亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Ridge-type spectral decomposition estimators inmixed effects models with stochastic restrictions

        2016-09-20 05:51:24ZHENGLuYUERongxianCHENGJing
        關(guān)鍵詞:型譜均方線性

        ZHENG Lu, YUE Rongxian, CHENG Jing

        (1.College of Mathematics and Science,Shanghai Normal University,Shanghai 200234,China;2.College of Science,Anhui Agricultural University,Hefei 230036,China)

        ?

        Ridge-type spectral decomposition estimators inmixed effects models with stochastic restrictions

        ZHENG Lu1, YUE Rongxian1, CHENG Jing2

        (1.College of Mathematics and Science,Shanghai Normal University,Shanghai 200234,China;2.College of Science,Anhui Agricultural University,Hefei 230036,China)

        This paper proposes a new estimation of fixed effects in linear mixed models with stochastic restrictions,which is called a conditional ridge-type spectral decomposition estimator.Using the mean squared error matrix and generalized mean squared error as criteria for comparing the estimates,we establish sufficient conditions for the superiority of the conditional ridge-type spectral decomposition estimator over the conditional spectral decomposition estimator.The upper and lower bounds of the relative efficiency are also given.Finally,a simulation example is given to illustrate the theoretical results.

        linear mixed mode; mean squared error matrix; ridge-type spectral decomposition estimatior; stochastic linear restrictions

        1 Introduction

        Linear mixed model is an important statistical model.In the recent twenty years,linear mixed models have found more and more applications in the fields of biology,medicine,economy,finance,environment science,sample investigation and mechanical engineering[1-5].Based on spectral decomposition,a further study of estimation about fixed effect is made in this paper.Spectral decomposition (SD) estimation was proposed by Wang and Yin[6].With this method we can obtain several SD estimators,which are all unbiased estimators.

        Consider the following general linear mixed model

        (1)

        whereyis ann×1 vector of observations,Xis ann×pknown design matrix with full column rank,βis anp×1 vector of fixed effect,Uis ann×pdesign matrix,ξis anq×1 vector of random effect,εis ann×1 vector of random disturbances.Suppose that

        It follows that

        V=Cov(y)=Cov(u)=UDUT+F≥0.

        By spectral decomposition on the covariance matrix,we have

        We multiplyPifrom the left on both sides of (1),and denote

        y(i)=Piy, Xi=PiX,ui=Piu.

        Then we have the following transformed model:

        (2)

        It is easy to obtain that E(ui)=0 and Cov(ui)=λiPi.Note thatPiis a singular matrix,and then model (2) is a singular linear model.

        Wang and Yin[6]proposed spectral decomposition estimation (SDE) to estimate the fixed effectsβand the variance components simultaneously.A prominent feature of this method is that for the fixed effects we can obtain several spectral decomposition estimates.Specifically,for every eigenvaluesλi,the spectral decomposition estimators of its corresponding fixed effectsβare given by

        wherer=rk(Pi)-rk(Xi).

        (3)

        (4)

        whereki>0andQiistheeigenvectormatrixofXTPiX.Thepartialridge-typespectraldecompositionestimatorissuperiortothespectraldecompositionestimatorinthesenseofmeansquarederrormatrix.

        Thispaperbeginswithanintroductorysectioncontainingabriefreviewoftheestimatorsonfixedeffects.Itisworthnotingthat,theaboveestimatorsareobtainedbyestimatingtheregressioncoefficientsβfromthelinearmixedmodelitself.Whereasintheregressionmodelfordescribingeconomicphenomena,inadditiontothesampleinformation,wetendtogetsomepriorinformation.Withthesepriorinformation,theregressioncoefficientestimateshavemoresuperiorpropertiesthanthosehavenopriorinformation.Thefundamentalpurposeofthispaperistointroduceanewconditionalridge-typespectraldecompositionestimator(CRSDE)forthefixedeffects.

        Therestofthispaperisorganizedasfollows.Section2introducestheconditionalspectraldecompositionestimator(CSDE),andSection3introducestheCRSDE.ThesetwoestimatorsarecomparedinSection4.AnumericalexampleisgiventoillustratesomeofthetheoreticalresultsinSection5andsomeconclusionremarksaregiveninSection6.

        2 Conditional spectral decomposition estimate

        Considerthelinearmixedmodel(1)withrespecttothefollowingstochasticrestriction:

        (5)

        whererisaj×1knownrandomvector,Risagivenj×pmatrixwithfullrowrank,eisaj×1vectorofrandomdisturbanceswithmean0andcovariancematrixWwhichisaknownpositivematrix.Supposethatuandeareuncorrelated.

        Merge(2)with(5)asfollows:

        (6)

        Wedenote

        andrewrite(6)as

        (7)

        Notethat

        Because(2)isasingularlinearmodel,sothemodel(7)isasingularlinearmodelwithstochasticlinearrestrictions[9].

