王俊娟,穆 敏,王 帥,陸許可,陳修貴,王德龍,樊偉麗,陰祖軍,郭麗雪,葉武威,喻樹迅
(中國農(nóng)業(yè)科學(xué)院棉花研究所/棉花生物學(xué)國家重點實驗室/農(nóng)業(yè)部棉花遺傳改良重點開放實驗室,河南安陽 455000)
棉花脫水素GhDHN1的克隆及其表達(dá)
王俊娟,穆 敏,王 帥,陸許可,陳修貴,王德龍,樊偉麗,陰祖軍,郭麗雪,葉武威,喻樹迅
(中國農(nóng)業(yè)科學(xué)院棉花研究所/棉花生物學(xué)國家重點實驗室/農(nóng)業(yè)部棉花遺傳改良重點開放實驗室,河南安陽 455000)
【目的】通過對棉花脫水素基因結(jié)構(gòu)特征及其在低溫脅迫下表達(dá)模式進(jìn)行分析,探討脫水素在棉花響應(yīng)低溫過程中的功能,為棉花抗冷育種提供理論基礎(chǔ)?!痉椒ā恳悦藁估淦贩N豫2067為試驗材料,根據(jù)棉花陸地棉基因組序列查找已知脫水素(dehydrin,Dhn)基因的CDS序列,利用Primer5軟件設(shè)計引物,克隆該基因,并命名為GhDHN1;采用生物信息學(xué)方法分析其蛋白質(zhì)性質(zhì)、氨基酸含量特征、功能結(jié)構(gòu)域、系統(tǒng)進(jìn)化樹;選擇XbaⅠ和SmaⅠ酶切位點對植物表達(dá)載體pBI121∶∶GFP進(jìn)行雙酶切,采用In-Fusion連接技術(shù)構(gòu)建融合蛋白瞬時表達(dá)載體pBI121-GhDHN1∶∶GFP;分析其在洋蔥表皮細(xì)胞中的瞬時表達(dá),進(jìn)行亞細(xì)胞定位;利用抗冷材料豫2067在三葉期對低溫處理(4℃,24 h)前后的葉片和根系進(jìn)行轉(zhuǎn)錄組測序,篩選差異表達(dá)基因;在三葉期時分別對豫2067(抗冷品種)和衡棉3號(冷敏感品種)進(jìn)行低溫(4℃,24 h)處理,利用實時熒光定量方法分別比較根、莖、葉中GhDHN1表達(dá)量,對該基因在2個抗冷差異材料葉中的表達(dá)量進(jìn)行比較;對豫2067進(jìn)行不同時間低溫(4℃)處理,分析GhDHN1在葉片和根中的動態(tài)表達(dá)模式?!窘Y(jié)果】該基因全長為726 bp,開放閱讀編碼框為636 bp,編碼211個氨基酸,預(yù)測分子量為23.79 kD,等電點為5.04,富含谷氨酸(26.10%)和賴氨酸(19.40%),不含色氨酸,半衰期為 30 h,蛋白呈酸性,帶負(fù)帶荷,帶負(fù)電荷的殘基總數(shù)為60%;GhDHN1的二級結(jié)構(gòu)α螺旋(Alpha helix)包含116個氨基酸殘基,占54.98%,組成該蛋白的主體結(jié)構(gòu),無規(guī)則卷曲(Random coil)的氨基酸殘基有87個;GhDHN1位于陸地棉D(zhuǎn)亞組第9染色體(Dt_chr9)上,在cDNA的259—348位置上含有一個長度為90 bp的內(nèi)含子,2個外顯子長度分別為258 和378 bp;SMART和CDD分析表明該氨基酸序列含有2個保守的富含賴氨酸的K片段和1個保守的富含絲氨酸S片段,具有親水素蛋白結(jié)構(gòu)域pfam00257,表明該蛋白為K2S型脫水素;系統(tǒng)進(jìn)化樹分析表明,陸地棉親水素GhDHN1與可可親緣關(guān)系最近;洋蔥表皮細(xì)胞中瞬時表達(dá)分析表明,GhDHN1蛋白主要定位在細(xì)胞膜附近。轉(zhuǎn)錄組分析表明,該基因在棉花三葉期葉片和根中,受低溫處理后上調(diào)表達(dá);熒光定量PCR分析表明,GhDHN1 在4℃低溫脅迫24 h后,在葉片、莖、根中均上調(diào)表達(dá),在葉中上調(diào)表達(dá)倍數(shù)最大,在低溫處理4 h和24 h時葉片中有2個表達(dá)高峰,在低溫處理6 h和12 h時在根中有2個表達(dá)高峰,在抗冷材料葉片中的表達(dá)是冷敏感材料的 2.47倍,說明該基因可能參與了棉花對低溫的適應(yīng)性調(diào)控。【結(jié)論】陸地棉GhDHN1屬于典型的K2S型脫水素,與可可親緣關(guān)系最近。該基因響應(yīng)低溫脅迫,在抗冷材料和冷敏感材料中表達(dá)差異顯著,其表達(dá)量與棉花的抗冷性呈正相關(guān),可以作為篩選不同抗冷材料的標(biāo)記,同時可以作為重要的候選基因來培育棉花抗冷新材料。
棉花;脫水素;亞細(xì)胞定位;低溫脅迫;轉(zhuǎn)錄組分析;實時熒光定量PCR
【研究意義】低溫脅迫是嚴(yán)重影響植物生長和存活的主要逆境之一[1]。棉花的整個生育期均對低溫比較敏感,特別是苗期更容易遭受低溫冷害,低溫對棉花生長的影響遠(yuǎn)大于其他作物[2]。因此,挖掘棉花抗冷相關(guān)功能基因,對開展棉花抗冷分子育種具有重要意義?!厩叭搜芯窟M(jìn)展】植物具有很高的能力適應(yīng)外界環(huán)境條件的變化,在面臨低溫脅迫時會產(chǎn)生一系列的生理生化和基因表達(dá)變化,植物響應(yīng)低溫脅迫的最初反應(yīng)是細(xì)胞質(zhì)中鈣離子的釋放[3];其次是伴隨著大量基因的表達(dá),細(xì)胞內(nèi)會誘導(dǎo)合成一系列的功能蛋白,以保護(hù)其免受脅迫的傷害[4],植物應(yīng)對細(xì)胞脫水的一條主要途徑是積累親水性蛋白。LEA(late embryogenesis abundant proteins)蛋白,即胚胎發(fā)育后期豐富蛋白[5],是一類重要的植物細(xì)胞脫水保護(hù)蛋白。大量研究表明,LEA蛋白在植物響應(yīng)各種逆境脅迫中起著重要作用,其首先在棉花子葉中被發(fā)現(xiàn)[6],根據(jù)其氨基酸序列及其保守域特征,將 LEA蛋白分為 6類(Ⅰ—Ⅵ),其中,脫水素(dehydrin,Dhn)屬于第Ⅱ類,又名LEAⅡ蛋白,研究表明脫水素具有很強(qiáng)的熱穩(wěn)定性,在非生物逆境脅迫條件下對維持植物細(xì)胞的正常代謝和細(xì)胞膜結(jié)構(gòu)穩(wěn)定性具有重要的保護(hù)功能[7]。