劉 輝,張?zhí)m威,易華西,韓 雪
(哈爾濱工業(yè)大學(xué)化學(xué)工程與技術(shù)學(xué)院,黑龍江哈爾濱 150090)
?
抗菌肽異源表達(dá)的研究進(jìn)展
劉輝,張?zhí)m威*,易華西,韓雪
(哈爾濱工業(yè)大學(xué)化學(xué)工程與技術(shù)學(xué)院,黑龍江哈爾濱 150090)
抗菌肽是一種小肽類物質(zhì),可以抑制多種細(xì)菌、真菌、病毒以及抗生素抗性細(xì)菌。但是抗菌肽產(chǎn)量低提取工藝繁瑣,制約其工業(yè)化生產(chǎn)和科學(xué)研究。異源表達(dá)技術(shù)為提高抗菌肽產(chǎn)量提供了十分有效的途徑。目前抗菌肽異源表達(dá)系統(tǒng),主要包括大腸桿菌和酵母菌表達(dá)系統(tǒng)。本文主要綜述了大腸桿菌和酵母菌表達(dá)系統(tǒng)的優(yōu)缺點(diǎn)以及發(fā)展方向,為利用生物技術(shù)方法提高抗菌肽產(chǎn)量提供理論依據(jù)和技術(shù)支持。
抗菌肽,異源表達(dá),大腸桿菌,酵母菌
抗菌肽是由微生物核糖體合成的一種小肽類抑菌物質(zhì)??咕目梢杂行У囊种萍?xì)菌、真菌和病毒,被認(rèn)為是一種天然無毒的食品防腐劑[1]。近幾年,研究發(fā)現(xiàn)抗菌肽可以調(diào)節(jié)免疫系統(tǒng),抑制炎性因子以及腫瘤細(xì)菌和癌細(xì)胞的作用[2-4]。抗菌肽的廣譜作用,使得越來越多的新型抗菌肽被發(fā)現(xiàn)??咕男再|(zhì)、機(jī)理、結(jié)構(gòu)以及功能研究,需要大量的高純度的抗菌肽。目前,獲得高純度的抗菌肽主要有三個(gè)途徑:源料提取、化學(xué)合成以及異源表達(dá)。異源表達(dá)抗菌肽的優(yōu)勢在于生產(chǎn)成本低,提取工藝簡單,產(chǎn)量高,更好的滿足生產(chǎn)和研究所需的抗菌肽[5]。雖然異源表達(dá)技術(shù)為提高抗菌肽產(chǎn)量提供了有效途徑,但基因表達(dá)的效果往往依賴于表達(dá)載體、宿主菌、分泌蛋白所需要的信號(hào)序列以及外部因素,如:溫度、誘導(dǎo)劑等[6-7]。在異源表達(dá)抗菌肽表達(dá)方面大腸桿菌和酵母菌是最為常用的表達(dá)宿主。雖然大腸桿菌作為宿主的占80%以上,但是酵母菌的表達(dá)也有其獨(dú)特的優(yōu)勢,如肽類分子折疊、二硫鍵的形成和基團(tuán)修飾方面[8-9]。本文綜述了目前在抗菌肽異源表達(dá)方面的研究和表達(dá)系統(tǒng)的最新進(jìn)展。
在大腸桿菌表達(dá)系統(tǒng)中質(zhì)粒主要應(yīng)用是Novagen公司的pET系列,表達(dá)宿主最為常用的是Novagen公司的BL21(DE3)、pLys S Origami、Rosetta和C41(DE3)大腸桿菌宿主[10]。利用大腸桿菌異源表達(dá)抗菌肽主要存在兩個(gè)問題:如何減少表達(dá)后抗菌肽對(duì)宿主的毒性[11],如何正確表達(dá)抗菌肽[12]。研究人員最為常用的兩種方法是:將抗菌肽基因與融合蛋白基因共同表達(dá),密碼子優(yōu)化。
1.1融合蛋白輔助表達(dá)抗菌肽
表1 大腸桿菌表達(dá)抗菌肽的主要融合蛋白及產(chǎn)量
注:ND:表示沒有測定;表2同。
利用大腸桿菌表達(dá)系統(tǒng)的主要問題是如何減少抗菌肽表達(dá)后對(duì)宿主的毒性。在抗菌肽基因附加一個(gè)陰離子特性的融合蛋白基因(這種融合蛋白并無抑菌性),可以有效減少抗菌肽對(duì)宿主的毒性[13]。融合蛋白表達(dá)后,往往包含著特殊的理化性質(zhì)和結(jié)構(gòu),可以中和抗菌肽的陽離子,阻止表達(dá)后的抗菌肽對(duì)宿主的毒性。含融合蛋白的抗菌肽可以通過化學(xué)試劑特異性切除融合蛋白,恢復(fù)抗菌肽的抑菌活力[14-15]。目前有很多融合蛋白在抗菌肽的表達(dá)中得到應(yīng)用,最為常用的硫氧還原蛋白、His標(biāo)簽以及谷胱甘肽轉(zhuǎn)移酶(表1)。