高 劍 王 濤 孫 杰 牟 杰徐州醫(yī)學(xué)院 江蘇省新藥研究與臨床藥學(xué)重點(diǎn)實(shí)驗(yàn)室,江蘇徐州 221004
Actinonin與肽脫甲?;缸饔媚J降姆肿觿?dòng)力學(xué)模擬研究
高劍王濤孫杰牟杰
徐州醫(yī)學(xué)院江蘇省新藥研究與臨床藥學(xué)重點(diǎn)實(shí)驗(yàn)室,江蘇徐州221004
目的 研究actinonin與脫甲酰基酶的相互作用模式,闡述基于actinonin進(jìn)行特異性人肽脫甲酰基酶(HsPDF)抑制劑設(shè)計(jì)思路。 方法使用分子動(dòng)力學(xué)模擬和MM/GBSA自由能計(jì)算等方法來研究各種肽脫甲?;福≒DF)與actinonin的相互作用模式,定量描述PDF關(guān)鍵殘基與actinonin的結(jié)合自由能。結(jié)果 在與actinonin結(jié)合方面,HsPDF作為PDF1A的代表,與PDF1B和PDF2比較,存在3個(gè)明顯差異:與HsPDF的motif 1相互作用較強(qiáng),與motif 2較弱,而與PDF1B和PDF2的motif 1相互作用較弱,而與motif 2相互作用較強(qiáng);與HsPDF的Leu131和Met145相互作用較強(qiáng),而這些相互作用在PDF1B和PDF2是不存在的;與HsPDF的Trp207存在很強(qiáng)的結(jié)合自由能,而與PDF1B和PDF2在相同位置的殘基相互作用較弱。結(jié)論利用分子動(dòng)力學(xué)模擬的方法,研究actinonin與PDF的相互作用模式,闡述HsPDF與其他類型PDF在活性位點(diǎn)的差異,為基于actinonin的特異性HsPDF抑制劑的設(shè)計(jì)提出了思路。
分子動(dòng)力學(xué)模擬;肽脫甲酰基酶;Actinonin;抗腫瘤;抗菌
肽脫甲?;福╬eptide deformylase,PDF)是含鐵金屬蛋白酶,功能是脫去新生成的N-甲酰甲硫氨酸多肽的N-甲?;堑鞍踪|(zhì)合成過程中必不可少的一種酶[1-2]。PDF有3種類型:PDF1、PDF2、PDF3,是無脫甲基化功能,其中PDF1又分為兩個(gè)亞型,PDF1A(如HsPDF)和PDF1B(細(xì)菌PDF)[3-5]。原核細(xì)胞中的PDF已被當(dāng)作極具潛力的抗菌靶標(biāo),且大量PDF抑制劑已經(jīng)被報(bào)道[6-10]。然而肽脫甲?;福≒DF-like)也存在于真核細(xì)胞中,如寄生蟲、植物、甚至哺乳動(dòng)物的人類[4,11-12]。HsPDF分布于人的線粒體中,同樣具有對(duì)底物多肽的脫甲基化的功能[13-16],而這對(duì)于線粒體中DNA所編碼蛋白的積聚和裝配至關(guān)重要[17]。抑制HsPDF將降低線粒體的呼吸功能及相應(yīng)的能量產(chǎn)生,最終導(dǎo)致細(xì)胞死亡[17]。最新研究也證實(shí)HsPDF在乳腺癌、結(jié)腸癌和肺癌中高表達(dá),抑制HsPDF將明顯降低癌細(xì)胞的增殖[18]。林超等[19]研究表明,HsPDF基因在Hela、MDA-MB-231、K562等腫瘤細(xì)胞中高表達(dá),而在人正常肺組織中低表達(dá)(P<0.01),Actinonin(圖1)是首個(gè)天然來源的細(xì)菌PDF抑制劑[7],被證實(shí)是有潛力的HsPDF抑制劑 (IC50為43 nmol/L)[20-21]。因此,HsPDF是極具潛力的新型抗腫瘤靶標(biāo)。然而以actinonin為代表的HsPDF抑制劑由于其可以同時(shí)抑制人體內(nèi)的細(xì)菌群的PDF蛋白酶而制約著此類抑制劑的發(fā)展[22],亟待特異性HsPDF抑制劑的設(shè)計(jì)與開發(fā)。
圖1 PDF抑制劑actinonin的結(jié)構(gòu)
