak leaf group, CS=corn stover group and CI=corn silage group.
圖1OL、CS與CI組梅花鹿瘤胃甲烷菌平均相對(duì)豐度分布
Fig.1The relative abundance distribution of methanogen on average in the rumen of sika deer in the OL, CS and CI groups
其次,本研究發(fā)現(xiàn)粗飼料種類顯著影響梅花鹿瘤胃甲烷菌結(jié)構(gòu)。OL組Methanosphaeraspp.與Methanobrevibacterolleyae相對(duì)豐度低于CS組和CI組,這可能與柞樹葉中含有單寧(含量:98 mg/kg)有關(guān)。研究發(fā)現(xiàn)瘤胃某些甲烷菌對(duì)單寧比較敏感,而且單寧對(duì)產(chǎn)甲烷菌生長所需的酶具有抑制作用。另外,飼糧中的單寧不但可與瘤胃內(nèi)細(xì)菌細(xì)胞壁的碳水化合物形成復(fù)合物或與細(xì)胞結(jié)合性胞外酶發(fā)生反應(yīng)抑制蛋白質(zhì)降解菌的生長,而且能夠與飼糧中蛋白質(zhì)形成復(fù)合物從而降低蛋白質(zhì)的降解[29],這也與我們前期研究發(fā)現(xiàn)采食富含單寧柞樹葉梅花鹿瘤胃異丁酸和異戊酸含量降低[5]的結(jié)果一致。由于Methanosphaeraspp.利用甲醇和氫氣生成甲烷,不能單獨(dú)利用二氧化碳或甲酸[30],而Methanobrevibacterolleyae利用氫氣或甲酸還原二氧化碳生成甲烷[25],而且不同甲烷菌生長所需的氫氣閾值也有所差異[31]。這表明飼糧在瘤胃降解過程中產(chǎn)生的氫氣可能是影響甲烷菌組成的一個(gè)重要方面。此外,本試驗(yàn)中CI組Methanobrevibacterboviskoreani相對(duì)豐度低于CS組。研究發(fā)現(xiàn)Methanobrevibacterboviskoreani是一種利用氫氣或甲酸產(chǎn)生甲烷的甲烷菌,其適宜生長pH為6.5~7.0[32]。陶蓮等[33]發(fā)現(xiàn)玉米秸稈經(jīng)過青貯發(fā)酵后乳桿菌目細(xì)菌數(shù)量及乳酸和乙酸含量顯著增加,而pH顯著下降到3.8。因此,CI組較低的pH可能抑制了Methanobrevibacterboviskoreani的生長。
表3 采食不同粗飼料梅花鹿瘤胃甲烷菌種水平組成
Mbr.=Methanobrevibacter,Msp.=Methanosphaera,Mth.=Methanomethylophilus,Mrp.=Methanocorpusculum。圖2同 The same as Fig.2。
同行數(shù)據(jù)肩標(biāo)無字母或相同字母表示差異不顯著(P>0.05),不同小寫字母表示差異顯著(P<0.05)。
In the same row, values with no or the same letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05).
圖2 梅花鹿瘤胃甲烷菌16S rRNA基因系統(tǒng)進(jìn)化分析
本研究發(fā)現(xiàn)Methanobrevibacterspp.是梅花鹿瘤胃優(yōu)勢甲烷菌。
致謝:
在試驗(yàn)過程中得到中國農(nóng)業(yè)科學(xué)院特產(chǎn)研究所茸鹿試驗(yàn)基地技術(shù)人員的大力幫助,特此表示衷心感謝!同時(shí)也感謝2位審稿人對(duì)本文提出的寶貴建議。
[1]GILL M,SMITH P,WILKINSON J M.Mitigating climate change:the role of domestic livestock[J].Animal,2010,4(3):323-333.
[2]JOHNSON K A,JOHNSON D E.Methane emissions from cattle[J].Journal of Animal Science,1995,73(8):2483-2492.
[3]JANSSEN P H,KIRS M.Structure of the archaeal community of the rumen[J].Applied and Environmental Microbiology,2008,74(12):3619-3625.
[4]ST-PIERRE B,WRIGHT A D G.Diversity of gut methanogens in herbivorous animals[J].Animal,2013,7(Suppl.1):49-56.
[5]LI Z P,WRIGHT A D G,LIU H L,et al.Bacterial community composition and fermentation patterns in the rumen of sika deer (Cervusnippon) fed three different diets[J].Microbial Ecology,2015,69(2):307-318.