脫水素最基本的功能是清除細(xì)胞內(nèi)自由基,保護(hù)細(xì)胞能正常行使功能[8],甚至對植株整個蛋白質(zhì)組進(jìn)行保護(hù)[9]。近年來,研究人員對植物響應(yīng)低溫脅迫過程中脫水素的功能開展了一系列的研究,KOSOVá等[10]研究表明經(jīng)過低溫脅迫后,10個大麥品種中Dhn5的積累量與其抗凍能力成正相關(guān);郭鵬等[11]利用 Northern雜交分析表明,番茄脫水素基因SlDHN2b受冷脅迫處理后在番茄根、莖、花蕾、果實、葉中的表達(dá)量均高于其常溫(25℃)條件下在相應(yīng)組織的表達(dá)量。在小麥的脫水素研究中發(fā)現(xiàn),小麥脫水素基因TaDHN-1通過依賴ABA非生物脅迫響應(yīng)路徑發(fā)揮功能,參與了小麥對低溫等逆境脅迫的調(diào)節(jié)過程[12];PUHAKAINEN等[13]在擬南芥中同時過量表達(dá)幾個擬南芥脫水素基因后,在轉(zhuǎn)基因植株中積累了大量的脫水素,與野生型對照相比,轉(zhuǎn)基因植株在面對凍害脅迫時表現(xiàn)出較低的半致死溫度和較高的存活率,同時證明了脫水素基因通過保護(hù)細(xì)胞膜來提高植物的抗冷性。高粱脫水素基因 SbDhn2在高粱遇到低溫脅迫時能夠保護(hù)細(xì)胞內(nèi)乳酸脫氫酶行使正常功能,增強(qiáng)其他蛋白酶的抗逆性[14]。在啤酒酵母(Saccharomyces cerevisiae)中過表達(dá)馬鈴薯Y2K型脫水素 LEA4后,酵母的抗凍性大大增強(qiáng)[15]。SWIRE-CLARK等[16]在酵母中異源表達(dá)LEA/DHN后,發(fā)現(xiàn) LEA/DHN的主要功能是通過增強(qiáng)抗?jié)B透脅迫能力來提高冷脅迫的能力。【本研究切入點】在筆者前期研究中,系統(tǒng)分析了棉花葉片低溫轉(zhuǎn)錄組差異基因,獲得了一批與抗冷性密切相關(guān)的候選基因,在這些候選基因中,有一個被注釋為脫水素基因(CotAD_58358),關(guān)于該基因在棉花中對低溫等非生物脅迫的響應(yīng)及調(diào)控機(jī)制鮮見報道。【擬解決的關(guān)鍵問題】本研究分析棉花脫水素基因及其編碼蛋白的結(jié)構(gòu)特性,構(gòu)建植物表達(dá)載體,研究其亞細(xì)胞定位,在轉(zhuǎn)錄組測序水平和實時熒光表達(dá)水平檢測該基因受低溫脅迫過程中在根、莖葉中的表達(dá)模式,為在棉花抗冷分子育種中進(jìn)一步應(yīng)用奠定基礎(chǔ)。
1.1試驗材料及其培養(yǎng)和低溫處理
所用材料為陸地棉品種豫2067和衡棉3號,由中國農(nóng)業(yè)科學(xué)院棉花研究所提供。于2015年9月在中國農(nóng)業(yè)科學(xué)院棉花研究所抗逆鑒定實驗室恒溫光照生長箱中進(jìn)行育苗,采用沙培法育苗(28℃,14 h光照/10 h黑暗),正常水分條件(沙土相對含水量約23%)下進(jìn)行棉花的培養(yǎng),在三葉期進(jìn)行4℃處理0 h(CK,即28℃)和24 h;對抗冷材料豫2067分別取根、莖、葉,其中根取樣部位是須根,莖取樣部位是下胚軸,葉片取樣部位是真葉的倒一葉,對冷敏感品種衡棉 3號只取葉片,取樣部位為倒一葉,每部位均取若干重復(fù),剪碎,迅速放入液氮中速凍,然后放入-80℃超低溫冰箱中保存?zhèn)溆?。衡?號的葉片用于實時熒光定量分析,豫2067的一部分根、莖、葉樣品用于實時熒光定量分析,在棉花生物學(xué)重點實驗室進(jìn)行;另一部分的葉片和根用于轉(zhuǎn)錄組測序,由深圳華大基因公司完成。
同時對豫2067三葉期進(jìn)行低溫不同時間(4℃,0、0.5、2、4、6、8、12和24 h)處理,其中0 h為對照,取樣部位為倒一葉和根系,用于實時熒光定量分析。
1.2RNA的提取和全長GhDHN1的CDS序列克隆
利用北京艾德萊生物科技有限公司生產(chǎn)的EASYspinPlus植物RNA快速提取試劑盒對以上所取樣品進(jìn)行RNA提取,利用Nanodrop2000核酸分析儀測定總RNA的濃度和純度,A260/280=2.0,同時進(jìn)行1% (m/v)瓊脂糖凝膠電泳檢測RNA的完整性。在棉花基因組 Cotton Genome Project (CGP,http://cgp. genomics.org.cn/page/species/index.jsp)中搜索到的脫水素(dehydrin,Dhn)基因(CotAD_58358)的CDS序列,利用Primer5軟件設(shè)計特異引物,上游引物為GhDHN1-F:5′-ATGGCCGAGGAGCATACCAGTA-3′,下游引物為GhDHN1-R:5′-TCAAGCCTTTTCTTTT TCTTCA-3′。利用 PrimeScript RT Reagent Kit with gDNA Eraser(Perfect Real Time)試劑盒(TaKaRa,China)將豫2067葉片RNA反轉(zhuǎn)錄合成第一鏈cDNA,以反轉(zhuǎn)錄獲得的棉花 cDNA為模板,擴(kuò)增 GhDHN1全長cDNA序列。所用的PCR程序為94℃ 5 min;94℃40 s,54℃ 40 s,72℃ 40 s,30 cycle;72℃ 10 min。擴(kuò)增產(chǎn)物采用1%瓊脂糖凝膠電泳(m/v)進(jìn)行檢測。PCR產(chǎn)物采用Omega PCR產(chǎn)物純化試劑盒進(jìn)行純化。然后將目的基因與PMD-19載體連接,轉(zhuǎn)化至大腸桿菌感受態(tài)細(xì)胞 DH5α,倒置培養(yǎng)過夜,挑取白色單克隆,進(jìn)行PCR檢測,并且測序進(jìn)行驗證。測序由蘇州金唯智科技有限公司北京分公司完成。