Pediocin PA-1融合了ABC轉(zhuǎn)運(yùn)子和輔助蛋白,不僅正確表達(dá)PA-1中二硫鍵而且對(duì)宿主并無毒害作用[16]。Divergicin A在融合了堿性磷酸酶后,在大腸桿菌發(fā)酵液中融合體抗菌肽對(duì)宿主無傷害[17]。融合蛋白PurF已經(jīng)使得抗菌肽Magainin和Pleurocidin達(dá)到毫克的產(chǎn)量,buforin IIb達(dá)到克的產(chǎn)量[18-20]。Wang等人利用小分子融合蛋白(SUMO)在大腸桿菌中表達(dá)Bacterocin E50-52,經(jīng)純化后達(dá)到16 mg[21]。Yu等人利用SUMO融合蛋白表達(dá)出抗菌肽Lacticin Q,經(jīng)純化后達(dá)到2.5 mg[22]。Chen等人利用綠色熒光蛋白(GFP)成功在大腸桿菌中表達(dá)出新型抗菌肽NB-C1表達(dá)量為2.2 mg/mL[23]。雖然融合蛋白幫助抗菌肽成功表達(dá),但是融合蛋白也存在著不足,它很容易在細(xì)胞內(nèi)部形成包涵體而導(dǎo)致表達(dá)產(chǎn)物不溶,因此必需加入特定的蛋白酶或化學(xué)試劑(Factor Xa、Hydroxylamine、CNBr、Enterokinase)切出融合蛋白才能讓抗菌肽溶于提取液中,但這樣就會(huì)導(dǎo)致抗菌肽產(chǎn)量造成2~8倍的損失[10,24]。
Morin等人在融合蛋白的基礎(chǔ)上設(shè)計(jì)出一種新的方法,將一個(gè)融合蛋白與多個(gè)抗菌肽indolicidin基因連接,表達(dá)出三聚體或六聚體的融合蛋白與抗菌肽復(fù)合物,經(jīng)純化后用溴化氫切除融合蛋白釋放抗菌肽單體[41]。既減少抗菌肽對(duì)宿主的毒性同時(shí)又提高抗菌肽的產(chǎn)量,Rao和Peng等人分別使得His-Tagged融合蛋白和GST融合蛋白與多個(gè)抗菌肽β-defensin 2串連基因表達(dá),提高了抗菌肽β-defensin 2的產(chǎn)量[6,42]。這種技術(shù)應(yīng)用性不強(qiáng),因?yàn)橹亟M重復(fù)抗菌肽基因,并不能保證一定會(huì)形成聚集體,部份抗菌肽形成聚集體也會(huì)對(duì)宿主有毒性。
內(nèi)含肽融合蛋白的提出解決抗菌肽去除融合蛋白的問題。這種技術(shù)的優(yōu)勢是通過在一定條件下純化抗菌肽,誘導(dǎo)抗菌肽自身切除融合體而釋放出有活性的抗菌肽。這個(gè)系統(tǒng)要求有一個(gè)恰當(dāng)?shù)膬?nèi)含肽與抗菌肽的融合體,它不能與其它融合蛋白酶切位相同。抗菌肽OG2和乳酸菌Class IIa抗菌肽bacterocins BacR1、divercin V41、enterocin P、pediocin PA-1和piscicolin 126利用這種技術(shù)成功的表達(dá)[43-45]。這種表達(dá)系統(tǒng)缺點(diǎn)在于只能表達(dá)小分子量的蛋白,而且對(duì)于質(zhì)粒的構(gòu)建是要求十分嚴(yán)格,內(nèi)含肽融合蛋白使得抗菌肽失去活力,因此在抗菌肽的表達(dá)方面,內(nèi)含肽的應(yīng)用還有待進(jìn)一步的研究。
1.2密碼子優(yōu)化
在提高抗菌肽遺傳穩(wěn)定性方面,密碼子優(yōu)化是最為有效的方法。通過對(duì)不同來源抗菌肽的遺傳密碼子優(yōu)化,達(dá)到宿主本身的密碼子偏好,可以使抗菌肽mRNA穩(wěn)定轉(zhuǎn)錄和翻譯,提高抗菌肽的穩(wěn)定性[46]。優(yōu)化后的抗菌肽密碼子不僅可以有效的合成抗菌肽,而且還可以減少抗菌肽對(duì)宿主細(xì)胞的毒性[47-48]。Richard等人優(yōu)化抗菌肽divercin V41編碼基因并與組氨酸標(biāo)簽以及硫氧還原蛋白融合后成功表達(dá),divercin V41產(chǎn)量達(dá)到23 mg/L??