薛楠陳建鳴張宇李建國張策
論著
糖皮質(zhì)激素在抑郁模型大鼠中對(duì)海馬BDNF基因選擇性剪切的影響*
薛楠①陳建鳴①張宇①李建國①張策①
目的:探討糖皮質(zhì)激素在抑郁模型大鼠中對(duì)海馬腦源性神經(jīng)營養(yǎng)因子(BDNF)基因選擇性剪切的影響,為抑郁癥的病因?qū)W研究和治療提供理論基礎(chǔ)。方法:選取SD雄性大鼠30只,隨機(jī)分為對(duì)照組、高劑量組及低劑量組,每組10只,適應(yīng)性飼養(yǎng)5 d,各組大鼠給藥前均進(jìn)行強(qiáng)迫游泳試驗(yàn)和敞箱試驗(yàn)。高低劑量組分別口服皮質(zhì)酮(CORT)100 μg/mL和25 μg/mL 21 d,從第15天起CORT濃度降為原來的50%,第18天起降為原來的25%,對(duì)照組口服2.4%酒精溶液21 d。21 d后,各組大鼠均再次進(jìn)行強(qiáng)迫游泳試驗(yàn)和敞箱試驗(yàn),每周進(jìn)行體重測量,之后在高低劑量組中選取其中一組制備成功的抑郁大鼠作為模型組,大鼠斷頭后提取海馬組織進(jìn)行分區(qū),使用聚合酶鏈反應(yīng)(PCR)對(duì)海馬各區(qū)BDNF mRNA進(jìn)行檢測。結(jié)果:給藥后,高低劑量組漂浮時(shí)間均較給藥前增加,比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);給藥后,高低劑量組運(yùn)動(dòng)總距離、站立次數(shù)及中心時(shí)間均較給藥前降低,比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);高劑量組體重增長值始終低于對(duì)照組,低劑量組前2周與對(duì)照組比較無明顯差異,但第3周體重增長值減小,明顯低于對(duì)照組,比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05);除BDNF mRNAⅥCA1區(qū)和BDNF mRNAⅧ CA3區(qū)外,BDNF mRNAⅡa,BDNF mRNAⅢ,BDNF mRNAⅥ,BDNF mRNAⅦ,BDNF mRNAⅧ的轉(zhuǎn)錄表達(dá)量模型組均較對(duì)照組降低。結(jié)論:連續(xù)口服糖皮質(zhì)激素可以制備出理想的大鼠抑郁癥模型,抑郁大鼠海馬區(qū)BDNF mRNAⅡa,BDNF mRNAⅢ,BDNF mRNAⅥ,BDNF mRNAⅦ和BDNF mRNAⅧ的轉(zhuǎn)錄量降低。
抑郁癥; 糖皮質(zhì)激素; 腦源性神經(jīng)營養(yǎng)因子; 選擇性剪切
First-author's address:Shanxi Medical University,Taiyuan 030001,China
抑郁癥(major depressive disorder,MDD)是一種以情緒低落、快感缺失、焦慮、思維遲緩和食欲體重下降等為特點(diǎn)的精神疾?。?]。目前臨床認(rèn)為,抑郁癥主要由周圍生活中應(yīng)激性事件的刺激,致使體內(nèi)糖皮質(zhì)激素持續(xù)增多,大腦中情緒相關(guān)回路中神經(jīng)遞質(zhì)失衡引起[3]。本文采取慢性口服糖皮質(zhì)激素的方式制備大鼠抑郁模型。
腦源性神經(jīng)營養(yǎng)因子(BDNF)在海馬腦區(qū)廣泛分布,對(duì)神經(jīng)元的再生與修復(fù)起著重要作用,抑郁會(huì)導(dǎo)致該蛋白表達(dá)降低[4-5]。因此,當(dāng)抑郁發(fā)生時(shí),BDNF的基因轉(zhuǎn)錄表達(dá)非常重要。BDNF基因包含多個(gè)不同的啟動(dòng)子控制著不同的非編碼區(qū)和1個(gè)編碼區(qū),不同的非編碼區(qū)與編碼區(qū)組合形成不同的轉(zhuǎn)錄本,隨著環(huán)境不同或者條件刺激不同,海馬神經(jīng)元包含不同啟動(dòng)子的BDNF mRNA表達(dá)出現(xiàn)差異,進(jìn)而影響B(tài)DNF蛋白的表達(dá)。本文旨在觀察抑郁模型大鼠海馬腦區(qū)包含不同啟動(dòng)子的BDNF mRNA表達(dá)的差異,即選擇性剪切的影響,現(xiàn)報(bào)道如下。