1.3棉花GhDHN1的生物信息學(xué)分析
1.3.1棉花GhDHN1蛋白質(zhì)的等電點、分子量及結(jié)構(gòu)域的預(yù)測 用Protparam(http://web.expasy.org/ protparam/)在線程序分析蛋白質(zhì)的分子量和等電點,ProtScale(http://web.expasy.org/protscale/)預(yù)測親疏水性,利用 ScanProsit、SMART(http://smart.emblheidelberg.de/)、CCD(http://www.ncbi.nlm.nih.gov/ Structure/cdd/wrpsb.cgi)、PROSITE(http://prosite. expasy.org/)網(wǎng)站對基因進(jìn)行蛋白質(zhì)結(jié)構(gòu)域預(yù)測,確定該基因所屬蛋白家族,SOPMA(https://npsa-prabi. ibcp.fr/cgi-bin/secpred_sopma.pl)分析蛋白的二級結(jié)構(gòu),NetPhos 2.0 Server(http://www.cbs.dtu.dk/services/ NetPhos/)程序預(yù)測磷酸化位點。
1.3.2棉花GhDHN1與其他幾個物種DHN1進(jìn)化樹分析
在NCBI上查找葡萄(Vitis vinifera,NP_001268221.1)、可可(Theobroma cacao,XP_007017965.1)、擬南芥(Arabidopsis thaliana,CAA62449.1)、柑橘(Citrus sinensis,NP_001275806.1)、高粱(Sorghum bicolor,AGS16688.1)、蘋果(Malus domestica,AFG33211.1)、玉米(Zea mays,NP_001105419.1)、山楊(Populus davidiana,ABS12334.1)、白骨壤(Avicennia marina,A8CVF3.1)、油茶(Camellia oleifera,ACF72673)、小麥(Triticum aestivum,AF453444_1)、葡萄柚(Citrus ×paradisi,AAN78125.1)等12個物種DHN1的蛋白序列,分別命名為VvDHN1、TcDHN1、AtDHN1、CsDHN1、SbDHN1、MdDHN1、ZmDHN1、PdDHN1、AmDHN1,CoDHN2、WZY1-1、CpDHN,利用在線工具ClustalW2和MEGA5.0對不同物種的DHN1全長蛋白質(zhì)序列進(jìn)行多序列比對,使用鄰接(Neighbor-Joining,NJ)法建樹,用MEGA軟件生成系統(tǒng)進(jìn)化樹。
1.3.3棉花GhDHN1染色體定位以及基因結(jié)構(gòu)分析
分別在棉花基因組中獲得GhDHN1(CotAD_58358)的CDS、cDNA全長序列和基因組序列,將cDNA序列作為查詢序列與整個陸地棉AD基因組進(jìn)行比對,獲得GhDHN1在染色體中的位置;利用在線軟件Gene Structure Display Server(GSDS2.0,http:// gsds.cbi.pku.edu.cn/)將GhDHN1的cDNA與其對應(yīng)的基因組DNA序列進(jìn)行比對,確定GhDHN1的外顯子/內(nèi)含子結(jié)構(gòu)。
1.4pBI121-GhDHN1::GFP熒光瞬時表達(dá)載體的構(gòu)建及洋蔥表皮細(xì)胞中的亞細(xì)胞定位分析
利用http://bioinfo.clontech.com/infusion在線設(shè)計In-Fusion引物(上游引物為InGhDHN1-F:5′-CACGG GGGACTCTAGAATGGCCGAGGAGCATACCAGTA -3′,下游引物為InGhDHN1-R:5′-AGGGACTGACCA CCCGGGTCAAGCCTTTTCTTTTTCTTCA-3′,下劃線為酶切位點),以GhDHN1質(zhì)粒為模板進(jìn)行擴(kuò)增。選擇的酶切位點為 XbaⅠ和 SmaⅠ,對植物表達(dá)載體pBI121:GFP進(jìn)行雙酶切,采用In-Fusion連接技術(shù)構(gòu)建融合蛋白瞬時表達(dá)載體 pBI121-GhDHN1:GFP,轉(zhuǎn)化至大腸桿菌DH5α感受態(tài)細(xì)胞,挑選陽性克隆進(jìn)行測序,同時選用限制性內(nèi)切酶BglⅡ和XhoⅠ驗證插入位點后提取質(zhì)粒。
將洋蔥切成1—2 cm的小塊,用基因槍GDS-80(購自美國 Wealtec Corp)活體轉(zhuǎn)化技術(shù)將pBI121:GFP質(zhì)粒和pBI121-GhDHN1:GFP質(zhì)粒分別轟入洋蔥內(nèi)表皮細(xì)胞,把轉(zhuǎn)化后的洋蔥貼在MS培養(yǎng)基上,暗處室溫過夜培養(yǎng)。用鑷子輕輕撕下轉(zhuǎn)化后的洋蔥內(nèi)表皮放在載玻片上,在激光共聚焦顯微鏡FV1000(日本Olympus)下觀察。
1.5基于轉(zhuǎn)錄組測序的GhDHN1表達(dá)分析
GhDHN1受低溫脅迫后的轉(zhuǎn)錄表達(dá)分析在陸地棉豫2067三葉期的真葉和根中進(jìn)行,低溫處理為4℃,24 h,對照為4℃處理0 h(28℃),取樣部位是倒一葉和根系。為了評價基因表達(dá)水平,將獲得的GhDHN1序列上的序列讀數(shù)轉(zhuǎn)換為RPKM[17],公式如下:
式中,C指的是唯一比對到轉(zhuǎn)錄組的讀長的數(shù)量,N是指唯一比對到一個特定樣品上的讀長的總數(shù),L是指轉(zhuǎn)錄本中的堿基數(shù)。
1.6三葉期棉花幼苗低溫脅迫后GhDHN1的實時熒光定量分析