組合使用分子動(dòng)力學(xué)(molecular dynamics,MD)模擬和結(jié)合自由能計(jì)算的方法已經(jīng)成熟應(yīng)用于定量描述蛋白-蛋白和蛋白-小分子相互作用模式中[23-29]。為了闡述各個(gè)類型PDF蛋白酶抑制劑結(jié)合位點(diǎn)的特性,設(shè)計(jì)了7個(gè)PDF(1個(gè)PDF1A、3個(gè)PDF1B和3個(gè)PDF2)與其抑制劑actinonin形成復(fù)合物的體系,利用分子動(dòng)力學(xué)模擬和結(jié)合自由能計(jì)算等方法,定量描述了多種類型PDF蛋白酶抑制劑結(jié)合位點(diǎn)的共性與差異性。7個(gè)體系是由1個(gè)PDF1A(HsPDF-actinonin)、3個(gè)PDF1B[包括聚球藻類噬菌體S-SSM7 PDF-actinonin(簡(jiǎn)稱SpPDF-actinonin)、幽門螺桿菌PDF-actinonin(簡(jiǎn)稱HpPDF-actinonin)和擬南芥PDF-actinonin(簡(jiǎn)稱At PDF-actinonin)]和3個(gè)PDF2[包括金黃色葡萄球菌PDF-actinonin(簡(jiǎn)稱SaPDF-actinonin)、嗜熱脂肪芽孢桿菌PDF-actinonin(簡(jiǎn)稱BsPDF-actinonin)和蠟樣芽孢桿菌PDF-actinonin(簡(jiǎn)稱BcPDF-actinonin)]組成的。
1.1模擬體系構(gòu)建
以上提及的7個(gè)復(fù)合物體系均來自于蛋白質(zhì)數(shù)據(jù)庫(kù)(PDB)[30],相應(yīng)晶體結(jié)構(gòu)PDB號(hào)分別為HsPDF-actinonin:3G5K[22]、SpPDF-actinonin:3UWB[31]、HpPDF-actinonin:4E9B、AtPDF-actinonin:3M6P[32]、SaPDF-actinonin:1Q1Y[33]、BsPDF-actinonin:1LQY[3]和 BcPDF-actinonin:2OKL[34]。7個(gè)晶體結(jié)構(gòu)均含有抑制劑actinonin。
圖2 7種PDF蛋白酶的序列比對(duì)
1.2分子動(dòng)力學(xué)(MD)模擬和相應(yīng)的分子力場(chǎng)
7個(gè)復(fù)合物體系的能量?jī)?yōu)化和分子動(dòng)力學(xué)模擬均采用Amber12分子動(dòng)力學(xué)程序包,PDF酶的參數(shù)采用FF03力場(chǎng),actinonin的參數(shù)采用GAFF力場(chǎng)。每個(gè)體系置于TIP3P水分子的立方體盒中,并保證復(fù)合物的四周均包上厚度為12的水層。為使各個(gè)體系呈現(xiàn)電中性,適量的Na+以替換相同數(shù)量水分子的形式加入體系中。每個(gè)體系先利用sander模塊進(jìn)行能量?jī)?yōu)化。之后對(duì)每個(gè)體系進(jìn)行60 ps的逐步升溫過程(0~300 K),體系處于NVT的系綜中。每個(gè)體系的MD模擬均在恒溫300 K下運(yùn)行20 ns,步長(zhǎng)是2 fs。
1.3MM/GBSA結(jié)合自由能計(jì)算方法
PDF與actinonin的結(jié)合自由能的計(jì)算采用MM/ GBSA方法,由MM_PBSA和Nmode模塊來完成,計(jì)算公式如下:
其中ΔEMM為氣相分子間相互作用能,包括范德華(ΔEvdw)和靜電相互作用(ΔEele),ΔGGB和 ΔGSA分別代表了極性溶劑化和非極性溶劑化效應(yīng),-TΔS代表了溫度的熵變。每個(gè)體系的結(jié)合自由能計(jì)算是基于最后10 ns的軌跡中均勻選取的400個(gè)構(gòu)象得到的。
1.4MM/GBSA自由能分解
為了定量計(jì)算受體PDF活性位點(diǎn)殘基與抑制劑的相互作用能,采用Mm_Pbsa模塊進(jìn)行MM/GBSA自由能分解。單個(gè)殘基與抑制劑的結(jié)合自由能同樣包含3個(gè)部分:范德華、靜電相互作用和溶劑化貢獻(xiàn)。