咕腍epcidin的基因通過密碼子優(yōu)化后成功在大腸桿菌中表達(dá)[49]。Ingham等人通過優(yōu)化多種乳酸菌Class IIa抗菌肽基因,并通過與內(nèi)含肽融合蛋白融合,成功表達(dá)多種Class IIa抗菌肽[24]。研究表明在一定區(qū)域內(nèi)重復(fù)插入優(yōu)化后抗菌肽的基因單元,可以有效提高抗菌肽的表達(dá)率。利用這種方法抗菌肽β-defensin-2產(chǎn)量提高了6倍[50]。該方法在乳酸菌抗菌肽沒有得到很好的應(yīng)用,但是在其它類型的抗菌肽已經(jīng)得到成功應(yīng)用[50-51]。
利用大腸桿菌表達(dá)抗菌肽是一種有效的方法,但是卻無法表達(dá)一些修飾型抗菌肽[10]。酵母菌表達(dá)宿主是一種可以表達(dá)修飾蛋白的表達(dá)宿主。目前酵母菌宿主主要有釀酒酵母和畢赤酵母。近些年來酵母表達(dá)宿主也逐漸豐富,包括安格斯畢赤酵母(Pichia angusta)、解脂耶氏酵母(Yarrowia lipolytica)[52-53]。酵母表達(dá)系統(tǒng)與大腸桿菌表達(dá)系統(tǒng)相比,主要體現(xiàn)在翻譯后對(duì)蛋白的修飾作用,比如糖基化的修飾[54]。盡管酵母菌表達(dá)抗菌肽的時(shí)間比大腸桿菌表達(dá)的時(shí)間長,但是酵母菌表達(dá)的可修飾的抗菌肽可以分泌到胞外,更重要的是酵母表達(dá)并不需要輔助蛋白(大腸桿菌表達(dá)必需)[55]。
表2 抗菌肽在畢赤酵母中表達(dá)
2.1釀酒酵母異源表達(dá)抗菌肽
釀酒酵母是酵母異源表達(dá)重組蛋白的主要宿主。因?yàn)閷?duì)于釀酒酵母的理化性質(zhì)和相關(guān)基因都十分明確,在表達(dá)蛋白方面也取得了豐碩的研究成果[56]。在一些條件下,釀酒酵母比大腸桿菌能更好的表達(dá)可溶性蛋白,并且表達(dá)量可以滿足結(jié)構(gòu)分析[57]。釀酒酵母表達(dá)抗菌肽存在一些限制因素阻礙了其在抗菌肽表達(dá)方面的應(yīng)用,例如抗菌肽PA-1雖然在釀酒酵母中成功表達(dá),但是其產(chǎn)量水平卻沒有報(bào)道[58];但是在畢赤酵母中抗菌肽PA-1的產(chǎn)量達(dá)到74 μg/mL[59]。Van等人利用釀酒酵母成功表達(dá)出抗菌肽Plantaricin 423,但也無法定量[60]。此外,釀酒酵母是一種發(fā)酵型酵母,可以發(fā)酵糖類物質(zhì)產(chǎn)生乙醇,乙醇又會(huì)影響其菌群數(shù)量,導(dǎo)致蛋白或肽類的產(chǎn)量低[55]。這些不利的因素,使得釀酒酵母并不適合用于大規(guī)模發(fā)酵產(chǎn)生異源抗菌肽。
2.2畢赤酵母表達(dá)異源抗菌肽
近幾年,畢赤酵母作為異源表達(dá)抗菌肽宿主的研究報(bào)道明顯增加。十年前,大約只有400多種蛋白利用畢赤酵母表達(dá)[61]。如今畢赤酵母表達(dá)多達(dá)上千種,在2009年美國食品藥品管理局第一次通過了利用畢赤酵母表達(dá)的重組藥品上市,更是促進(jìn)了畢赤酵母在表達(dá)方面的應(yīng)用[55]。與釀酒酵母不同,畢赤酵母不是發(fā)酵型微生物,菌體濃度可以達(dá)到100~200 g/L,而且其代謝產(chǎn)物并無毒性,也不會(huì)產(chǎn)生乙醇。畢赤酵母的另外一個(gè)優(yōu)勢是,易擴(kuò)大培養(yǎng)、培養(yǎng)基成本低、易純化、可以表達(dá)具有修飾作用的蛋白[61]。相比與釀酒酵母和大腸桿菌中限制性表達(dá)因素,畢赤酵母的表達(dá)啟動(dòng)子相對(duì)簡單(采用AOX啟動(dòng)子,利用甲醇啟動(dòng)表達(dá)系統(tǒng))。畢赤酵母表達(dá)抗菌肽主要分為兩步:高密度培養(yǎng)菌體;加入甲醇誘導(dǎo)重組蛋白的表達(dá)。這一過程的優(yōu)勢在于在表達(dá)抗菌肽之前,可以得到大量的菌體,避免了重組抗菌肽對(duì)宿主的毒性。