[6]TAN H Y,SIEO C C,ABDULLAH N,et al.Effects of condensed tannins from Leucaena on methane production,rumen fermentation and populations of methanogens and protozoainvitro[J].Animal Feed Science and Technology,2011,169(3/4):185-193.
[7]LI Z P,ZHANG Z G,XU C,et al.Bacteria and methanogens differ along the gastrointestinal tract of Chinese roe deer (Capreoluspygargus)[J].PLoS One,2014,9(12):e114513.
[8]CAPORASO J G,KUCZYNSKI J,STOMBAUGH J,et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods,2010,7(5):335-336.
[9]EDGAR R C.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics,2010,26(19):2460-2461.
[10]DESANTIS T Z,HUGENHOLTZ P,LARSEN N,et al.Greengenes,a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J].Applied and Environmental Microbiology,2006,72(7):5069-5072.
[11]HAAS B J,GEVERS D,EARL A M,et al.Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J].Genome Research,2011,21(3):494-504.
[12]TAMURA K,PETERSON D,PETERSON N,et al.MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J].Molecular Biology and Evolution,2011,28(10):2731-2739.
[13]HUNGATE R E.Hydrogen as an intermediate in the rumen fermentation[J].Archiv für Mikrobiologie,1967,59(1/2/3):158-164.
[14]WRIGHT A D G,MA X L,OBISPO N E.Methanobrevibacterphylotypes are the dominant methanogens in sheep from Venezuela[J].Microbial Ecology,2008,56(2):390-394.
[15]CERSOSIMO L M,LACHANCE H,ST-PIERRE B,et al.Examination of the rumen bacteria and methanogenic archaea of wild impalas (Aepycerosmelampusmelampus) from Pongola,South Africa[J].Microbial Ecology,2015,69(3):577-585.
[16]HOOK S E,STEELE M A,NORTHWOOD K S,et al.Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows[J].Microbial Ecology,2011,62(1):94-105.
[17]KONG Y H,XIA Y,SEVIOUR R,et al.Biodiversity and composition of methanogenic populations in the rumen of cows fed alfalfa hay or triticale straw[J].FEMS Microbiology Ecology,2013,84(2):302-315.
[18]楊承劍,韋升菊,梁辛,等.利用16S rRNA基因克隆文庫技術(shù)分析德昌水牛瘤胃產(chǎn)甲烷菌的多樣性[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2014,40(4):382-388.
[19]SUNDSET M A,EDWARDS J E,CHENG Y F,et al.Rumen microbial diversity in svalbard reindeer,with particular emphasis on methanogenic archaea[J].FEMS Microbiology Ecology,2009,70(3):553-562.
[20]CHAUDHARY P P,SIROHI S K,SAXENA J.Diversity analysis of methanogens in rumen ofBubalusbubalisby 16S riboprinting and sequence analysis[J].Gene,2012,493(1):13-17.
[21]HUANG X D,TAN H Y,LONG R J,et al.Comparison of methanogen diversity of yak (Bosgrunniens) and cattle (Bostaurus) from theQinghai-Tibetan plateau,China[J].BMC Microbiology,2012,12(1):237.
[22]ZHOU M,HERNANDEZ-SANABRIA E,GUAN L L.Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions,as determined by PCR-denaturing gradient gel electrophoresis analysis[J].Applied and Environmental Microbiology,2010,76(12):3776-3786.
[23]KITTELMANN S,PINARES-PATIO C S,SEEDORF H,et al.Two different bacterial community types are linked with the low-methane emission trait in sheep[J].PLoS One,2014,9(7):e103171.
[24]GOOPY J P,DONALDSON A,HEGARTY R,et al.Low-methane yield sheep have smaller rumens and shorter rumen retention time[J].British Journal of Nutrition,2014,111(4):578-585.
[25]REA S,BOWMAN J P,POPOVSKI S,et al.Methanobrevibactermilleraesp.nov.andMethanobrevibacterolleyaesp.nov.,methanogens from the ovine and bovine rumen that can utilize formate for growth[J].International Journal of Systematic and Evolutionary Microbiology,2007,57(3):450-456.
[26]PURUSHE J,FOUTS D E,MORRISON M,et al.Comparative genome analysis ofPrevotellaruminicolaandPrevotellabryantii:insights into their environmental niche[J].Microbial Ecology,2010,60(4):721-729.
