蘇暢,劉婷,黃幗蓉,陳楚如,向靜,徐暢,張文峰,沈晗,邵紅偉
?
嵌合型TCR分子的表達(dá)與組裝效率分析
蘇暢,劉婷,黃幗蓉,陳楚如,向靜,徐暢,張文峰,沈晗,邵紅偉
(廣東藥科大學(xué)生命科學(xué)與生物制藥學(xué)院/生物制藥研究所/廣東省生物技術(shù)候選藥物研究重點(diǎn)實(shí)驗(yàn)室,廣東廣州510006)
摘要:目的通過(guò)對(duì)外源TCR分子結(jié)構(gòu)域的定向改造,對(duì)嵌合型TCR雙鏈分子的表達(dá)與組裝情況進(jìn)行研究,探討其對(duì)TCR基因修飾T細(xì)胞(TCR-T)內(nèi)外源TCR分子與內(nèi)源TCR分子錯(cuò)配減少的貢獻(xiàn),為改善TCR基因修飾的T細(xì)胞過(guò)繼性免疫治療奠定基礎(chǔ)。方法將結(jié)構(gòu)域未改造的野生型TCR分子、恒定區(qū)結(jié)構(gòu)域經(jīng)過(guò)改造的嵌合TCR(chim-TCR)分子及雜合TCR分子轉(zhuǎn)染7402細(xì)胞,通過(guò)報(bào)告基因的表達(dá)分析TCR分子的表達(dá)情況,利用熒光共振能量轉(zhuǎn)移(FRET)技術(shù)計(jì)算不同的TCR分子組合在細(xì)胞中的組裝效率。結(jié)果TCR分子經(jīng)過(guò)結(jié)構(gòu)域定向改造后,能夠在細(xì)胞內(nèi)有效地表達(dá)和組裝。熒光共振能量轉(zhuǎn)移(FRET)分析表明嵌合型TCR與野生型TCR分子之間形成的雜合分子FRET值明顯小于嵌合型或野生型自身配對(duì)的FRET值。結(jié)論結(jié)構(gòu)域定向改造的嵌合型TCRα、β鏈與野生型α、β雙鏈能有效得到表達(dá)及組裝,并且嵌合型TCRα、β鏈與野生型α、β鏈組裝配對(duì)的效率顯著降低,這為改善基因修飾的T細(xì)胞過(guò)繼性免疫治療奠定了基礎(chǔ)。
關(guān)鍵詞:嵌合型TCR;表達(dá);組裝;熒光共振能量轉(zhuǎn)移技術(shù)
網(wǎng)絡(luò)出版時(shí)間:2016-04-26 10:38 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/44.1413.R.20160426.1038.001.html
T淋巴細(xì)胞介導(dǎo)的細(xì)胞免疫是抗腫瘤免疫的重要組成部分,將具有抗原特異性的T淋巴細(xì)胞輸入病人體內(nèi)的方法——過(guò)繼性T細(xì)胞療法,對(duì)于腫瘤的治療具有良好的應(yīng)用前景。利用抗原特異性TCR基因修飾T細(xì)胞(TCR-T)進(jìn)行過(guò)繼性移植/回輸,已經(jīng)成為腫瘤生物治療中的一個(gè)熱點(diǎn)[1-4]。但在基因修飾的T細(xì)胞中,導(dǎo)入的外源TCR分子有可能同內(nèi)源TCR鏈發(fā)生錯(cuò)配而導(dǎo)致雜合TCR分子的產(chǎn)生[5-6],這種錯(cuò)配既會(huì)導(dǎo)致自身免疫反應(yīng),又導(dǎo)致外源TCR分子有效表達(dá)水平的下降。因此,減少內(nèi)外源TCR分子的錯(cuò)配是此類(lèi)研究亟待解決的問(wèn)題。利用與TCR分子同屬于免疫球蛋白超家族的抗體重鏈和輕鏈的恒定區(qū)結(jié)構(gòu)域分別替換其β鏈和α鏈的恒定區(qū)結(jié)構(gòu)域,形成了一種嵌合型的TCR分子(chim-TCR)。這種形式的改造首先要討論其表達(dá)和配對(duì)組裝能力才可以為接下來(lái)的功能分析作準(zhǔn)備。所以,為了方便對(duì)嵌合TCR分子的表達(dá)進(jìn)行檢測(cè),同時(shí)利用熒光共振能量轉(zhuǎn)移技術(shù)(fluorescence resonance energy transfer,F(xiàn)RET)計(jì)算結(jié)構(gòu)域定向改造的TCRα、β鏈的組裝效率,本實(shí)驗(yàn)分別利用青色熒光蛋白(CFP)對(duì)α基因進(jìn)行了標(biāo)記,用黃色熒光蛋白(YFP)對(duì)β基因進(jìn)行了標(biāo)記。