利用PrimerPremier5.0設(shè)計GhDHN1的熒光定量引物(上游引物為GhDHN1-F:5′- GTTAGCGGTGAA GGAGCAGT-3′,下游引物為GhDHN1-R:5′- ACTCGG TTACGATCACCTCC-3′),以 Gossypium hirsutum Histone-3(Accession No.:AF024716)作為反應(yīng)中的內(nèi)參基因進(jìn)行實時熒光定量 PCR,PCR程序設(shè)定為94℃ 30 s;94℃ 5 s,55℃ 34 s,72℃ 34 s,共40個循環(huán),所用儀器為7500 Real Time PCR System。實時熒光定量PCR結(jié)果分析參考AFRIN等[18]所報道2-ΔΔCt方法,每處理3個生物學(xué)重復(fù),3個技術(shù)重復(fù),結(jié)果用于平均數(shù)統(tǒng)計和方差分析。
2.1GhDHN1的克隆
在前期的轉(zhuǎn)錄組試驗中,發(fā)現(xiàn)一個注釋為脫水素的基因受 4℃低溫脅迫后在棉花葉片和根中均上調(diào)表達(dá),推測其與棉花的抗冷性有一定的相關(guān)性。根據(jù)棉花基因組Cotton Genome Project(CGP,http://cgp.genomics. org.cn/page/species/index.jsp)序列中搜索到的脫水素(dehydrin,Dhn)基因的CDS全長序列,在其兩端設(shè)計引物,以棉花豫2067葉片的cDNA為模板,擴(kuò)增出GhDHN1的完整CDS序列(圖1)。得到的閱讀框長度為636 bp,測序結(jié)果正確。
圖1 GhDHN1的擴(kuò)增PCR產(chǎn)物Fig. 1 The product of PCR amplification of GhDHN1 gene
2.2棉花GhDHN1蛋白質(zhì)的等電點、分子量及二級結(jié)構(gòu)域的預(yù)測
GhDHN1蛋白質(zhì)編碼211個氨基酸,預(yù)測分子量為23.79 kD,等電點為5.04,富含谷氨酸(26.10%)和賴氨酸(19.40%),不含色氨酸,符合植物脫水素的一般特性(圖 2-A)[19]。帶負(fù)電荷的酸性氨基酸(Asp+Glu)有 61個,帶正電荷的堿性氨基酸(Arg+Lys)有43個,該蛋白呈酸性且?guī)ж?fù)帶荷,半衰期約為30 h,不穩(wěn)定指數(shù)為70.27。分析GhDHN1蛋白的親疏水性發(fā)現(xiàn),蛋白中親水性氨基酸明顯多于疏水性氨基酸(圖2-B),親水性平均系數(shù)(GRAVY, Grand average of hydropathicity)為-1.53,屬親水性蛋白。SOPMA分析結(jié)果(圖2-C)表明,α螺旋(alpha helix)包含116個氨基酸殘基,占54.98%,組成該蛋白的主體結(jié)構(gòu);無規(guī)則卷曲(random coil)的氨基酸殘基有87個,占41.23%;β片層(β-sheet)包含氨基酸殘基5個,占2.37%;β-轉(zhuǎn)角(beta turn)包含3個氨基酸,占 1.42%,推測該蛋白的結(jié)構(gòu)功能域可能主要由α螺旋構(gòu)成。
2.3棉花GhDHN1的染色體定位、基因結(jié)構(gòu)分析和功能結(jié)構(gòu)域分析
在棉花基因組 Cotton Genome Project (CGP,http://cgp.genomics.org.cn/page/species/index.jsp)中對陸地棉AD基因組信息分析,結(jié)果表明,GhDHN1位于陸地棉D(zhuǎn)亞組第9染色體(Dt_chr9)上的54183731 —54184456(+),全長726 bp;基因結(jié)構(gòu)分析表明,GhDHN1在cDNA的259—348位置上含有一個長度為90 bp的內(nèi)含子,2個外顯子長度分別為258 bp和378 bp(圖3)。
利用SMART(http://smart.embl-heidelberg.de/)、CCD(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb. cgi)、PROSITE(http://prosite.expasy.org/)對棉花GhDHN1進(jìn)行功能結(jié)構(gòu)域分析可知,該氨基酸序列在C端含有 2個保守的富含賴氨酸片段 PS00823 (KIKEKLPG,位于151—158;KIKEKLPG,位于192 —199),在N端一個保守的富含絲氨酸片段PS00315 (SSSSSDEEEGEGEEKKKKKK,位于84—103),具有親水素蛋白結(jié)構(gòu)域pfam00257(位于14—160和143—201),屬于K2S型脫水素蛋白的典型結(jié)構(gòu)。
2.4棉花GhDHN1編碼蛋白的磷酸化位點預(yù)測
利用在線軟件NetPhos 2.0 Server預(yù)測GhDHN1編碼蛋白的磷酸化位點(圖4)。結(jié)果表明,GhDHN1蛋白主要含有16個絲氨酸(Serine)磷酸化位點(分別在第7、14、17、24、79—88、127、167、183、202、204位點)、5個蘇氨酸(Threonine)磷酸化位點(第6、48、48、126、142位點)、1個酪氨酸(Tyrosine)磷酸化位點(第207位點)。由此推測GhDHN1蛋白的活性可能與其磷酸化調(diào)控有關(guān)。
2.5棉花GhDHN1編碼蛋白與其他植物親水素蛋白的進(jìn)化分析