2.1MD模擬軌跡分析
為了考察每個(gè)體系在分子動(dòng)力學(xué)模擬過程中蛋白結(jié)構(gòu)構(gòu)象的穩(wěn)定性,計(jì)算了蛋白主鏈骨架原子相對(duì)于初始構(gòu)象的均方根偏差(RMSD),如圖3所示。所有7個(gè)體系在較短的時(shí)間內(nèi)就達(dá)到穩(wěn)態(tài),RMSD值均在1.2左右。7個(gè)體系在10 ns之后均達(dá)到穩(wěn)態(tài),從最后10 ns的軌跡中選取400個(gè)構(gòu)象進(jìn)行結(jié)合自由能計(jì)算是合理的。
2.2MM/GBSA結(jié)合自由能計(jì)算
采用MM/GBSA計(jì)算PDF與actinonin的結(jié)合自由能,結(jié)果列于表1。actinonin與HsPDF、SpPDF、HpPDF、AtPDF、BcPDF、SaPDF和BsPDF的結(jié)合自由能分別為-115.81、-123.31、-150.17、-130.40、-119.42、-126.44 kJ/mol和-127.28 kJ/mol。每個(gè)體系計(jì)算得到的結(jié)合自由能與實(shí)驗(yàn)值(p IC50)的相關(guān)系數(shù)較高(r2= 0.81)。范德華作用對(duì)抑制劑與PDF蛋白酶結(jié)合起關(guān)鍵作用,總的非極性相互作用(ΔEvdw+ΔGSA,簡(jiǎn)稱為ΔG1)的貢獻(xiàn)明顯高于極性相互作用(ΔEele+ΔGGB,簡(jiǎn)稱為ΔG2)的貢獻(xiàn)。
2.3MM/GBSA自由能分解
各種PDF氨基酸序列同源性不高,但大多存在3個(gè)保守的氨基酸片段:GXGXAAXQ(motif 1)、EGCLS(motif 2)和HEXXH(motif 3)(X代表任意殘基)。MM/ GBSA自由能分解得到了單個(gè)殘基與抑制劑定量的相互作用能(圖4)也顯示出actinonin與7個(gè)不同的PDF起關(guān)鍵相互作用的殘基大都?xì)w屬于上面3個(gè)片段。actinonin在 3個(gè) PDF1B類型(SpPDF、HpPDF和AtPDF)和3個(gè)PDF2類型(BcPDF、SaPDF和BsPDF)中的結(jié)合模式較為相似(圖4)。actinonin與PDF1A類型(HsPDF)的結(jié)合模式與之前6個(gè)體系比較存在一定差異,如HsPDF中的L131和M145。另外,HsPDF 中207位的氨基酸是色氨酸,而該位置在其他類型PDF酶中多是亮氨酸。
圖3 MD模擬過程中蛋白主鏈骨架原子相對(duì)于初始構(gòu)象的均方根偏差
為了進(jìn)一步考察actinonin與不同類型PDF酶相互作用的共性與差異性,3個(gè)保守片段及其他重要?dú)埢诮Y(jié)合自由能中的貢獻(xiàn)結(jié)果列于表2。actinonin與HsPDF的motif 1的結(jié)合自由能(-29.45 kJ/mol)強(qiáng)于與其他類型的motif1(均在-25 kJ/mol附近),與motif2的結(jié)合自由能(-19.62 kJ/mol)弱于PDF2型,更低于PDF1B型,與motif 3的結(jié)合自由能與其他兩種類型比較沒有明顯差異(圖4)。另外,actinonin與HsPDF 的Leu131和Met145有-3.18 kJ/mol和-3.14 kJ/mol的結(jié)合自由能,而與其他兩種類型PDF在相同位置的殘基相互作用為零,這些結(jié)果也在圖5(封三)中呈現(xiàn)出。最后,actinonin與HsPDF的Trp207有極強(qiáng)的結(jié)合自由能(-11.72 kJ/mol),而與其他類型PDF相互作用較弱。
表1 7個(gè)體系各自的結(jié)合自由能及各能量項(xiàng)對(duì)結(jié)合自由能的貢獻(xiàn)