1.1 材料
BEL-7402細(xì)胞、質(zhì)粒pDC315-β′YFP、pDC315-α′CFP、pDC315 β′YFP-IRES-α′CFP(β′/α′為改造后的嵌合TCR雙鏈)、pDC315 βYFP-IRES-α′CFP、pIRES-βYFP-αCFP由本實(shí)驗(yàn)室購(gòu)建、保存;E.coli DH5α菌株購(gòu)自TAKARA公司;1640低糖培養(yǎng)基購(gòu)自Invitrogen公司;X-tremeGENE HP購(gòu)自Roche公司。
1.2 質(zhì)粒pDC315-β′YFP-IRES-α′CFP表達(dá)分析
BEL-7402細(xì)胞接種于6孔板中(1×106cells/ well),待匯合度為80%時(shí)按照X-treme GENE HP轉(zhuǎn)染試劑說(shuō)明書(shū)進(jìn)行質(zhì)粒 pDC315-β′YFP-IRES-α′CFP的轉(zhuǎn)染,轉(zhuǎn)染后24 h用熒光顯微鏡觀chimTCR表達(dá)情況。
1.3 chimTCR兩條鏈的組裝情況分析
如圖1A所示方式對(duì)野生型TCR的恒定區(qū)結(jié)構(gòu)域進(jìn)行改造,改造的TCR修飾T細(xì)胞會(huì)出現(xiàn)4種類(lèi)型的TCR分子,其中2種為雜合TCR,本次實(shí)驗(yàn)選取其中1種β/α′類(lèi)型的雜合TCR作為對(duì)照進(jìn)行FRET分析(圖1B)。在實(shí)驗(yàn)中將2個(gè)對(duì)照組質(zhì)粒pDC315-β′YFP、pDC315-α′CFP,3個(gè)實(shí)驗(yàn)組質(zhì)粒pDC315-β′YFP-IRES-α′CFP(圖1B chim-TCR)、pDC315-βYFPIRES-α′CFP(圖1B hybrid TCR)、pIRES-βYFP-αCFP(圖1B wild type TCR),分別轉(zhuǎn)染BEL-7402細(xì)胞,轉(zhuǎn)染48 h后,利用Olympus FluoView FV1000激光共聚焦掃描顯微鏡對(duì)各組細(xì)胞進(jìn)行基于 Sensitized Emmission(SE)方法的FRET檢測(cè),在計(jì)算組裝效率時(shí),2個(gè)對(duì)照組的單熒光質(zhì)粒用于消除光串?dāng)_影響。通過(guò)比較3種TCR分子組合之間的FRET效率,分析其相互組織配對(duì)情況(圖1)。
1.4 統(tǒng)計(jì)分析
由于在同一個(gè)細(xì)胞的細(xì)胞膜不同部位,2種熒光蛋白的相互作用是有差異的,如果只選取細(xì)胞膜的一處區(qū)域會(huì)有失偏頗,而全面采集細(xì)胞膜上的FRET值則會(huì)由于細(xì)胞的形狀和結(jié)構(gòu)的差異而產(chǎn)生較大的誤差。所以,在每組實(shí)驗(yàn)中選取8個(gè)陽(yáng)性轉(zhuǎn)染細(xì)胞,進(jìn)行足夠放大觀察、取圖,然后利用分析軟件FV10-ASW 2.0在陽(yáng)性轉(zhuǎn)染細(xì)胞的細(xì)胞膜部位隨機(jī)選取3個(gè)區(qū)域進(jìn)行FRET效率分析。采用SPSS分析軟件,實(shí)驗(yàn)數(shù)據(jù)以±s表示,采用t檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