在NCBI上查找到12種植物的親水素蛋白序列(詳見方法1.3.2),采用MEGA5.0鄰接法與陸地棉GhDHN1蛋白序列對比并建立無根系統(tǒng)進(jìn)化樹,結(jié)果表明,陸地棉GhDHN1蛋白序列與可可親緣關(guān)系最近,其序列一致性為78.70%,其次與柑橘、葡萄柚、山楊的脫水素蛋白親緣關(guān)系也比較近,一致性分別為61.10%、61.40%和63.40%;與擬南芥、玉米、高粱、葡萄、蘋果、小麥、油茶、白骨壤等物種的親水素蛋白的親緣關(guān)系較遠(yuǎn)(圖 5),推測棉花脫水素基因的功能可能與木本植物中脫水素基因功能相似。
圖2 GhDHN1蛋白結(jié)構(gòu)分析Fig. 2 Protein stucture analysis of GhDHN1 protein
圖3 棉花GhDHN1內(nèi)含子-外顯子結(jié)構(gòu)分析Fig. 3 The intron-exon organization of cotton GhDHN1 gene
2.6pBI121-GhDHN1::GFP熒光表達(dá)載體的酶切驗證
利用pBI121作為瞬時表達(dá)載體,利用限制內(nèi)切酶XbaⅠ和 SmaⅠ,將 GhDHN1插入植物表達(dá)載體pBI121:GFP中,構(gòu)建融合蛋白瞬時表達(dá)載體,轉(zhuǎn)化至大腸桿菌DH5α感受態(tài)細(xì)胞,挑選陽性克隆進(jìn)行測序,序列比對結(jié)果正確。選用限制性內(nèi)切酶BglⅡ和XhoⅠ酶切驗證插入正確(圖6),表明表達(dá)載體構(gòu)建成功,命名為pBI121-GhDHN1:GFP。
圖4 棉花GhDHN1蛋白的磷酸化位點預(yù)測Fig. 4 Protein phosphorylation sites prediction of GhDHN1 protein
圖5 棉花GhDHN1蛋白與12個植物DHN1蛋白的進(jìn)化樹分析Fig. 5 Phylogenetic tree analysis of GhDHN1protein and 12 plant DHN1 proteins
2.7棉花GhDHN1蛋白的亞細(xì)胞定位分析
通過瞬時表達(dá)系統(tǒng)分析 GhDHN1蛋白亞細(xì)胞定位,對照PBI121:GFP的綠色熒光分布在整個細(xì)胞中(圖7-A—圖7-C),而PBI121-GhDHN1:GFP融合蛋白的綠色熒光信號主要集中在細(xì)胞膜附近(圖 7-D—圖7-F),推測GhDHN1蛋白主要在細(xì)胞膜附近發(fā)揮作用。該基因所編碼的蛋白質(zhì)在洋蔥表皮中得到了表達(dá),證明了該基因能夠正常表達(dá)功能蛋白,為下一步使用基因槍活體轉(zhuǎn)化技術(shù)獲得轉(zhuǎn)基因擬南芥和轉(zhuǎn)基因棉花材料提供理論依據(jù)。
2.8低溫脅迫條件下GhDHN1的轉(zhuǎn)錄表達(dá)分析
基于棉花轉(zhuǎn)錄組測序分析表明(圖 8),棉花三葉期在受4℃低溫處理24 h后,與對照相比,GhDHN1在葉中和根中表達(dá)均差異顯著,且上調(diào)表達(dá),上調(diào)倍數(shù)分別為2.57和1.29倍,說明GhDHN1棉花響應(yīng)低溫脅迫中起正調(diào)控作用。
2.9低溫脅迫條件下GhDHN1實時災(zāi)光定量分析
實時熒光定量分析表明(圖9-A)可知,GhDHN1在受4℃低溫處理24 h后,與對照相比,在葉、莖均上調(diào)表達(dá),且差異達(dá)到極顯著,表達(dá)倍數(shù)分別為14.28 和4.30,在根中也上調(diào)表達(dá),且與對照差異顯著,上調(diào)倍數(shù)為1.33,說明GhDHN1在響應(yīng)低溫脅迫過程中,在葉中的作用最大,其次是在莖中和根中,這與轉(zhuǎn)錄組測序結(jié)果是一致的;4℃低溫處理不同時間后,與對照相比,GhDHN1在在葉片中基因表達(dá),除了在0.5 h處理時差異顯著外,在其他時間均差異達(dá)極顯著水平,在4 h和24 h時有2個表達(dá)高峰(圖9-B);在根中受不同時間低溫處理后,與對照相比,在 0.5、6、8 和12 h上調(diào)表達(dá)且差異達(dá)極顯著,同時在6 h和12 h 有2個表達(dá)高峰(圖9-C);GhDHN1在受4℃低溫處理24 h后,與對照相比,抗冷材料豫2067和衡棉3號的葉片均上調(diào)表達(dá),且與對照間達(dá)差異極顯著,表達(dá)倍數(shù)分別為14.28和5.77,在抗冷材料中的表達(dá)量遠(yuǎn)大于冷敏感材料,其表達(dá)量是冷敏感材料的2.47倍,二者表達(dá)倍數(shù)差異極顯著(圖9-D)。
圖6 pBI121-GhDHN1::GFP表達(dá)載體酶切驗證Fig. 6 Enzyme digestion of expression vector pBI121-GhDHN1:GFP
圖7 棉花GhDHN1蛋白的亞細(xì)胞定位Fig. 7 Sub-cellular localization of GhDHN1 protein
植物在生長發(fā)育發(fā)過程中面臨大量的環(huán)境威脅,如生物的和非生物的逆境,面對這些環(huán)境的不斷變化,它們必須進(jìn)化出相應(yīng)的適應(yīng)機(jī)制,才能度過這些不利環(huán)境,繼續(xù)生存下去。合成一系列逆境響應(yīng)蛋白,小分子代謝物和一些滲透保護(hù)物質(zhì)等可以有助于植物在不同的逆境脅迫條件下存活。積累脫水素是植物在應(yīng)對逆境脅迫過程的一條主要途徑,在植物耐受干旱和鹽脅迫過程中發(fā)揮重要的保護(hù)功能[20]。
圖8 GhDHN1在豫2067三葉期葉片和根系經(jīng)低溫脅迫后的轉(zhuǎn)錄豐度Fig. 8 Transcript abundance analysis of GhDHN1 gene in leaves and roots of Yu2067 after treatment at 4℃ low temperature for 24 h