畢赤酵母表達(dá)不同的抗菌肽,表達(dá)量也不相同(表2)。在大腸桿菌或釀酒酵母表達(dá)的抗菌肽,在畢赤酵母中表達(dá)產(chǎn)量有所提高[62-63]。部分抗菌肽在大腸桿菌表達(dá)失敗后,在畢赤酵母中可以很好的表達(dá),例如抗菌肽defensin SPE10[64]。從表達(dá)產(chǎn)物的結(jié)構(gòu)來說,抗菌肽defensin PDC1分別在大腸桿菌和畢赤酵母菌表達(dá),兩者表達(dá)的抗菌肽都有抗真菌的活性,但是畢赤酵母表達(dá)量是大腸桿菌的2倍。比較兩種表達(dá)產(chǎn)物的結(jié)構(gòu),發(fā)現(xiàn)在畢赤酵母表達(dá)的抗菌肽defensin PDC1結(jié)構(gòu)中具有較多的β-折疊,而無規(guī)則卷曲較少[65]。另外畢赤酵母要可以更好的表達(dá)抗菌肽的活性,Basanta等人利用釀酒酵母和畢赤酵母表達(dá)了無前導(dǎo)肽序列的enterocinL50A和50B,成功表達(dá)了雙肽鏈抗菌肽enterocinL50A和L50B,但是畢赤酵母表達(dá)的兩種抗菌肽活力分別是釀酒酵母的6~60倍[66-67]。目前大多數(shù)利用畢赤酵母表達(dá)異源抗菌肽依然處于實(shí)驗(yàn)室階段。主要是在畢赤酵母表達(dá)中需要一個(gè)適合的啟動(dòng)子伴隨表達(dá),從而達(dá)到產(chǎn)業(yè)化生產(chǎn)所需的產(chǎn)量。
抗菌肽在食品、藥品、化妝品、農(nóng)業(yè)方面的應(yīng)用越來越廣泛,吸引大量的研究人員開發(fā)和利用抗菌肽。異源表達(dá)技術(shù)很好的解決抗菌肽產(chǎn)量不足的問題。通過對(duì)啟動(dòng)子、信號(hào)肽、融合蛋白以及相關(guān)的輔助因子的估化,成功表達(dá)了抗菌肽并且抗菌肽的產(chǎn)量已經(jīng)有大范圍的提升,為研究新的表達(dá)系統(tǒng)和發(fā)酵工藝提供理論依據(jù),為建立大規(guī)模表達(dá)抗菌肽的方法提供思路??咕牡姆N類繁多,不同的抗菌肽在大規(guī)模生產(chǎn)技術(shù)上依然存在困難,如抗菌肽穩(wěn)定性、提取工藝、抗菌肽的聚集、抗菌肽表達(dá)后的修飾、降低成本等。隨著基因工程技術(shù)的不斷的發(fā)展和改良,這些困難有望逐一得到解決。希望研究人員利用異源系統(tǒng),生產(chǎn)出用途更廣、種類更多、效果更好的抗菌肽產(chǎn)品。
[1]Gálvez A,Abriouel H,López R L,et al. Bacteriocin-Based Strategies for Food Biopreservation[J]. International Journal of Food Microbiology,2007,120(1):51-70.
[2]Kamarajan P,Hayami T,Matte B,et al. Nisin Zp,a Bacteriocin and Food Preservative,Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival[J]. PloS one,2015,10(7):1-20.
[3]Choi K-Y,Chow L N,Mookherjee N. Cationic Host Defence Peptides:Multifaceted Role in Immune Modulation and Inflammation[J]. Journal of Innate Immunity,2012,4(4):361-370.
[4]Hilchie A L,Wuerth K,Hancock R E. Immune Modulation by Multifaceted Cationic Host Defense(Antimicrobial)Peptides[J]. Nature Chemical Biology,2013,9(12):761-768.