[27]BORREL G,HARRIS H M B,TOTTEY W,et al.Genome sequence of “CandidatusMethanomethylophilusalvus” Mx1201,a methanogenic archaeon from the human gut belonging to a seventh order of methanogens[J].Journal of Bacteriology,2012,194(24):6944-6945.
[28]POULSEN M,SCHWAB C,JENSEN B B,et al.Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen[J].Nature Communications,2013,4:1428.
[29]MCSWEENEY C S,PALMER B,MCNEILL D M,et al.Microbial interactions with tannins:nutritional consequences for ruminants[J].Animal Feed Science and Technology,2001,91(1/2):83-93.
[30]FRICKE W F,SEEDORF H,HENNE A,et al.The genome sequence ofMethanosphaerastadtmanaereveals why this human intestinal archaeon is restricted to methanol and H2for methane formation and ATP synthesis[J].Journal of Bacteriology,2006,188(2):642-658.
[31]CARLOLINE CHAE-HYUN K.Identification of rumen methanogens,characterization of substrate requirements and measurement of hydrogen thresholds[D].MSc.Thesis.Palmerston North:Massey University,2012.
[32]LEE J H,KUMAR S,LEE G H,et al.Methanobrevibacterboviskoreanisp.nov.,isolated from the rumen of Korean native cattle[J].International Journal of Systematic and Evolutionary Microbiology,2013,63(11):4196-4201.
[33]陶蓮,刁其玉.青貯發(fā)酵對(duì)玉米秸稈品質(zhì)及菌群構(gòu)成的影響[J].動(dòng)物營養(yǎng)學(xué)報(bào),2016,28(1):198-207.
*Corresponding author, professor, E-mail: tcslgy@126.com
(責(zé)任編輯菅景穎)
Comparative Analysis of Methanogen Community in Rumen of Sika Deer (Cervusnippon) under Different Forages
LI ZhipengLIU HanluSI HuazheBAO KunLI Guangyu*
(Department of Speical Animal Nutrition and Feed, Insitute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China)
The objective of present study was to compare the methanogen community in the rumen of sika deer (Cervusnippon) fed three common forages using the high throughput sequencing technology. Three 2-year-old male adult Sika deers with permanent ruminal cannulas were used as experimental animal in a 3×3 Latin square design, and their fed diets with oak with leaf (OL group), corn stover (CS group) and corn silage (CI group) as main forage, respectively. After one week of adaption to the diets, sika deer received each diet for 4 weeks. The primers A519F and A976R were used to amplify the V3 to V4 regions of the methanogen 16S rRNA gene. The amplicon was then sequenced on the Illumina MiSeq PE250 platform. The results showed as follows: a total of 600 352 high quality methanogen 16S rRNA gene sequences were obtained from 9 samples. These sequences were classified into 111 operational taxonomic units (OTU) based on 97% sequence similarity. Coverage index showed that 99% of the methanogen species were represented in any given rumen sample. The results of taxonomic analysis showed thatMethanobrevibacterspp. [OL group: (97.80±6.00)%; CS group: (97.10±1.50)%; CI group: (87.50±5.50)%] was the dominant methanogen in the rumen of sika deer. However, the distribution of methanogen at species level was different among the three groups. The relative abundance ofMethanosphaerastadtmanaein the CI group was significantly higher than that in the OL and CS groups (P<0.05). The relative abundance ofMethanobrevibactermilleraewas increased in the OL and CI groups compared with the CS group (P>0.05). The relative abundance ofMethanobrevibacterboviskoreaniin the OL and CS groups was higher than that in the CI group (P>0.05). While, the relative abundance ofMethanobrevibacterolleyaein the CS and CI groups was increased compared with the OL group (P>0.05). These results suggest thatMethanobrevibacterspp. is the dominant methanogen in rumen of sika deer.[ChineseJournalofAnimalNutrition, 2016, 28(9):2911-2919]
sika deer; methanogen;Methanobrevibacterspp.; forage
10.3969/j.issn.1006-267x.2016.09.030
2016-03-03
國家自然科學(xué)基金(31501984);吉林省重大科技攻關(guān)專項(xiàng)(20140203018NY)
李志鵬(1984—),男,陜西蒲城人,助理研究員,碩士,從事經(jīng)濟(jì)動(dòng)物微生物與營養(yǎng)研究。E-mail: zhplicaas@163.com
李光玉,研究員,博士生導(dǎo)師,E-mail: tcslgy@126.com
S852.6
A
1006-267X(2016)09-2911-09