A.嵌合型TCR分子的改造示意圖;B.實(shí)驗(yàn)組3種質(zhì)粒示意圖。圖1 TCR結(jié)構(gòu)域改造模式圖及3種TCR分子組合示意圖Figure 1 Schematic diagrams of the construction of chim-TCR and three types of TCRs
2.1 質(zhì)粒pDC315-β′YFP-IRES-α′CFP表達(dá)分析
將質(zhì)粒pDC315-β′YFP-IRES-α′CFP轉(zhuǎn)染BEL-7402細(xì)胞48 h后用熒光顯微鏡觀察黃色熒光蛋白(enhanced yellow fluorescence protein,EYFP)與青色熒光蛋白 (enhanced cyanfluorescenceprotein,ECFP)的表達(dá)情況,結(jié)果如圖2所示,在同一細(xì)胞、同一視野內(nèi)兩種熒光蛋白均有表達(dá),證明質(zhì)粒pDC315-β′YFP-IRES-α′CFP已轉(zhuǎn)染進(jìn)7402細(xì)胞并且成功表達(dá)。
圖2 質(zhì)粒pDC315-β′YFP-α′CFP的表達(dá)Figure 2 Expression of plasmid pDC315-β′YFP-α′CFP
2.2 chimTCR兩條鏈的組裝情況分析
將 3種質(zhì)粒 pIRES-βYFP-αCFP、pDC315-β′ YFP-IRES-α′CFP、pDC315-βYFP-IRES-α′CFP分別轉(zhuǎn)染7402腫瘤細(xì)胞,48 h后用激光共聚焦掃描顯微鏡進(jìn)行觀察,其中CFP通道是受458 nm波長(zhǎng)所激發(fā),YFP通道受515 nm波長(zhǎng)所激發(fā),能量轉(zhuǎn)移的YFP通道受458 nm波長(zhǎng)激發(fā);FRET效率平面圖中,顏色越偏向紅白色則表明效率越高,越偏向藍(lán)黑色則表明效率越低;FRET效率光密度分布立體圖中,縱軸越高則表明效率越高,反之效率越低。結(jié)果顯示(圖3),野生型TCR分子之間的FRET效率最高,嵌合型TCR分子之間的FRET效率次之,而野生型和嵌合型分子之間的FRET效率最低,表明結(jié)構(gòu)域改造后的TCR分子與野生型TCR分子之間的配對(duì)組裝效率受到了抑制。
2.3 FRET效率
結(jié)果見(jiàn)表1,質(zhì)粒pIRES-βYFP-αCFP轉(zhuǎn)染后的FRET效率最高,pDC315-β′YFP-IRES-α′CFP質(zhì)粒次之,而pDC315-βYFP-IRES-α′CFP轉(zhuǎn)染后的FRET效率最低且與pIRES-βYFP-αCFP的FRET效率差異有統(tǒng)計(jì)學(xué)意義,因此可以推測(cè)結(jié)構(gòu)域定向改造的α、β鏈與野生型TCR分子發(fā)生錯(cuò)配的幾率明顯降低。
A.pIRES-βYFP-αCFP(野生型TCR);B.pDC315-β′YFP-IRES-α′CFP(嵌合型TCR);C.pDC315-βYFP-IRES-α′CFP(雜合型TCR)。圖3 3種TCR分子的FRET效率分析Figure 3 Analysis of FRET efficiency of three types of TCRs
表1 各質(zhì)粒轉(zhuǎn)染7402腫瘤細(xì)胞后的FRET效率Table 1 FRET efficiency after plasmid transfection in 7402 tumor cells