圖4 各種PDF與actinonin的相互作用
表2 actinonin與關(guān)鍵氨基酸片段總的結(jié)合自由能(kJ/mol)
PDF可以作為抗菌和抗腫瘤的雙重靶標(biāo)。PDF作為抗菌靶標(biāo)研究較早并且已經(jīng)有幾個(gè)小分子化合物進(jìn)入臨床試驗(yàn),而基于HsPDF進(jìn)行抗腫瘤的研究起步較晚,尚無良好的HsPDF抑制劑。actinonin作為高效的細(xì)菌PDF抑制劑同時(shí)也顯示出較強(qiáng)的HsPDF抑制活性,但其同時(shí)抑制多種PDF酶而限制了HsPDF抑制劑的發(fā)展。設(shè)計(jì)高特異性的HsPDF抑制劑將明顯降低其對(duì)其他類型PDF的抑制活性而具有低毒副作用。為此,利用分子動(dòng)力學(xué)模擬和結(jié)合自由能計(jì)算來研究actinonin與7個(gè)PDF的相互作用,通過定量考察actinonin與PDF活性位點(diǎn)殘基的相互作用能來揭示actinonin結(jié)合于不同PDF時(shí)的差異:actinonin 與HsPDF的motif 1相互作用較強(qiáng),與motif 2較弱。actinonin與PDF1B和PDF2的motif 1相互作用較弱,而與motif 2相互作用較強(qiáng)。同時(shí),actinonin與HsPDF的Leu131和Met145為主的Helix 2和Helix 3的相互作用較強(qiáng),而這些相互作用在PDF1B和PDF2是不存在的。最后,actinonin與HsPDF的Trp207有較強(qiáng)的結(jié)合自由能,而與PDF1B和PDF2在相同位置的殘基相互作用則較弱。這些信息將為今后基于HsPDF進(jìn)行抗腫瘤藥物的發(fā)展提供理論指導(dǎo)。
[1]Leeds JA,Dean CR.Peptide deformylase as an antibacterial target:a critical assessment[J].Current Opinion in Pharmacology,2006,6(5):445-452.
[2]Rajagopalan PTR,Yu XC,Pei D.Peptide deformylase:a new type of mononuclear iron protein[J].Journal of the American Chemical Society,1997,119(50):12418-12419.
[3]Guilloteau JP,Mathieu M,Giglione C,et al.The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types:a platform for the structure-based design of antibacterial agents[J].J Mol Biol,2002,320(5):951-962.
[4]Giglione C,Pierre M,Meinnel T.Peptide deformylase as a target for new generation,broad spectrum antimicrobial agents[J].MolMicrobiol,2000,36(6):1197-1205.
[5]Giglione C,Meinnel T.Peptide deformylase as an emerging target for antiparasitic agents[J].Expert Opin Ther Targets,2001,5(1):41-57.
[6]Meinnel T,Patiny L,Ragusa S,et al.Design and synthesis of substrate analogue inhibitors of peptide deformylase[J]. Biochemistry,1999,38(14):4287-4295.