[5]Klint J K,Senff S,Saez N J,et al. Production of Recombinant Disulfide-Rich Venom Peptides for Structural and Functional Analysis Via Expression in the Periplasm ofE.Coli[J]. Periplasmic Expression of Disulfide-Rich Peptides,2013,8(5):e63865.
[6]Rao X,Hu J,Li S,et al. Design and Expression of Peptide Antibiotic Hpab-Β as Tandem Multimers in Escherichia Coli[J]. Peptides,2005,26(5):721-729.
[7]Xu X,Jin F,Yu X,et al. Expression and Purification of a Recombinant Antibacterial Peptide,Cecropin,from Escherichia Coli[J]. Protein Expression and Purification,2007,53(2):293-301.
[8]Li Y,Chen Z. Rapd:A Database of Recombinantly-Produced Antimicrobial Peptides[J]. FEMS Microbiology Letters,2008,289(2):126-129.
[9]Guo C,Huang Y,Zheng H,et al. Secretion and Activity of Antimicrobial Peptide Cecropin D Expressed in Pichia Pastoris[J]. Experimental and Therapeutic Medicine,2012,4(6):1063-1068.
[10]Parachin N S,Mulder K C,Viana A A B,et al. Expression Systems for Heterologous Production of Antimicrobial Peptides[J]. Peptides,2012,38(2):446-456.
[11]Choi J H,Lee S Y. Secretory and Extracellular Production of Recombinant Proteins Using Escherichia Coli[J]. Applied Microbiology and Biotechnology,2004,64(5):625-635.
[12]Morello E,Bermudez-Humaran L G,Llull D,et al. Lactococcus Lactis,an Efficient Cell Factory for Recombinant Protein Production and Secretion[J]. Journal of Molecular Microbiology and Biotechnology,2008,14(1-3):48-58.
[13]Metlitskaia L,Cabralda J E,Suleman D,et al. Recombinant Antimicrobial Peptides Efficiently Produced Using Novel Cloning and Purification Processes[J]. Biotechnology and Applied Biochemistry,2004,39(3):339-345.
[14]Li Y. Recombinant Production of Antimicrobial Peptides in Escherichia Coli:A Review[J]. Protein Expression and Purification,2011,80(2):260-267.
[15]S?rensen H P,Mortensen K K. Soluble Expression of Recombinant Proteins in the Cytoplasm of Escherichia Coli[J]. Microbial Cell Factories,2005,4(1):1.
[16]Oppeg?rd C,Fimland G,Haug Anonsen J,et al. The Pediocin Pa-1 Accessory Protein Ensures Correct Disulfide Bond Formation in the Antimicrobial Peptide Pediocin Pa-1[J]. Biochemistry,2015(54):2967-2974.
[17]Worobo R W,Van Belkum M J,Sailer M,et al. A Signal Peptide Secretion-Dependent Bacteriocin from Carnobacterium Divergens[J]. Journal of Bacteriology,1995,177(11):3143-3149.
[18]Lee J,Kim J,Hwang S,et al. High-Level Expression of Antimicrobial Peptide Mediated by a Fusion Partner Reinforcing Formation of Inclusion Bodies[J]. Biochemical and Biophysical Research Communications,2000,277(3):575-580.
[19]Bryksa B C,MacDonald L D,Patrzykat A,et al. A C-Terminal Glycine Suppresses Production of Pleurocidin as a Fusion Peptide in Escherichia Coli[J]. Protein Expression and Purification,2006,45(1):88-98.
[20]Pyo S-H,Lee J-H,Park H-B,et al. Expression and Purification of a Recombinant Buforin Derivative from Escherichia Coli[J]. Process Biochemistry,2004,39(11):1731-1736.
[21]Wang Q,Fu W,Ma Q,et al. Production of Bacteriocin E50-52 by Small Ubiquitin-Related Modifier Fusion in Escherichia Coli[J]. Polish Journal of Microbiology,2013,62(4):345-350.
[22]Yu Z,Wang Q,Ma Q,et al. Secretory Expression of Lacticin Q Fused with Sumo in Bacillus Subtilis[J]. Protein Expression and Purification,2013,89(1):51-55.
[23]Chen H,Yan X,Tian F,et al. Cloning,Expression,and Identification of a Novel Class Iia Bacteriocin in the Escherichia Coli Cell-Free Protein Expression System[J]. Biotechnology Letters,2012,34(2):359-364.
[24]Ingham A B,Moore R J. Recombinant Production of Antimicrobial Peptides in Heterologous Microbial Systems[J]. Biotechnology and Applied Biochemistry,2007,47(1):1-9.