脫水素是一類重要LEA蛋白,通常包含有Y片段、S片段和K片段保守域,其中K片段是所有脫水素均具備的特征結(jié)構(gòu)域[21]。研究表明,富含賴氨酸K片段一般位于蛋白序列的C端,可以形成雙親α螺旋,α螺旋能夠和其他蛋白的脫水表面或生物膜表面發(fā)生互作,這種互作能保護(hù)其他蛋白水分的丟失,在細(xì)胞脫水保護(hù)過程中發(fā)揮重要功能[22]。在本研究中發(fā)現(xiàn),GhDHN1蛋白在C端具有2個K片段保守域,二級結(jié)構(gòu)分析顯示該蛋白的α螺旋(alpha helix)占到整個蛋白54.98%,無規(guī)則卷曲(random coil)占到整個蛋白的41.23%,F(xiàn)AN等[23]研究表明這種無規(guī)則卷曲結(jié)構(gòu)對于增加細(xì)胞中束縛水含量,保護(hù)細(xì)胞脫水功能非常有利。S片段是由一系列絲氨酸殘基組成,ALSHEIKH等[24]研究表明S片段的磷酸化可以使脫水素在信號肽的引導(dǎo)下進(jìn)入細(xì)胞核,GhDHN1在N端具有一個S片段,共含有16個絲氨酸(Serine)磷酸化位點,5個蘇氨酸(Threonine)磷酸化位點,1個酪氨酸(Tyrosine)磷酸化位點,推測這些磷酸化位點在棉花脫水素的功能行使過程中發(fā)揮重要作用,這一功能還有待于進(jìn)一步的驗證。研究表明,GhDHN1蛋白呈酸性且?guī)ж?fù)帶荷,亞細(xì)胞定位于細(xì)胞質(zhì)膜附近,DANYLUK等[25]報道,小麥冷誘導(dǎo)脫水素基因也呈酸性,在細(xì)胞質(zhì)膜上被檢測到,因此,2個物種的脫水素蛋白有相似的性質(zhì)和亞細(xì)胞定位,推測可能具有相似的功能。
大量研究表明在非生物逆境脅迫下,植物脫水素的表達(dá)和積累與植物抗逆性之間存在著正相關(guān)關(guān)系[26-28]。本研究轉(zhuǎn)錄組測序結(jié)果表明,GhDHN1受低溫脅迫棉花葉片和根中均上調(diào)表達(dá);實時熒光定量分析表明,GhDHN1在受低溫脅迫的根、莖、葉中均上調(diào)表達(dá),特別是在葉中上調(diào)表達(dá)的更為明顯,這些結(jié)果充分說明GhDHN1受低溫的誘導(dǎo),這跟GhDHN1蛋白的性質(zhì)有一定相關(guān)性,據(jù)報道,酸性或中性的SKn、Kn、Y2Kn型脫水素蛋白優(yōu)先可被低溫誘導(dǎo),如小麥WCO410屬于酸性的K3S型脫水素,可在維管組織中受低溫誘導(dǎo)[25];另據(jù)報道,脫水素在抵御低溫等非生物脅迫過程發(fā)揮著重要作用[29],有研究表明過量表達(dá)脫水素基因可增強(qiáng)擬南芥的低溫抗性,提高其抗寒力[30];GhDHN1在低溫脅4 h和24 h在棉花的葉片中上調(diào)倍數(shù)2次達(dá)到高峰,這與徐麗等[31]在核桃中的研究結(jié)果相似,徐麗等研究表明,JrDHN在4℃脅迫下核桃葉片中表達(dá)增加,4℃處理4 h后達(dá)到最大值;這些結(jié)果與花生中K2S型脫水素基因AhDHN1的功能不完全一樣,AhDHN1對高鹽和干旱脅迫則有明顯響應(yīng),對低溫脅迫無響應(yīng)[32],推測可能是因為花生中該脫水素基因序列與棉花中該基因序列差異較大造成的;GhDHN1在抗冷材料和冷敏感材料中表達(dá)差異顯著,其表達(dá)量與棉花的抗冷性呈正相關(guān),這與小麥脫水素有相似的功能,研究表明,在適合生長的溫度條件下,小麥脫水素在轉(zhuǎn)錄水平和蛋白水平在抗凍性強(qiáng)的小麥品種中的積累遠(yuǎn)多于不抗凍品種,所以在溫度降低過程中具有更高的適應(yīng)性,具有更強(qiáng)的抗冷性,因此,脫水素可以作為不同材料間的抗冷性篩選鑒定標(biāo)記[33]。以上結(jié)果表明,脫水素蛋白在棉花響應(yīng)低溫脅迫過程中可能具有復(fù)雜的響應(yīng)模式。
圖9 低溫脅迫條件下GhDHN1實時熒光定量分析Fig.9 Expression of GhDHN1 gene in cotton under low temperature stress treatment with qRT-PCR method
陸地棉GhDHN1屬于典型的K2S型脫水素,與可可親緣關(guān)系最近,在響應(yīng)低溫脅迫中起正調(diào)控作用,在抗冷材料和冷敏感材料中表達(dá)差異極顯著,其表達(dá)量與棉花的抗冷性呈正相關(guān),可以作為篩選不同抗冷材料的分子標(biāo)記,同時可以作為培育棉花抗冷材料的候選基因。
References
[1] 李新國, 畢玉平, 趙世杰, 孟慶偉, 何啟偉, 鄒琦. 短時低溫脅迫對甜椒葉綠體超微結(jié)構(gòu)和光系統(tǒng)的影響. 中國農(nóng)業(yè)科學(xué), 2005,38(6): 1226-1231. LI X G, BI Y P, ZHAO S J, MENG Q W, HE Q W, ZOU Q. Effects of short-term chilling stress on the photosystems and chloroplast ultrastructure in sweet pepper. Scientia Agricultura Sinica, 2005,38(6): 1226-1231. (in Chinese)
[2] SAWAN Z M, HANNA L I, GAD E, KARIM G A, MCCUISTION W L. Relationships between climatic factors and flower and boll production in Egyptian cotton (Gossypium barbadense). Journal of Arid Environments, 2002, 52(4): 499-516.