[7]Chen DZ,Patel DV,Hackbarth CJ,et al.Actinonin,a naturally occurring antibacterial agent,is a potent deformylase inhibitor[J].Biochemistry,2000,39(6):1256-1262.
[8]Hu X,Nguyen KT,Verlinde CL,et al.Structure-based design of a macrocyclic inhibitor for peptide deformylase[J]. Journal of Medicinal Chemistry,2003,46(18):3771-3774.
[9]Lofland D,Difuntorum S,Waller A,et al.In vitro antibacterial activity of the peptide deformylase inhibitor BB-83698[J].Journal of Antimicrobial Chemotherapy,2004,53 (4):664-668.
[10]O'DwyerK,Hackel M,Hightower S,et al.Comparativeanalysis of the antibacterial activity of a novel peptide deformylase inhibitor,GSK1322322[J].Antimicrob Agents Chemother,2013,57(5):2333-2342.
[11]Giglione C,Serero A,Pierre M,et al.Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms[J].EMBO J,2000,19(21):5916-5929.
[12]Meinnel T.Peptide deformylase of eukaryotic protists:a target for new antiparasitic agents?[J].Parasitology Today,2000,16(4):165-168.
[13]Spencer AC,Spremulli LL.Interaction of mitochondrialinitiation factor 2 with mitochondrial fMet-tRNA[J]. Nucleic Acids Research,2004,32(18):5464-5470.
[14]Liao HX,Spremulli LL.Identification and initial characterization of translational initiation factor 2 from bovine mitochondria[J].Journal of Biological Chemistry,1990,265 (23):13618-13622.
[15]Pereira-Castro I,Costa LTd,Amorim A,et al.Transcriptional regulation of the human mitochondrial peptide deformylase(PDF)[J].Biochemical and Biophysical Research Communications,2012,421(4):825-831.
[16]Liu CC,Liu BG,Yang ZW,et al.Genome-wide identification and in silico analysis of poplar peptide deformylases[J].International Journal of Molecular Sciences,2012,13(4):5112-5124.
[17]Escobar-Alvarez S,Gardner J,Sheth A,et al.Inhibition of human peptide deformylase disrupts mitochondrial function[J].Mol Cell Biol,2010,30(21):5099-5109.
[18]Randhawa H,Chikara S,Gehring D,et al.Overexpression of peptide deformylase in breast,colon,and lung cancers[J]. BMC Cancer,2013,13(1):1-7.
[19]林超,羅學(xué)剛,邢瑩瑩,等.人肽脫甲?;富騪df與腫瘤細(xì)胞生長(zhǎng)的相關(guān)性[J].中國(guó)藥科大學(xué)學(xué)報(bào),2006,37(5):474-478.
[20]Lee MD,Antczak C,Li Y,et al.A new human peptide deformylase inhibitable by actinonin[J].Biochemical and Biophysical Research Communications,2003,312(2):309-315.
[21]Han JH,Choi YS,Kim WJ,et al.Codon optimization enhancesprotein expression of human peptide deformylase in E.coli[J].Protein Expression and Purification,2010,70 (2):224-230.
[22]Escobar-Alvarez S,Goldgur Y,Yang G,et al.Structure and activity of human mitochondrial peptide deformylase,a novel cancer target[J].JMol Biol,2009,387(5):1211-1228.
[23]Gao J,Wang L,Kang SG,et al.Size-dependent impact of CNTs on dynamic properties of calmodulin[J].Nanoscale,2014,6(21):12828-12837.
[24]Hou T,Zhang W,Case DA,et al.Characterization of domain-peptide interaction interface:a case study on the Amphiphysin-1 SH3 domain[J].Journal of Molecular Biology,2008,376(4):1201-1214.
[25]Hou T,McLaughlin W,Lu B,et al.Prediction of binding affinities between the human Amphiphysin-1 SH3 domain and its peptide ligands using homology modeling,molecular dynamics and molecular field analysis[J].Journal of Proteome Research,2005,5(1):32-43.