1.1實(shí)驗(yàn)材料 SD雄性大鼠30只,由山西醫(yī)科大學(xué)動(dòng)物實(shí)驗(yàn)中心提供;FST-100睡眠剝奪與強(qiáng)迫游泳實(shí)驗(yàn)系統(tǒng)(成都泰盟軟件有限公司),OFT-100開場活動(dòng)實(shí)驗(yàn)箱及視頻分析系統(tǒng)(成都泰盟軟件有限公司),Corticosterone(皮質(zhì)甾酮)Aladdin industrial corporation,GE9612T-S基因擴(kuò)增儀(杭州柏恒科技有限公司),LineGene 9640熒光定量PCR儀(杭州博日科技有限公司),總RNA抽提純化試劑盒(上海生工生物工程股份有限公司),Real Time PCR反轉(zhuǎn)錄試劑盒(TAKARA),實(shí)時(shí)熒光定量PCR反應(yīng)試劑盒(TAKARA),PCR引物均由Invitrogen(上海)有限公司合成。
1.2實(shí)驗(yàn)方法 將30只大鼠隨機(jī)分為對(duì)照組、高劑量組及低劑量組,每組10只,隨機(jī)分于15籠,稱取體重,2只/籠。所有大鼠均置于12 h晝夜循環(huán)的條件下自由攝食飲水,適應(yīng)性飼養(yǎng)5 d。各組大鼠給藥前均進(jìn)行強(qiáng)迫游泳試驗(yàn)和敞箱試驗(yàn)。高低劑量組分別口服皮質(zhì)酮(CORT)100 μg/mL 和25 μg/mL 21 d,從第15天起CORT濃度降為原來的50%,第18天起降為原來的25%,對(duì)照組口服2.4%酒精溶液21 d。21 d后,各組大鼠均再次進(jìn)行強(qiáng)迫游泳試驗(yàn)和敞箱試驗(yàn),每周進(jìn)行體重測量,之后在高低劑量組中選取其中一組制備成功的抑郁模型大鼠,對(duì)該組大鼠進(jìn)行斷頭快速提取海馬組織進(jìn)行分區(qū),使用聚合酶鏈反應(yīng)(PCR)對(duì)海馬各區(qū)BDNF mRNA進(jìn)行檢測。
1.3配藥方法 (1)高劑量組(100 μg/mL):稱取CORT 60 mg,溶于14.4 mL 100%純酒精,混勻后,用飲用水稀釋至2.4%;(2)低劑量組(25 μg/mL):稱取15 mg CORT粉末,溶于14.4 mL 100%純酒精,混勻后,用飲用水稀釋至2.4%;對(duì)照組:量取14.4 mL 100%純酒精,用飲用水稀釋至2.4%[6]。將各組配好的600 mL溶液分別置于5個(gè)水瓶(120 mL/瓶),于每日上午9時(shí)給予大鼠口服,共21 d。
1.4評(píng)價(jià)指標(biāo)
1.4.1強(qiáng)迫游泳實(shí)驗(yàn) 強(qiáng)迫游泳裝置尺寸直徑20 cm、高50 cm,置于安靜的房間。裝置內(nèi)水深度為35 cm,水溫23~25 ℃。將大鼠單獨(dú)放入游泳裝置,觀察記錄5min內(nèi)的不動(dòng)時(shí)間,全過程使用攝像頭記錄。游泳期間,主要觀察實(shí)驗(yàn)鼠在水中的掙扎和漂浮行為,掙扎:大鼠的四肢激烈運(yùn)動(dòng),并同時(shí)伴隨前肢伸出水面;漂?。捍笫笏闹珱]有運(yùn)動(dòng)或僅有后肢輕微的運(yùn)動(dòng)而漂浮在水面上。采用大鼠的不動(dòng)時(shí)間作為抑郁嚴(yán)重程度的評(píng)價(jià)指標(biāo)。
1.4.2敞箱實(shí)驗(yàn) 時(shí)間安排在上午進(jìn)行,以減少晝夜節(jié)律導(dǎo)致的誤差。實(shí)驗(yàn)在安靜環(huán)境下進(jìn)行,將動(dòng)物放在箱底中心,觀察5 min內(nèi)大鼠后肢站立次數(shù)、水平運(yùn)動(dòng)總距離,在四周與中心所待的時(shí)間。水平活動(dòng)反映動(dòng)物的活動(dòng)度,一定程度上反映動(dòng)物的探究行為,直立活動(dòng)反映動(dòng)物對(duì)新異環(huán)境探究程度。1.4.3 熒光定量PCR 經(jīng)過口服高低劑量皮質(zhì)酮均可以制備出較為理想的抑郁大鼠模型,因此,最終選取高劑量組作為抑郁模型組進(jìn)行斷頭快速提取海馬組織且進(jìn)行分區(qū)。Total RNA的提取:稱取分區(qū)后的大鼠海馬組織25 mg左右在液氮中研磨成粉末,加入450 μL Buffer Rlysis-AG,放置2 min,將液體全部轉(zhuǎn)移至收集管中,震蕩2 min,放置3 min。