轉(zhuǎn)有外源TCR基因的T細(xì)胞至少表達(dá)2種α鏈和2種β鏈,內(nèi)源性α鏈和β鏈組成的TCR分子是T細(xì)胞本身具有的,具有自身抗原耐受性。外源性α鏈和β鏈組成的TCR分子其抗原識(shí)別特異性已明確,但是內(nèi)源性α鏈與外源性β鏈或內(nèi)源性β鏈與外源性α鏈也有可能錯(cuò)配而組成新的雜合TCR分子。國(guó)外有研究者通過(guò)抗體染色等方法表明TCR基因修飾的T細(xì)胞中存在雜合TCR分子[7-8],我們之前的研究也表明了雜合TCR分子的存在[9],這種錯(cuò)配導(dǎo)致的雜合TCR分子由于其抗原識(shí)別表位是未知的,因此存在著識(shí)別自身抗原,導(dǎo)致患者發(fā)生自身免疫性疾病的可能[10-12]。
之前本實(shí)驗(yàn)室已經(jīng)制備了嵌合型的TCR基因,并構(gòu)建了不同的雙表達(dá)載體,在本研究中,3種質(zhì)粒pIRES-βYFP-αCFP、pDC315-β′YFP-IRES-α′CFP、pDC315-βYFP-IRES-α′CFP被分別轉(zhuǎn)染7402腫瘤細(xì)胞,利用FRET技術(shù)計(jì)算不同TCR分子組合在細(xì)胞中的組裝效率。結(jié)果顯示,pDC315-βYFP-IRES-α′CFP 的FRET值為0.041±0.16,比質(zhì)粒pDC315-β′YFPIRES-α′CFP的FRET值低0.017,表明結(jié)構(gòu)域定向改造的TCR分子與野生型TCR分子進(jìn)行配對(duì)組裝的效率明顯降低。而圖3中的FRET效率也是與表1的趨勢(shì)相對(duì)應(yīng)的,從FRET立體圖的縱向高度對(duì)比,總體從高至低分別是,質(zhì)粒pIRES-βYFP-αCFP>pDC315-β′YFP-IRES-α′CFP>pDC315-βYFP-IRES-α′CFP。
本研究初步表明了結(jié)構(gòu)域定向改造的TCR分子α、β鏈能在胞內(nèi)正常表達(dá)和組裝,且結(jié)構(gòu)域定向改造的TCR α、β鏈與野生型TCR鏈發(fā)生錯(cuò)配的幾率明顯降低。為下一步在淋巴細(xì)胞中研究定向改造的TCR分子α、β鏈與細(xì)胞內(nèi)源性TCR分子的錯(cuò)配情況奠定了基礎(chǔ)。
參考文獻(xiàn):
[1]UCKERT W,SCHUMACHER T N.TCR transgenes and transgene cassettes for TCR gene therapy:status in 2008 [J].Cancer Immunol Immunother,2009,58(5):809-822.
[2]WU X,SERENO A J,HUANG F,et al.Protein design of IgG/TCR chimerasfortheco-expressionofFab-like moieties within bispecific antibodies[J].MAbs,2015,7 (2):364-376.
[3]RICHMAN S A,AGGEN D H,DOSSETT M L,et al. Structural features of T cell receptor variable regions that enhance domain stability and enable expression as singlechain ValphaVbeta fragments[J].Mol Immunol,2009,46 (5):902-916.
[4]COOPER L J,KALOS M,LEWINSOHN D A,et al.Transfer of specificity for human immuno deficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes[J].J Virol,2000,74(17):8207-8212.