[26]Hou T,Wang J,Li Y,et al.assessing the performance of the MM/PBSA and MM/GBSA methods.1.The accuracy of binding free energy calculations based on molecular dynamics simulations[J].Journal of Chemical Information and Modeling,2010,51(1):69-82.
[27]崔巍,張懷,計(jì)明娟.新型二氟甲基磷酸類酪氨酸蛋白磷酸酯酶1B抑制劑的分子動(dòng)力學(xué)模擬和結(jié)合自由能計(jì)算[J].物理化學(xué)學(xué)報(bào),2009,25(4):668-676.
[28]侯廷軍,徐筱杰.基于分子動(dòng)力學(xué)模擬和連續(xù)介質(zhì)模型的自由能計(jì)算方法[J].化學(xué)進(jìn)展,2004,16(2):153-158.
[29]羅芳,高劍,成元華,等.葡萄糖苷酶抑制劑作用機(jī)理的分子動(dòng)力學(xué)模擬和自由能計(jì)算[J].物理化學(xué)學(xué)報(bào),2012,9(9):2191-2201.
[30]Berman HM,Westbrook J,F(xiàn)eng Z,et al.The protein data bank[J].Nucleic Acids Res,2000,28(3):235-242.
[31]Frank JA,Lorimer D,Youle M,et al.Structure and function of a cyanophage-encoded peptide deformylase[J]. ISME J,2013,7(6):1150-1160.
[32]Fieulaine S,Boularot A,Artaud I,et al.Trapping conformational states along ligand-binding dynamics of peptide deformylase:the impact of induced fit on enzyme catalysis[J].PLoS Biol,2011,9(5):211-218.
[33]Yoon HJ,Kim HL,Lee SK,et al.Crystal structure of peptide deformylase from Staphylococcus aureus in complex with actinonin,a naturally occurring antibacterial agent[J]. Proteins,2004,57(3):639-642.
[34]Park JK,Kim KH,Moon JH,et al.Characterization of peptide deformylase 2 from B cereus[J].J Biochem Mol Biol,2007,40(6):1050-1057.
Molecular dynamics simulation on the molecular interactions of peptide deformylase and actinonin
GAO JianWANG Tao SUN Jie MOU Jie
Xuzhou Medical CollegeJiangsu Key Laboratory of New Drug Research and Clinical Pharmacy,Jiangsu Province,Xuzhou221004,China
Objective To investigate the binding modes between actinonin and peptide deformylases and to characterize the informations about how to design the specific HsPDF inhibitor.Methods The combination of molecular dynamics simulation and MM/GBSA free energy calculation was employed to study the interactions between several PDF enzymes and actinonin.The detailed interactions of each residues of protein and actinonin were calculated by MM/GBSA free energy decomposition.Results Three important differences in actinonin binding to PDFs were obtained as followed: actinonin had stronger binding interaction with the motif 1 of HsPDF than the motif 2,while actinonin had lower binding interaction with the motif 1 than the motif 2 for PDF1A and PDF2.Moreover,actinonin had stronger binding affinities with Leu131 and Met145 of HsPDF,but had no interaction with the corresponding ones of PDF1A and PDF2.In addition,actinonin interacted strongly with Trp207 of HsPDF but weakly with the corresponding residue of PDF1A and PDF2.Conclusion By using the method of molecular dynamics simulation,the interaction of actinonin and PDFmodel are studied,differences of HsPDF and PDF in the active site with other types are expounded,based on the design thinking of specific HsPDF inhibitors of actinonin is proposed.
Molecular dynamics simulation;Peptide deformylase;Actinonin;Anticancer;Antibacterial
R75
A
1673-7210(2016)01(c)-0021-06
2015-09-22本文編輯:任念)
江蘇省青年科學(xué)基金項(xiàng)目(BK20140225);徐州醫(yī)學(xué)院優(yōu)秀人才科研啟動(dòng)基金資助項(xiàng)目(D2014008)。
中國(guó)醫(yī)藥導(dǎo)報(bào)2016年3期