        WedefinetheCSDEofβtobethefollowing:

        (8)

        Letδi1≥δi2≥…≥δiri>0bethepositiveeigenvaluesof(XTPiX+λiRTW-1R) , ri≤p ,andφi1,φi2,…,φiribethecorrespondingstandardizedeigenvectors.DefineΦi=(φi1,φi2,…,φiri).Wethenhave

        and

        Therefore,wecaneasilygetthemeansquarederror(MSE)oftheCSDE:

        3 Conditional ridge-type spectral decomposition estimate

        Definethefollowingestimatorsofthefixedeffectsβinthemixedmodel(7):

        (9)

        ThesearecalledtheCRSDE.Notethat

        andthen

        Therefore,theCRSDEsin(9)areStein-typebiasedestimators.

        (10)

        TheCSDEofγin(10)isgivenby

        (11)

        andtheCRSDEofγisgivenby

        (12)

        4 Superiority of the conditional ridge-type spectral decomposition estimator

        whereDisapositivedefinitematrix.ThefollowingtwolemmasareusefulforcomparingtheMSEMandGMSEofestimators.

        Lemma 4.1[10,Theorem A.71]LetAbe ann×nsymmetric matrix,xbe ann-vector,andα>0 be any scalar.Then the following statements are equivalent:

        (i)αA-xxT≥0.

        (ii)A≥0,x∈R(A),andxTA-x≤α,withA-beinganyg-inverseofA,whereR(A)isthevectorspacespannedbythecolumnvectorsofA.

        (13)

        (14)

        Therefore,we have

        and the proof is completed.

        Theorem 4.2For model (7) within the ellipsoidγTΛiγ≤λifor eachi∈{1,…,t},we have

        (15)

        where

        ProofFrom (13) and (14),we conclude that

        Denote

        We then have

        and then the desired result (15) follows from Lemma 4.2.

        Theorem 4.3The relative efficiency satisfies

        ProofAccording to the definition of the relative efficiency,we have

        Becauseδi1≥δi2≥…≥δiri>0 and

        it follows that

        The proof is completed.

        5 Monte-carlo simulation study

        To illustrate our theoretical results,we now consider a simulation study to compare the performance of the estimators introduced in previous sections.This study was discussed by Gumedze and Dunne[11]and Yang,Ye and Xue[12].Here the linear mixed model is given by

        wherei=1,…,5,j=1,…,10 withβ=(β1,β2,β3)T=(2,1.5,2)T,and theξare iid random effects with distributionN(0,0.5) ,andeijare iid random disturbances with distributionN(0,1).The explanatory variablesx1ij,x2ijandx3ijare generated pseudo-numbers from uniform distributionsU(1,3),U(2,4) andU(0,1),respectively.The covariance matrix ofξi+eijis given by

        The distinct eigenvalues ofVareλ1=6 andλ2=1.

        Assume that the following stochastic linear restrictions are used:

        In the simulation study,J=1000 replicates are generated andthe estimated mean squared errors (EMSE) for estimators are calculated as

        where the subscriptjrepresents the estimators in thejth repeated experiment.Then using the equations in (3),(8) and (9) corresponding toλ2,we compute the EMSE values of the SDE,CSDE and CRSDE by the above formulas.The simulation results are shown in Table 1.

        Table 1 EMSEs of SDE,CSDE and CRSDE (i=2) for β=(β1,β2,β3)T

        We observe that the CRSDE and CSDE forβare superior to the SDE.And when ridge parameterkis small enough,the CRSDE is superior to the CSDE.The Monte Carlo simulations agree with our theoretical discovery in this paper.We can conclude that the CRSDE is meaningful in practice.

        6 Conclusion

        In this paper,the CSDE and CRSDE for the parameters of fixed effects in a linear mixed model are proposed when the prior information is available about the parameters.Furthermore,we show that the CRSDE is superior to the CSDE and SDE in the sense of MSEM under certain conditions.The upper and lower bounds of the relative efficiency are also given.Finally,we illustrate our results with a Monte-Carlo simulation study.

        References:

        [1]Verbeke G,Molenberghs G.Linear mixed models in practice:a SAS-oriented approach.Lecture Notes in Statistics 126 [M].New York:Springer-Verlag,1997.

        [2]Verbeke G,Molenberghs G.Linear mixed models for longitudinal data [M].New York:Springer-Verlag,2000.

        [3]Wang S G,Chow S C.Advanced linear models [M].New York:Marcel Dekker Inc,1994.

        [4]Khunri A I,Mathew T,Sinha B K.Statistical tests for mixed linear models [M].New York:John Wiley,1998.

        [5]Searle S R,Casella G,McCulloch C E.Variance components [M].New York:John Wiley,1992.

        [6]Wang S G,Yin S J.A new estimate of the parameters in linear mixed models [J].Science in China (Series A),2002,32(5):434-443.