[25]Liu S-n,Han Y,Zhou Z-j. Fusion Expression of Peda Gene to Obtain Biologically Active Pediocin Pa-1 in Escherichia Coli[J]. Journal of Zhejiang University Science B,2011,12(1):65-71.
[26]Meng F,Zhao H,Zhang C,et al. Expression of a Novel Bacteriocin—the Plantaricin Pln1—in Escherichia Coli and Its Functional Analysis[J]. Protein Expression and Purification,2016,119:85-93.
[27]Wang Q,Zhu F,Xin Y,et al. Expression and Purification of Antimicrobial Peptide Buforin Iib in Escherichia Coli[J]. Biotechnology Letters,2011,33(11):2121-2126.
[28]Xie Y-G,Luan C,Zhang H-W,et al. Effects of Thioredoxin:Sumo and Intein on Soluble Fusion Expression of an Antimicrobial Peptide Og2 in Escherichia Coli[J]. Protein and Peptide Letters,2013,20(1):54-60.
[29]Huang L,Wang J,Zhong Z,et al. Production of Bioactive Human Β-Defensin-3 in Escherichia Coli by Soluble Fusion Expression[J]. Biotechnology Letters,2006,28(9):627-632.
[30]Xu Z,Zhong Z,Huang L,et al. High-Level Production of Bioactive Human Beta-Defensin-4 in Escherichia Coli by Soluble Fusion Expression[J]. Applied Microbiology and Biotechnology,2006,72(3):471-479.
[31]Huang L,Ching C B,Jiang R,et al. Production of Bioactive Human Beta-Defensin 5 and 6 in Escherichia Coli by Soluble Fusion Expression[J]. Protein Expression and Purification,2008,61(2):168-174.
[32]Hernandez-Garcia C M,Bouchard R A,Rushton P J,et al. High Level Transgenic Expression of Soybean(Glycine Max)Gmerf and Gmubi Gene Promoters Isolated by a Novel Promoter Analysis Pipeline[J]. BMC Plant Biology,2010,10(1):237.
[33]Huang L,Leong S S J,Jiang R. Soluble Fusion Expression and Characterization of Bioactive Human Beta-Defensin 26 and 27[J]. Applied Microbiology and Biotechnology,2009,84(2):301-308.
[34]Song D,Chen Y,Li X,et al. Heterologous Expression and Purification of Dermaseptin S4 Fusion in Escherichia coli and Recovery of Biological Activity[J]. Preparative Biochemistry and Biotechnology,2014,44(6):598-607.
[35]Song D,Li X,Zhang Y,et al. Mutational Analysis of Positively Charged Residues in the N‐Terminal Region of the Class Iia Bacteriocin Pediocin Pa‐1[J]. Letters in Applied Microbiology,2014,58(4):356-361.
[36]Feng X-J,Xing L-W,Liu D,et al. Design and High-Level Expression of a Hybrid Antimicrobial Peptide Lf15-Ca8 in Escherichia Coli[J]. Journal of Industrial Microbiology & Biotechnology,2014,41(3):527-534.
[37]Zhang T,Pan Y,Li B,et al. Molecular Cloning and Antimicrobial Activity of Enterolysin a and Helveticin J of Bacteriolysins from Metagenome of Chinese Traditional Fermented Foods[J]. Food Control,2013,31(2):499-507.
[38]Richard C,Drider D,Elmorjani K,et al. Heterologous Expression and Purification of Active Divercin V41,a Class Iia Bacteriocin Encoded by a Synthetic Gene in Escherichia Coli[J]. J Bacteriol,2004,186(13):4276-4284.
[39]Yildirim S,Konrad D,Calvez S,et al. Production of Recombinant Bacteriocin Divercin V41 by High Cell Density Escherichia Coli Batch and Fed-Batch Cultures[J]. Applied Microbiology and Biotechnology,2007,77(3):525-531.
[40]Pal G,Srivastava S. Cloning and Heterologous Expression of Plne,-F,-J and-K Genes Derived from Soil Metagenome and Purification of Active Plantaricin Peptides[J]. Applied Microbiology and Biotechnology,2014,98(3):1441-1447.
[41]Morin K,Arcidiacono S,Beckwitt R,et al. Recombinant Expression of Indolicidin Concatamers in Escherichia Coli[J]. Applied Microbiology and Biotechnology,2006,70(6):698-704.
[42]Peng L,Xu Z,Fang X,et al. High-Level Expression of Soluble Human Β-Defensin-2 in Escherichia Coli[J]. Process Biochemistry,2004,39(12):2199-2205.