12 000 rpm 4 ℃離心3 min,將上清移至離心管中。加入1/2體積的無水乙醇,混勻。將溶液轉(zhuǎn)移至吸附柱中,放置1 min,室溫12 000 rpm 離心1 min,離心完畢后,倒掉收集管中廢液,加入500 μL GT Solution,靜 置1 min,室 溫10 000 rpm離心1 min,加入500 μL NT Solution,靜置2 min,室溫10 000 rpm 離心1 min,將吸附柱放回收集管中,室溫12 000 rpm 離心2 min。將吸附柱放入RNase-free的1.5 mL離心管中,在吸附膜中央加入20 μL DEPC-treated水,靜置2 min,室溫12 000 rpm 離心2 min,最后將所得到的RNA溶液進(jìn)行反轉(zhuǎn)錄。以反轉(zhuǎn)錄得到的cDNA為模板,大鼠Actin為內(nèi)參,使用SYBR Premix Ex TaqⅡ試劑盒,用熒光定量PCR儀進(jìn)行Real Time PCR反應(yīng)操作,反應(yīng)結(jié)束后,Ct值可自動(dòng)生成,熒光定量采用相對(duì)定量法,目的基因的相對(duì)表達(dá)量采用2-△△Ct法進(jìn)行計(jì)算。檢測高劑量的模型組和對(duì)照組大鼠海馬各區(qū)BDNF不同mRNA轉(zhuǎn)錄本的表達(dá)。
1.5統(tǒng)計(jì)學(xué)處理 采用SPSS 13.0 統(tǒng)計(jì)學(xué)軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,計(jì)量資料用()表示,兩兩比較采用SNK法,自身給藥前后數(shù)據(jù)比較采用配對(duì)t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1各組強(qiáng)迫游泳實(shí)驗(yàn)比較 高劑量組給藥前后漂浮時(shí)間分別為(167.63±7.46)s和(237.19±8.62)s,低劑量組給藥前后漂浮時(shí)間分別為(177.12±7.55)s和(235.18±9.33)s,對(duì)照組給藥前后漂浮時(shí)間分別為(178.86±8.23)s和(178.38±5.86)s,給藥后,高低劑量組漂浮時(shí)間均較給藥前增加,比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見圖1。
圖1 各組強(qiáng)迫游泳實(shí)驗(yàn)比較
2.2各組敞箱實(shí)驗(yàn)比較 給藥后,高低劑量組運(yùn)動(dòng)總距離、站立次數(shù)及中心時(shí)間均較給藥前降低,比較差異均有統(tǒng)計(jì)學(xué)意義(P<0.05),見表1和圖2。
表1 各組敞箱實(shí)驗(yàn)比較()
表1 各組敞箱實(shí)驗(yàn)比較()
*與給藥前比較,P<0.05
組別 時(shí)間 站立次數(shù)(次) 運(yùn)動(dòng)總距離(mm) 角落時(shí)間(s) 中心時(shí)間(s)高劑量組(n=10) 給藥前 36.60±2.91 21 949±380.32 225.56±2.19 5.60±0.80給藥后 5.90±0.91* 2405±116.87* 289.48±5.84* 0.16±0.92*低劑量組(n=10) 給藥前 33.50±3.00 20 466±1300.57 226.81±6.46 5.85±0.68給藥后 16.90±1.94* 14 940±1758.65* 266.71±6.14* 0.37±0.19*對(duì)照組(n=10) 給藥前 31.71±1.62 21 015±409.04 233.75±5.09 4.96±0.72給藥后 32.57±1.58 20 138±755.94 224.31±4.38 5.88±0.84
圖2 各組敞箱實(shí)驗(yàn)比較
2.3大鼠體重變化比較 高劑量組體重增長值始終低于對(duì)照組,低劑量組前2周與對(duì)照組比較無明顯差異,但第3周體重增長值減小,明顯低于對(duì)照組,比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見表2和圖3。