[3] POSAS F, CHAMBERS J R, HEYMAN J A, HOEFFLER J P, DE NADAK E, ARI?O J. The transcriptional response of yeast to saline stress. The Journal of Biological Chemistry, 2000, 275(23):17249-17255.
[4] SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007, 58(2): 221-227.
[5] BIES ETHèVE N, GAUBIER-COMELLA P, DEBURES A,LASSERRE E, JOBET E, RAYNAL M, COOKE R, DELSENY M. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Molecular Biology, 2008, 67(1): 107-124.
[6] DURE L, CROUCH M, HARADA J, DAVID HO T H, MUNDY J,QUATRANO R, THOMAS T, SUNG Z R. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molecular Biology, 1989, 12(12): 475-486.
[7] HANIN M, BRINI F, EBEL C, TODA Y, TAKEDA S, MASMOUDI K. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signaling & Behavior, 2011, 6(10): 1503-1509.
[8] HARA M, FUJINAGA M, KUBOI T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiology Biochemistry, 2004, 42(7/8): 657-662.
[9] CHAKRABORTEE S, BOSCHETTI C, WALTON L J, SARKAR S,RUBINSZTEIN D C, TUNNACLIFFE A. Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proceedings of the National Academy of Sciences of the USA, 2007, 104(46): 18073-18078.
[10] KOSOVá K, HOLKOVá L, PRá?IL I T, PRá?ILOVá P,BRADá?OVá M, VíTáMVáS P, ?APKOVá V. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). Journal of Plant Physiology, 2008, 165(11):1142-1151. (in Chinese)
[11] 郭鵬, 張士剛, 金華, 鄒吉祥, 董燕, 姜國斌. 番茄脫水素基因SlDHN2b的克隆與表達(dá)分析. 園藝學(xué)報, 2012, 39(10): 2015-2022. GUO P, ZHANG S G, JIN H, ZOU J X, DONG Y, JIANG G B. Cloning and characterization of dehydrins gene SlDHN2b in tomato. Acta Horticulturae Sinica, 2012, 39(10): 2015-2022. (in Chinese)
[12] 張寧, 孫敏善, 劉露露, 孟凡榮, 任江萍, 尹鈞, 李永春. 小麥脫水素基因 TaDHN-1的特征及其對非生物脅迫響應(yīng). 中國農(nóng)業(yè)科學(xué),2013, 46(4): 849-858. ZHANG N, SUN M S, LIU L L, MENG F R, REN J P, YIN J, LI Y C. Characterization of a dehydrin gene TaDHN-1 and its response to abiotic stresses in wheat. Scientia Agricultura Sinica, 2013, 46(4):849-858. (in Chinese)
[13] PUHAKAINEN T, HESS M W, MAKELA P, SVENSSON J, HEINO P, PALVA E T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology,2004, 54(5): 743-753.
[14] HALDER T, AGARWAL T, RAY S. Isolation, cloning, and characterization of a novel dehydrin (SbDhn2) protein. Protoplasma,2015, 11(4): 1-14.
[15] ZHANG L, OHTA A, TAKAGI M, IMAI R. Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. Journal Biochemistry,2000, 127(4): 611-616.
[16] SWIRE-CLARK G A, MARCOTTE W R. The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Molecular Biology, 1999, 39(1): 117-128.
[17] MORTAZAVI A, WILLIAMS B A, MCCUE K, SCHAEFFER L,WOLD B. Mapping and quantifying mammalian transcriptomes byRNA-Seq. Nature Methods, 2008, 5(7): 621-628.
[18] AFRIN S, ZHU J, CAO H Z, HUANG J G, XIU H, LUO T, LUO Z Y. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng. Acta Biochimica et Biophysica Sinica, 2015, 47(4): 267-277.
[19] CLOSE T J, KORTT A A, CHANDLER P M. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Molecular Biology, 1989, 13(1): 95-108.
[20] HUNDERTMARK M, HINCHA D K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008, 9: 118.
[21] ALLAGULOVA C R, GIMALOV F R, SHAKIROVA F M,VAKHITOV V A. The plant dehydrins: Structure and putative functions. Biochemistry, 2003, 68(9): 945-951.
[22] HANIN M, BRINI F, EBEL C, TODA Y, TAKEDA S, MASMOUDI K. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signaling and Behavior, 2011, 6(10): 1503-1509.
[23] FAN Z, WANG X. Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris. Molecular Biology, 2006, 40(1):43-50.
[24] ALSHEIKH M K, HEYEN B J, RANDALL S K. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. Journal of Biology Chemistry, 2003, 278(42) : 40882- 40889.
[25] DANYLUK J, PERRON A, HOUDE M, LIMIN A, FOWLER B,BENHAMOU N, SARHAN F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. The Plant Cell, 1998, 10(4): 623-638.
[26] WAHID A, CLOSE T J. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves.Biologia Plantarum, 2007, 51(1): 104-109.
[27] XU J, ZHANG Y X, GUAN Z Q, WEI W, HAN L, CHAI T Y. Expression and function of two dehydrins under environmental stresses in Brassica juncea L.. Molecular Breeding, 2008, 21(4):431-438.
[28] MINGEOT D, DAUCHOT N, VAN CUTSEM P, WATILLON B. Characterisation of two cold induced dehydrin genes from Cichorium intybus L.. Molecular Biology Reports, 2009, 36(7): 1995-2001.
[29] CLOSE T J. Dehydrins: A commonality in the response of plants to dehydration and low temperatures. Physiologia Plantarum, 1997,100(2): 291-296.
[30] PUHAKAINEN T, HESS M W, M?KEL? P, SVENSSON J, HEINO P, PALVA E T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology,2004, 54(5): 743-753.