[5]STANISLAWSKI T,VOSS R H,LOTZ C.Circum-venting tolerance to a human MDM2-derived tumor antigen by TCR gene transfer[J].Nat Immunol,2001,2(10):962-970.
[6]HEEMSKERK M H,HOOGEBOOM M,DE PAUS R A,et al.Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region[J].Blood,2003,102 (10):3530-3540.
[7]SOMMERMEYER D,NEUDORFER J,WEINHOLD M,et al.Designer T cells by T cell receptor replacement[J].Eur J Immunol,2006,36(11):3052-3059.
[8]吳鳳麟,張文峰,沈晗,等.TCR基因轉(zhuǎn)染T細(xì)胞促進(jìn)抗腫瘤免疫的研究特異性[J].生物治療,2014,30(7):901-908.
[9]SHAO H,ZHANG W,HU Q,et al.TCR mispairing in genetically modified T cells was detected by fluorescence resonance energy transfer[J].Mol Biol Rep,2010,37(8):3951-3956.
[10]JIANMIN M A,YIXIN C,XIN G,et al.Association of TCR-signaling pathway with the development of lacrimal gland benign lymphoepithelial lesions[J].Basic Res,2015,8(4):685-689.
[11]ZSOLT S,NIELS H,RAINER L,et al.TCR-engineered T cells:a model of inducible TCR expression to dissect the interrelationship between two TCRs[J].Eur J Immunol,2014,12(1):932-949.
[12]SEBESTYEN Z,SCHOOTEN E,SALS T,et al.Human TCR that incorporate CD3zeta induce highly preferred pairing between TCRalpha and beta chains following gene transfer[J].J Immunol,2008,180(11):7736-7746.
(責(zé)任編輯:幸建華)
中圖分類(lèi)號(hào):R392.11
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1006-8783(2016)03-0362-04
DOI:10.16809/j.cnki.1006-8783.2016011102
收稿日期:2016-01-11
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31100664,31300737,31400149);廣東省自然科學(xué)基金項(xiàng)目(2014A030313586)
作者簡(jiǎn)介:蘇暢(1990—),男,2013級(jí)碩士研究生,Email:changsu8000@163.com;通信作者:邵紅偉(1976—),男,博士,教授,碩士研究生導(dǎo)師,主要從事分子免疫學(xué)研究,Email:shaohw2000@163.com。
Study on the expression and pairing efficiency of recombinant TCR
SU Chang,LIU Ting,HUANG Guorong,CHEN Churu,XIANG Jing,XU Chang,ZHANG Wenfeng,SHEN Han,SHAO Hongwei
(Guangdong Province Key Laboratory for Biotechnology Drug Candidates,School of Life Science& Biopharmaceutics,Guangdong Pharmaceutical University,Guangzhou 510006,China)
Abstract:Objective To investigate the expression and assembly of chimeric TCR chains based on modification of the constant domain of exogenous TCRs,and its contribution on mismatch between exogenous and endogenous TCRs in TCR genetically modified T cells(TCR-T),which may provide a foundation for T cell adoptive immunotherapy.Methods Three kinds of TCRs,including wild type TCR,chimeric TCR(chim-TCR)and hybrid TCR,were transferred into BEL-7402 cells,respectively.The expression of TCR molecules was determined by analysis of the reporter gene expression.The assemble efficiency of those different TCRs was calculated by fluorescence resonance energy transfer(FRET).
Results Chim-TCR molecules were effectively expressed and assembled in host cells.The FRET efficiency between chimeric TCR and wild-type TCR(chim-wild TCR)was significantly less than that of chim-chim or wild-wild type TCRs.Conclusion The chim-TCR can be effectively expressed and assembled in BEL-7402 cells.The targeted modification of TCR domain can significantly reduce the mismatch between chimeric TCR and wild-type TCR chains,which provide an evidence for adoptive TCR-T immunotherapy.
Key words:chimeric TCR;expression;assembly;FRET