表2 大鼠體重變化比較(g
表2 大鼠體重變化比較(g
*與對(duì)照組比較,P<0.05
組別 第1周 第2周 第3周高劑量組(n=10) 2 9.9±4.0* 29.5±5.73* 13.41±3.07*低劑量組(n=10) 49.1±4.1 50.0±3.96 16.38±3.17*對(duì)照組(n=10) 50.04±5.09 50.01±3.22 30.78±1.98
圖3 大鼠體重變化比較
2.4各組BDNF mRNA轉(zhuǎn)錄本表達(dá)量比較 除BDNF mRNAⅥ CA1區(qū)和BDNF mRNAⅧ CA3區(qū)外,BDNF mRNAⅡa,BDNF mRNAⅢ,BDNF mRNAⅥ,BDNF mRNAⅦ,BDNF mRNAⅧ的轉(zhuǎn)錄表達(dá)量模型組均較對(duì)照組降低,見表3和圖4。
表3 各組BDNF mRNA轉(zhuǎn)錄本表達(dá)量比較()
表3 各組BDNF mRNA轉(zhuǎn)錄本表達(dá)量比較()
*與對(duì)照組比較,P<0.05
?
續(xù)表3
圖4 各組BDNF mRNA比較
在上述實(shí)驗(yàn)中,高低劑量組大鼠均出現(xiàn)抑郁樣表現(xiàn)。敞箱實(shí)驗(yàn)中大鼠在角落時(shí)間增加,水平運(yùn)動(dòng)距離縮短,站立次數(shù)降低,這都反應(yīng)出模型組大鼠的焦慮程度增高。在強(qiáng)迫游泳實(shí)驗(yàn)中,大鼠的漂浮時(shí)間增加,表現(xiàn)出絕望和無助,同時(shí)體重增長緩慢。這些表現(xiàn)均與抑郁癥狀相同,表明本實(shí)驗(yàn)中抑郁模型是成功的。
大鼠海馬腦區(qū)BDNF與TrkB受體結(jié)合后可啟動(dòng)細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)途徑如磷酸脂酶Cr(PLC)、Ras-MAPK激酶途徑、PI3激酶途徑等,從而產(chǎn)生相應(yīng)分子對(duì)神經(jīng)元起保護(hù)、促進(jìn)再生作用[7-10]。慢性口服糖皮質(zhì)激素導(dǎo)致抑郁發(fā)生時(shí),整個(gè)通路發(fā)生改變導(dǎo)致BDNF表達(dá)減少,海馬神經(jīng)元萎縮受損,尤其是DG區(qū)神經(jīng)元數(shù)目減少,整個(gè)情緒神經(jīng)網(wǎng)絡(luò)發(fā)生變化,最終影響情緒精神。由于BDNF基因的表達(dá)發(fā)生變化,導(dǎo)致調(diào)控蛋白水平的改變。BDNF基因由不同啟動(dòng)子控制著不同的非編碼區(qū),而不同的非編碼區(qū)與編碼區(qū)組合形成不同的異構(gòu)體。在成年大鼠,包含外顯子Ⅳ、Ⅴ、Ⅵ和Ⅷ的mRNA在全身分布廣泛,包含外顯子Ⅰ、Ⅱ和Ⅲ的mRNA主要在神經(jīng)系統(tǒng)表達(dá),包含外顯子Ⅶ,ⅨA的mRNA主要在海馬腦區(qū)表達(dá)。在大鼠CA3區(qū)和齒狀回的神經(jīng)元,包含外顯子Ⅰ和Ⅱ的mRNA表達(dá)比CA1區(qū)的強(qiáng)烈,情境學(xué)習(xí)可以增強(qiáng)小鼠CA1區(qū)包含外顯子Ⅰ和Ⅵ的BDNFmRNA表達(dá),恐懼刺激主要引起包含外顯子Ⅳ的mRNA表達(dá)[11-12]。在海馬中,齒狀回DG區(qū)神經(jīng)元增殖最快,不斷更新,新生神經(jīng)元替代發(fā)揮成熟神經(jīng)元的作用,而CA1與CA3區(qū)則不同,神經(jīng)元數(shù)量及新生能力明顯低于DG區(qū)[11]。BDNF的表達(dá)受多種因素影響,在細(xì)胞內(nèi),cAMP激活蛋白激酶,并將CREB磷酸化上調(diào)cAMP-CREB通路[13]。增加海馬BDNF mRNA轉(zhuǎn)錄表達(dá),BDNF蛋白的合成[8,10]。但是,糖皮質(zhì)激素長期作用,致使BDNF mRNAⅡa,BDNF mRNAⅢ,BDNF mRNAⅥ,BDNF mRNAⅦ,BDNF mRNAⅧ的轉(zhuǎn)錄表達(dá)量明顯降低。BDNF蛋白的表達(dá)量隨之降低[14-17]。