[31] 徐麗, 陳新, 魏海蓉, 張力思, 宗曉娟, 王甲威, 朱東姿, 劉慶忠.核桃Y2SK2型脫水素基因JrDHN的克隆、表達(dá)和單核苷酸多態(tài)性分析. 園藝學(xué)報, 2014, 41(8): 1573-1582. XU L, CHEN X, WEI H R, ZHANG L S, ZONG X J, WANG J W,ZHU D Z, LIU Q Z. Molecular cloning, expression and single nucleotide polymorphisms analysis of typical Y2SK2dehydrin in Juglans. Acta Horticulturae Sinica, 2014, 41(8): 1573-1582. (in Chinese)
[32] 陳娜, 胡冬青, 潘麗娟, 遲曉元, 陳明娜, 王通, 王冕, 楊珍, 禹山林. 花生中脅迫相關(guān)基因AhDHN1的克隆及非生物脅迫下表達(dá)分析. 核農(nóng)學(xué)報, 2014, 28(12): 2159-2166. CHEN N, HU D Q, PAN L J, CHI X Y, CHEN M N, WANG T,WANG M, YANG Z, YU S L. Cloning of a Dehydrin Gene AhDHN1 and its expression analysis during abiotic stresses in peanut. Journal of Nuclear Agricultural Sciences, 2014, 28(12): 2159-2166. (in Chinese)
[33] GALIBA G, VáGúJFALVI A, LI C, SOLTéSZ A, DUBCOVSKY J. Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Science, 2009, 176(1): 12-19.
(責(zé)任編輯 李莉)
Molecular Clone and Expression of GhDHN1 Gene in Cotton (Gossypium hirsutum L.)
WANG Jun-juan, MU Min, WANG Shuai, LU Xu-ke, CHEN Xiu-gui, WANG De-long, FAN Wei-li,YIN Zu-jun, GUO Li-xue, YE Wu-wei, YU Shu-xun
(Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000,Henan)
【Objective】In order to explore functional genes related to low temperature stress tolerance of cotton, the characteristics of cotton dehydrin gene and its expression patterns responsed to low temperature stress in cotton were analyzed, thus providing a theoretical basis for the application of dehydrin gene in cotton chilling tolerant breeding. 【Method】 In this study, based on the upland cotton genome sequence, specific primers were designed by Primer 5 software and the dehydrin gene was cloned from the upland cotton variety Yu2067, named GhDHN1. Bioinformatics analysis was conducted to analyze the properties, amino acids content, functional domains and evolutionary relationships of the gene. Plant expression vector pBI121:GFP at Xbaand Ⅰ SmaⅠrestriction site s was constructed with double enzyme digestions and the transient expression vector pBI121-GhDHN1::GFP was constructed by In-Fusion connection technology. And the subcellular localization of GhDHN1 was studied by transient expression analysis of onion epidermal cells. Combined with the transcriptome sequencing data of chilling-resistant cotton variety Yu2067, real-time fluorescent quantitative PCR expression of leaves, stems, and roots in chilling-resistant Yu2067 and chilling-sensitive variety Hengmian No.3 under low temperature stress treatments (4℃, 24 h) at trefoil stage was performed to study the function of GhDHN1. The expression of the gene in the leaves of two different cold resistant varieties was compared. The dynamic expression of GhDHN1 gene in leaves and roots of Yu2067 was detected under 4℃ low temperature treatment.【Result】 A cotton dehydrin gene was cloned and the sequencing analysis showed that the cDNA of the dehydrin gene was 726 bp, and the gene encoded 211 amino acids with a predicted molecular weight of about 23.79 kD and the isoelectric point was 5.04. Amino acid sequence analysis indicated that the GhDHN1 was rich in glutamic acid content (26.10%) and lysine amino acid content (19.40%)with a half-life of 30 hours. GhDHN1 was acidic and negatively charged, of which 60 percent were negatively charged residues. The second structure analysis showed that the alpha helix of GhDHN1 contained 116 amino acid residues, accounting for 54.98% of the protein composition and random coil contained 87 amino acid residues. GhDHN1 gene was located on Dt_chr9 chromosome of AD genome. GhDHN1 gene contained a 90 bp intron at 259-348 position of cDNA and two exons in lengths of 258 bp and 378 bp,respectively. SMART and CDD analysis showed that GhDHD1 includes two conserved lysine-rich K fragments, a conserved serine-rich S fragment and a dehydrin functional domain pfam00257 and therefore was sorted into K2S subfamily of dehydrins. Phylogenetic analysis showed that GhDHN1 of cotton had the closest relationship with DHN1 of cacao. The analysis of the transient expression in onion epidermal cells showed that GhDHN1 was mainly localized near the cell plasma membrane. Transcriptome analysis showed that GhDHN1 gene was up-regulated in leaves and roots of cotton after low temperature treatments at the trefoil stage. qRT-PCR analysis showed that GhDHN1 was up-regulated in leaves, stems and roots after low temperature. The expression fold in leaves was higher than that in stems and roots. There were two expression peaks in leaves under low temperature treatment for 4 h and 24 h, and there were also two peaks in roots of the low temperature treatment for 6 h and 12 h. The leaf expression of the gene in cold resistant varieties was 2.47 times the expression in the cold sensitive varieties. The results showed that GhDHN1 gene may be involved in the adaptability regulation of low temperature. 【Conclusion】 GhDHN1 belonged to the member of K2S subfamily of dehydrins. Phylogenetic analysis showed that GhDHN1 had the closest relationship with DHN1 of cacao. GhDHN1 gene was induced by low temperature stress. Significant expression difference of GhDHN1 between the cold-resistance variety and cold-sensitive variety was found, and the expression of GhDHN1 was positively correlated with cotton cold-resistance. The expression of GhDHN1 can be thus employed as a marker of cotton chilling resistance. At the same time GhDHN1 gene can also serve as an important candidate gene in cotton cultivation of cold-resistant materials.
cotton; dehydrin; sub-cellular localization; low temperature stress; transcriptional expression; real-time fluorescent quantitative PCR
2016-02-24;接受日期:2016-05-24
河南省基礎(chǔ)與前沿技術(shù)研究計劃項目(142300413232)
聯(lián)系方式:王俊娟,Tel:15093920872;E-mail:wjj2004liyuan@sina.com。通信作者喻樹迅,Tel:0372-2562201;E-mail:ysx195311@163.com