        [7]Rao C R,Toutenburg H.Linear models:Least squares and alternatives [M].New York:Springer-Verlag,1995.

        [8]Yang H,Li Y L.Partial ridge-type spectral decomposition estimator in linear mixed model (in Chinese) [J].Chinese Journal of Applied Probability,2008,24(3):289-296.

        [9]Xu J W,Yang H.Estimation in singular linear models with stochastic linear restrictions [J].Communications in Statistics-Theory and Methods,2007,40(24):4364-4371.

        [10]Rao C R,Toutenburg H,Heumann S C.Linear models and generalizations:least squares and alternatives [M].New York:Springer-Verlag,2008.

        [11]Gumedze F N,Dunne T T.Parameter estimation and inference in the linear mixed model [J].Linear Algebra and its Applications,2011,435(8):1920-1944.

        [12]Yang H,Ye H L,Xue Kai.A further study of predictions in linear mixed models [J].Communications in Statistics-Theory and Methods,2014,43(20):4241-4252.

        (責(zé)任編輯:馮珍珍)

        10.3969/J.ISSN.1000-5137.2016.04.001

        具有隨機(jī)約束的混合效應(yīng)模型參數(shù)的嶺型譜分解估計(jì)

        鄭鷺1, 岳榮先1, 程靖2

        (1.上海師范大學(xué) 數(shù)理學(xué)院,上海 200234; 2.安徽農(nóng)業(yè)大學(xué) 理學(xué)院,合肥 230036)

        對(duì)于具有隨機(jī)線性約束的線性混合效應(yīng)模型參數(shù)提出一種稱之為條件嶺型譜分解估計(jì)的方法.利用均方誤差矩陣和廣義均方誤差對(duì)固定效應(yīng)參數(shù)的幾種估計(jì)量進(jìn)行比較,給出條件嶺型譜分解估計(jì)優(yōu)于條件譜分解估計(jì)的充分條件,并給出這兩種估計(jì)的相對(duì)效率的上下界.最后,模擬算例驗(yàn)證了理論結(jié)果的正確性.

        混合效應(yīng)模型; 均方誤差矩陣; 嶺型譜分解估計(jì); 隨機(jī)線性約束

        date: 2016-03-20

        Shanghai Municipal Science and Technology Research Project (14DZ1201900);NSFC grant (11471216);NSFC grant (11401056)

        YUE Rongxian,College of Mathematics and Science,Shanghai Normal University,No.100 Guiling Rd,Shanghai 200234,China,E-mail:yue2@shnu.edu.cn

        O 212.4Document code: AArticle ID: 1000-5137(2016)04-0387-08

        猜你喜歡
        型譜均方線性
        一類隨機(jī)積分微分方程的均方漸近概周期解
        漸近線性Klein-Gordon-Maxwell系統(tǒng)正解的存在性
        一個(gè)帶重啟步的改進(jìn)PRP型譜共軛梯度法
        線性回歸方程的求解與應(yīng)用
        Beidou, le système de navigation par satellite compatible et interopérable
        航天產(chǎn)品型譜建設(shè)管理研究
        二階線性微分方程的解法
        基于抗差最小均方估計(jì)的輸電線路參數(shù)辨識(shí)
        基于隨機(jī)牽制控制的復(fù)雜網(wǎng)絡(luò)均方簇同步
        V8柴油機(jī)加入Scania公司歐6發(fā)動(dòng)機(jī)系列型譜
        国产大屁股喷水视频在线观看| 丰满五十六十老熟女hd| 一级片久久| 国产性感丝袜美女av| 两人前一后地插着她丰满| 国产精品兄妹在线观看麻豆| 亚洲欧美国产双大乳头| 久久久调教亚洲| 精品人妻少妇丰满久久久免| 亚洲午夜久久久久久久久电影网 | 亚洲久热无码av中文字幕| 国产桃色精品网站| 一本色道久久亚洲精品| 无码人妻丰满熟妇啪啪网站| 久久人妻公开中文字幕| 少妇av免费在线播放| 大量漂亮人妻被中出中文字幕| 国产欧美日韩综合精品一区二区| 国产精品一区二区暴白浆| 色偷偷av一区二区三区人妖| 青青草手机在线免费观看视频| 久久视频在线| 亚洲天堂资源网| av网站一区二区三区| 国语自产视频在线| 亚洲美女又黄又爽在线观看| 久久精品中文字幕久久| 极品少妇人妻一区二区三区 | 风韵少妇性饥渴推油按摩视频| 国产女女精品视频久热视频 | 狠狠综合久久av一区二区蜜桃 | 色诱久久av| 一区二区三区精品偷拍| 亚洲youwu永久无码精品| 久久久久久久久久久国产| 日韩精人妻无码一区二区三区 | 在线精品首页中文字幕亚洲| 99精品国产一区二区| 女女同性黄网在线观看| 深夜日韩在线观看视频| 黄桃av无码免费一区二区三区|