表觀遺傳對(duì)基因的轉(zhuǎn)錄表達(dá)同樣有重要的影響,常見的表觀遺傳機(jī)制包括DNA甲基化、組蛋白修飾及RNA介導(dǎo)基因轉(zhuǎn)錄等,它們彼此相互作用,通過控制基因表達(dá)的時(shí)間和空間特異性精確地調(diào)節(jié)著基因組功能[18]。在多種形式中,組蛋白的共價(jià)修飾占有重要地位,乙?;?、甲基化、磷酸化、泛素化和SUMO化等修飾與基因的表達(dá)調(diào)控密切關(guān)聯(lián)。特定DNA位點(diǎn)或區(qū)域各種組蛋白修飾方式共同構(gòu)成了“組蛋白密碼”,具有調(diào)控相關(guān)基因轉(zhuǎn)錄活化或抑制的功能[19]。組蛋白乙?;苓x擇性開放某些基因的轉(zhuǎn)錄,增強(qiáng)其表達(dá)水平。而組蛋白甲基化既可抑制也可增強(qiáng)基因表達(dá)[20]。
本文通過強(qiáng)迫游泳實(shí)驗(yàn)、敞箱實(shí)驗(yàn)研究發(fā)現(xiàn),連續(xù)口服糖皮質(zhì)激素導(dǎo)致抑郁發(fā)生后,大鼠海馬腦區(qū)BDNF mRNA的選擇性剪切變化,即BDNF mRNAⅡa,BDNF mRNAⅢ,BDNF mRNAⅥ,BDNF mRNAⅦ,BDNF mRNAⅧ的轉(zhuǎn)錄表達(dá)量明顯降低。這一變化也可能由于表觀遺傳對(duì)BDNF基因的修飾影響所導(dǎo)致,這還需要更深入的研究。
[1] Willner P,Scheel-Kruger J,Belzung C.The neurobiology of depression and antidepressant action[J].Neurosci Biobehav Rev,2013,37(10Pt1):2331-2371.
[2] Kupfer D J,F(xiàn)rank E,Phillips M L.Major depressive disorder:new clinical, neurobiological,and treatment perspectives[J]. Lancet,2012,379(9820):1045-1055.
[3] Saaltink D J,Vreugdenhil E.Stress,glucocorticoid receptors,and adult neurogenesis:a balance between excitation and inhibition[J].Cell Mol Life Sci,2014,71(13):2499-2515.
[4] Duman C H.Models of depression[J].Vitam Horm,2010,67 (82):1-21.
[5]毛慶秋,黃真.抗抑郁藥與抑郁動(dòng)物模型[J].國際精神病學(xué)雜志,2005,31(4):216-219.
[6] Al-Gelban K S,Al-Amri H S,Mostafa O A.Prevalence of depression,anxiety and stress as measured by the depression, anxiety,and stress scale (DASS-42) among secondary school girls in Abha,Saudi Arabia[J].Sultan Qaboos Univ Med J,2009,9(2):140-147.
[7] Li Y,Luikart B W,Birnbaum S,et al.TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment[J].Neuron,2008,59(3):399-412.
[8]韓羽楠,王振宇.鋅與cAMP/PKA-CREB-BDNF信號(hào)通路在抑郁癥發(fā)病機(jī)制中的相關(guān)性[J].解剖科學(xué)進(jìn)展,2013,18 (2):167-170.
[9] De Kloet E R,Vreugdenhil E,Oitzl M S,et al.Brain corticosteroid receptor balance in health and disease[J].Endocr Rev,1998,19(3):269-301.
[10]馬學(xué)萍,陳慧彬,安書成.應(yīng)激抑郁發(fā)生中糖皮質(zhì)激素對(duì)BDNF信號(hào)通路的影響[J].生命科學(xué),2014,25(8):835-839.