[43]Ingham A,Sproat K,Tizard M,et al. A Versatile System for the Expression of Nonmodified Bacteriocins in Escherichia Coli[J]. Journal of Applied Microbiology,2005,98(3):676-683.
[44]Le T N,Do T H,Nguyen T N,et al. Expression and Simple Purification Strategy for the Generation of Anti-Microbial Active Enterocin P from Enterococcus Faecium Expressed in Escherichia coli Er2566[J]. Iranian Journal of Biotechnology,2015,12(4):17-25.
[45]Xie Y-G,Han F-F,Luan C,et al. High-Yield Soluble Expression and Simple Purification of the Antimicrobial Peptide Og2 Using the Intein System in Escherichia Coli[J]. BioMed Research International,2013,2013:1-6.
[46]Mathiesen G,Naml?s H,Ris?en P,et al. Use of Bacteriocin Promoters for Gene Expression in Lactobacillus Plantarum C11[J]. Journal of Applied Microbiology,2004,96(4):819-827.
[47]Richard C,Drider D,Elmorjani K,et al. Heterologous Expression and Purification of Active Divercin V41,a Class Iia Bacteriocin Encoded by a Synthetic Gene in Escherichia Coli[J]. Journal of Bacteriology,2004,186(13):4276-4284.
[48]Pazgier M,Lubkowski J. Expression and Purification of Recombinant Human Α-Defensins in Escherichia Coli[J]. Protein Expression and Purification,2006,49(1):1-8.
[49]Zhang H,Yuan Q,Zhu Y,et al. Expression and Preparation of Recombinant Hepcidin in Escherichia coli[J]. Protein Expression and Purification,2005,41(2):409-416.
[50]Zhong Z,Xu Z,Peng L,et al. Tandem Repeat Mhbd2 Gene Enhance the Soluble Fusion Expression of Hbd2 in Escherichia Coli[J]. Applied Microbiology and Biotechnology,2006,71(5):661-667.
[51]Xu Z,Peng L,Zhong Z,et al. High‐Level Expression of a Soluble Functional Antimicrobial Peptide,Human Β‐Defensin 2,in Escherichia coli[J]. Biotechnology Progress,2006,22(2):382-386.
[52]Gellissen G,Kunze G,Gaillardin C,et al. New Yeast Expression Platforms Based on Methylotrophic Hansenula Polymorpha and Pichia Pastoris and on Dimorphic Arxula Adeninivorans and Yarrowia Lipolytica-a Comparison[J]. Fems Yeast Research,2005,5(11):1079-1096.
[53]Boer E,Steinborn G,Kunze G,et al. Yeast Expression Platforms[J]. Applied Microbiology and Biotechnology,2007,77(3):513-523.
[54]Cregg J M,Tolstorukov I,Kusari A,et al. Expression of Recombinant Genes in the Yeast Pichia Pastoris[J]. Current Protocols Essential Laboratory Techniques,2009(463):169-189.
[55]Mattanovich D,Branduardi P,Dato L,et al. Recombinant Gene Expression[J]. Springer,2012(824):329-358.
[56]Romanos M A,Scorer C A,Clare J J. Foreign Gene Expression in Yeast:A Review[J]. Yeast,1992,8(6):423-488.
[57]Quartley E,Alexandrov A,Mikucki M,et al. Heterologous Expression of L. Major Proteins in S. Cerevisiae:A Test of Solubility,Purity,and Gene Recoding[J]. Journal of Structural and Functional Genomics,2009,10(3):233-247.
[58]Schoeman H,Vivier M A,Du Toit M,et al. The Development of Bactericidal Yeast Strains by Expressing the Pediococcus Acidilactici Pediocin Gene(Peda)in Saccharomyces Cerevisiae[J]. Yeast,1999,15(8):647-656.
[59]Beaulieu L,Groleau D,Miguez C B,et al. Production of Pediocin Pa-1 in the Methylotrophic Yeast Pichia Pastoris Reveals Unexpected Inhibition of Its Biological Activity Due to the Presence of Collagen-Like Material[J]. Protein Expression and Purification,2005,43(2):111-125.
[60]Van Reenen C,Chikindas M,Van Zyl W,et al. Characterization and Heterologous Expression of a Class Iia Bacteriocin,Plantaricin 423 from Lactobacillus Plantarum 423,in Saccharomyces Cerevisiae[J]. International Journal of Food Microbiology,2003,81(1):29-40.
[61]Cereghino G P L,Cereghino J L,Ilgen C,et al. Production of Recombinant Proteins in Fermenter Cultures of the Yeast Pichia Pastoris[J]. Current Opinion in Biotechnology,2002,13(4):329-332.