[11] Chapman T R,Barrientos R M,Ahrendsen J T,et al.Aging and infection reduce expression of specific brain-derived neurotrophic factor mRNAs in hippocampus[J].Neurobiol Aging,2012,33(4):e1-14.
[12] Lubin F D,Roth T L,Sweatt J D.Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory[J].J Neurosci,2008,28(42):10 576-10 586.
[13] Herold S,Jagasia R,Merz K,et al.CREB signalling regulates early survival,neuronal gene expression and morphological development in adult subventricular zone neurogenesis[J].Mol Cell Neurosci,2011,46(1):79-88.
[14] Hollenberg S M,Weinberger C,Ong E S,et al.Primary structure and expression of a functional human glucocorticoid receptor cDNA[J].Nature,1985,318(6047):635-641.
[15] Holsboer F.The corticosteroid receptor hypothesis of depression[J].Neuropsychopharmacology,2000,23(5):477-501.
[16] De Kloet E R,F(xiàn)itzsimons C P,Datson N A,et al.Glucocorticoid signaling and stress-related limbic susceptibility pathway:about receptors,transcription machinery and microRNA[J].Brain Res,2009,8(1293):129-141.
[17] Morsink M C,Steenbergen P J,Vos J B,et al.Acute activation of hippocampal glucocorticoid receptors results in different waves of gene expression throughout time[J].J Neuroendocrinol,2006,18(4):239-252.
[18] Graff J,Kim D,Dobbin M M,et al.Epigenetic regulation of gene expression in physiological and pathological brain processes[J].Physiol Rev,2011,91(2):603-649.
[19] Jenuwein T,Allis C D.Translating the histone code[J].Science,2001,293(5532):1074-1080.
[20] Peserico A,Simone C.Physical and functional HAT/HDAC interplay regulates protein acetylation balance[J].J Biomed Biotechnol,2011,1(2011):20-34.
Effects of Glucocorticoids on the Selective Shear of BDNF Gene in the Hippocampus of Rats with Depression
XUE Nan,C
HEN Jian-ming,ZHANG Yu,et al.//Medical Innovation of China,2016,13 (14):001-006
Objective:To explore the effect of glucocorticoid on the brain-derived neurotrophic factor (BDNF) gene in hippocampus of depression model rats,and to provide the theoretical basis for the etiology and treatment of depression.Method:A total of 30 male SD rats were randomly divided into the control group,high dose group and low dose group,each group had 10 rats,they were fed 5 d adaptive,the forced swimming test and open-field test were performed before administration in each group.The high and low dose group were respectively treated with oral corticosterone (CORT) 100 μg/mL and 25 μg/mL for 21 d,CORT concentration reduced to 50% of the original from 15 days,and it down to the original 25% from 18 days,the control group was treated with oral administration of 2.4% alcohol solution for 21 d. After 21 d,rats in each group were again carried on forced swimming test and exposure test and measured weight weekly,after this,for the high and low dose group,one group was selected to prepare a successful model of depression in rats and was selected as the model group. Hippocampal tissue were extracted partition,BDNF mRNA in hippocampal area were detected by using polymerase chain reaction (PCR).Result:After administration,the floating time of the high and low dose group were higher than before administration,the differences were statistically significant(P<0.05).After administration,the total movement distance,stand times,central time in high and low dose group were lower than those beforeadministration,the differences were statistically significant(P<0.05).The body weight gain in high dose group was lower than the control group,there was no significant difference between the low dose group and the control group in the first 2 weeks,but weight gain was significantly lower than the control group at 3 week,the difference was statistically significant(P<0.05).In addition to the BDNF mRNAⅥ CA1 area and BDNF mRNAⅧ CA3 area,the transcriptional expression amount of model group in BDNF mRNAⅡa area,BDNF mRNAⅢ area,BDNF mRNAⅥ area and BDNF mRNAⅦ area were lower than those in the control group,the differences were statistically significant(P<0.05).Conclusion:Continuous oral administration of glucocorticoids can produce an ideal rat model of depression.The transcription of BDNF mRNAⅡa,BDNF mRNAⅢ,BDNF mRNAⅥ,BDNF mRNAⅦ and BDNF mRNAⅧ reduced in the decreased rats hippocampal area.
Depression; Glucocorticoid; Brain-derived neurotrophic factor (BDNF); Alternative splicing
國家自然科學(xué)基金資助項(xiàng)目(81371254)
①山西醫(yī)科大學(xué) 山西 太原 030001
李建國
10.3969/j.issn.1674-4985.2016.14.001
2016-03-14) (本文編輯:李穎)