[62]Li L,Wang J-X,Zhao X-F,et al. High Level Expression,Purification,and Characterization of the Shrimp Antimicrobial Peptide,Ch-Penaeidin,in Pichia Pastoris[J]. Protein Expression and Purification,2005,39(2):144-151.
[63]Peng H,Liu H-P,Chen B,et al. Optimized Production of Scygonadin in Pichia Pastoris and Analysis of Its Antimicrobial and Antiviral Activities[J]. Protein Expression and Purification,2012,82(1):37-44.
[64]Song X,Wang J,Wu F,et al. Cdna Cloning,Functional Expression and Antifungal Activities of a Dimeric Plant Defensin Spe10 from Pachyrrhizus Erosus Seeds[J]. Plant Molecular Biology,2005,57(1):13-20.
[65]Kant P,Liu W-Z,Pauls K P. Pdc1,a Corn Defensin Peptide Expressed in Escherichia Coli and Pichia Pastoris Inhibits Growth of Fusarium Graminearum[J]. Peptides,2009,30(9):1593-1599.
[66]Basanta A,Herranz C,Gutierrez J,et al. Development of Bacteriocinogenic Strains of Saccharomyces Cerevisiae Heterologously Expressing and Secreting the Leaderless Enterocin L50 Peptides L50a and L50b from Enterococcus Faecium L50[J]. Applied and Environmental Microbiology,2009,75(8):2382-2392.
[67]Basanta A,Gomez-Sala B,Sanchez J,et al. Use of the Yeast Pichia Pastoris as an Expression Host for Secretion of Enterocin L50,a Leaderless Two-Peptide(L50a and L50b)Bacteriocin from Enterococcus Faecium L50[J]. Applied and Environmental Microbiology,2010,76(10):3314-3324.
[68]Niu M,Chai S,You X,et al. Expression of Porcine Protegrin-1 in Pichia Pastoris and Its Anticancer ActivityinVitro[J]. Experimental and Therapeutic Medicine,2015,9(3):1075-1079.
[69]Wang X,Wang X,Teng D,et al. Recombinant Production of the Antimicrobial Peptide Nz17074 in Pichia Pastoris Using Sumo3 as a Fusion Partner[J]. Letters in Applied Microbiology,2014,59(1):71-78.
[70]Basanta A,Gómez-Sala B,Sánchez J,et al. Use of the Yeast Pichia Pastoris as an Expression Host for Secretion of Enterocin L50,a Leaderless Two-Peptide(L50a and L50b)Bacteriocin from Enterococcus Faecium L50[J]. Applied and Environmental Microbiology,2010,76(10):3314-3324.
[71]Peng Z,Wang A,Feng Q,et al. High-Level Expression,Purification and Characterisation of Porcine Β-Defensin 2 in Pichia Pastoris and Its Potential as a Cost-Efficient Growth Promoter in Porcine Feed[J]. Applied Microbiology and Biotechnology,2014,98(12):5487-5497.
[72]López-García B,Moreno A B,San Segundo B,et al. Production of the Biotechnologically Relevant Afp from Aspergillus Giganteus in the Yeast Pichia Pastoris[J]. Protein Expression and Purification,2010,70(2):206-210.
Heterologous expression systems for recombinant production of antimicrobial peptides
LIU Hui,ZHANG Lan-wei*,YI Hua-xi,HAN Xue
(School of Chemcial Engneering and Technology,Harbin Institute of Technology,Harbin 150090,China)
Antimicrobial peptide(AMP)is a kind of small peptides. AMP has the inhibition of various bacteria,fungi and viruses. However,the low quantity of peptides and complex purification process are still a remarkable bottleneck for scientific and industrial research development. Heterologous expression technology provides a effective way to improve the production of AMP. The main heterologous systems currently used for AMP production,including bacteria,yeast. This review described the heterologous expression system of antimicrobial peptide,compared the advantages and disadvantages in each expression system. It was designed to provide the basis of theoretical and technical support for the mass production of antimicrobial peptides by biotechnological tools.
antimicrobial peptides;heterologous expression;E.coli;yeast
2015-11-30
劉輝(1982-),男,博士研究生,研究方向:食品防腐劑,E-mail:liuhui_hit@foxmail.com。
張?zhí)m威(1961-),男,博士,教授,研究方向:乳品科學(xué)、食品發(fā)酵,E-mail:zhanglw@hit.edu.cn。
國家自然科學(xué)學(xué)基金(31271906/C2002204,31571850/C200502);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20112302110051)。
TS201.3
A
1002-0306(2016)12-0380-06
10.13386/j.issn1002-0306.2016.12.064