蔣晶晶,姚 鵬,田 悅,吳秀英,張 錦
?
·論著·
NRG1-ErbB2信號通路對骨癌痛大鼠脊髓膠質(zhì)細(xì)胞及IL-1β的影響
蔣晶晶a*,姚鵬b,田悅a,吳秀英a,張錦a
中國醫(yī)科大學(xué)附屬盛京醫(yī)院a.麻醉科,b.疼痛科,沈陽 110004
[摘要]目的探討NRG1-ErbB2信號通路對骨癌痛大鼠脊髓膠質(zhì)細(xì)胞和IL-1β的影響。方法雌性SD 大鼠,隨機(jī)分為3組,每組12 只。Sham組(假手術(shù)組);CIBP組:大鼠脛骨內(nèi)注射Walker256乳腺癌細(xì)胞構(gòu)建骨癌痛模型;CIBP+PD168393組:構(gòu)建CIBP模型后6 d,鞘內(nèi)注入PD168393 10 μg,每日1次,連續(xù)9 d,其余組鞘內(nèi)注入生理鹽水。接種瘤細(xì)胞后14 d,檢測大鼠脊髓背角GFAP、OX42和IL-1β的變化。結(jié)果接種瘤細(xì)胞后14 d,CIBP組大鼠GFAP、OX42積分光密度值明顯高于Sham組,差異有統(tǒng)計學(xué)意義(P<0.01),腫瘤細(xì)胞的植入能誘導(dǎo)大鼠同側(cè)脊髓背角GFAP和OX42的表達(dá)顯著增加,并使星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞的胞體肥大。而給予ErbB2受體抑制劑PD168393可明顯抑制脊髓背角神經(jīng)化學(xué)物質(zhì)的改變,GFAP和OX42的表達(dá)均明顯降低(P<0.01)。CIBP組IL-1β于接種瘤細(xì)胞后14 d表達(dá)增加,明顯高于Sham組(P<0.01),給予PD168393能顯著抑制IL-1β表達(dá)增加(P<0.01)。結(jié)論大鼠脛骨接種瘤細(xì)胞后,脊髓背角內(nèi)星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞被廣泛激活,IL-1β釋放增加,阻斷NRG1-ErbB2受體信號通路能有效抑制脊髓膠質(zhì)細(xì)胞的表達(dá)和活化及炎癥介質(zhì)IL-1β的釋放,從而產(chǎn)生鎮(zhèn)痛作用。
[關(guān)鍵詞]骨癌痛;NRG1;ErbB2;脊髓;膠質(zhì)細(xì)胞;鞘內(nèi)注射;痛覺過敏
0引言
神經(jīng)調(diào)節(jié)因子(Neuregulin1,NRG1)屬于表皮生長因子類蛋白,在多種組織中都有表達(dá)。NRG1通過與表皮生長因子受體ErbB3或ErbB4結(jié)合,介導(dǎo)ErbB2受體的活化,兩者形成異源性二聚體,激活酪氨酸激酶,誘導(dǎo)廣泛的生物學(xué)功能。NRG1-ErbB2信號通路在神經(jīng)系統(tǒng)和心臟發(fā)育中具有重要的調(diào)節(jié)作用[1],調(diào)節(jié)突觸信號的傳遞和突觸的可塑性[2-3],介導(dǎo)細(xì)胞的存活、增殖、分化和遷移[4]。突觸可塑性變化是中樞敏化的基礎(chǔ),而中樞敏化又是疼痛產(chǎn)生的主要原因之一。近年研究發(fā)現(xiàn),膠質(zhì)細(xì)胞上表達(dá)ErbB2、ErbB3和ErbB4受體[5-7],外周神經(jīng)損傷時初級傳入中樞表達(dá)NRG1增加[8],同時脊髓背角小膠質(zhì)細(xì)胞增殖和活化導(dǎo)致痛覺過敏[9-10]。但NRG1-ErbB2信號通路是否也參與了骨癌痛(Cancer-induced bone pain,CIBP)中脊髓膠質(zhì)細(xì)胞的活化,目前尚不清楚。本研究通過大鼠脛骨注射Walker256乳腺癌細(xì)胞建立大鼠骨癌痛模型,旨在探討骨癌痛中NRG1-ErbB2信號通路的作用及機(jī)制,從而為尋找新的有效的治療骨癌痛的方法奠定基礎(chǔ)。
1材料與方法
1.1主要儀器和試劑PD168393(美國Calbiochem公司),鼠抗GFAP抗體(美國Sigma公司),鼠抗OX42抗體(美國Abcam公司),IL-1β ELISA試劑盒(美國R&D公司),PE10導(dǎo)管(寧波市安來軟件科技有限公司)。
1.2實驗動物與分組雌性SD大鼠,體重200~220 g,由中國醫(yī)科大學(xué)附屬盛京醫(yī)院實驗動物中心提供,飼養(yǎng)于鋪墊鋸末塑料盒內(nèi),每籠5 只,室內(nèi)溫度22~24 ℃,濕度40%~60%,自然照明,自由攝食、飲水。實驗獲得中國醫(yī)科大學(xué)附屬盛京醫(yī)院倫理委員會的批準(zhǔn)。雌性SD 大鼠,隨機(jī)分為3組,每組12 只。Sham組(假手術(shù)組);CIBP組:大鼠脛骨內(nèi)注射Walker256乳腺癌細(xì)胞構(gòu)建骨癌痛模型;CIBP+PD168393組:接種瘤細(xì)胞后第4天進(jìn)行鞘內(nèi)置管,第6天鞘內(nèi)注入PD168393 10 μg(5%DMSO稀釋,1 μg/μL,10 μL),每日1次,連續(xù)9 d;其余組鞘內(nèi)注入生理鹽水。第14天取出L4-6節(jié)段脊髓,檢測大鼠脊髓背角星形膠質(zhì)細(xì)胞標(biāo)記物膠質(zhì)細(xì)胞纖維酸性蛋白(Glial fibrillary acidic protein,GFAP)、小膠質(zhì)細(xì)胞標(biāo)記物(OX-42)和IL-1β的變化。
1.3大鼠脛骨癌痛模型建立選用體重200~220 g的雌性SD大鼠,10%水合氯醛300 mg/kg腹腔內(nèi)麻醉后,在右側(cè)后肢脛骨中上1/3處將皮膚切開約1 cm 小口,小心暴露脛骨,先用2 mL 注射器針頭在脛骨鉆孔,用25 μL微量注射器經(jīng)針孔進(jìn)入骨髓腔,緩慢注入Walker256的PBS 細(xì)胞懸液10 μL,共含癌細(xì)胞1×105個,2 min內(nèi)注射完畢,注射后迅速用骨蠟封住針孔,無菌生理鹽水沖洗切口,皮膚分層縫合,在傷口處涂金霉素眼膏,整個手術(shù)過程均按照無菌要求進(jìn)行[11]。CIBP組、CIBP+PD168393組注入Walker256腫瘤細(xì)胞;Sham組大鼠右側(cè)脛骨上段注入等體積的滅活細(xì)胞,其余操作同CIBP組、CIBP+PD168393組。
1.4大鼠蛛網(wǎng)膜下腔置管參考姚鵬等[12]的方法:大鼠蛛網(wǎng)膜下腔置管,于L3-4椎間隙置入PE10導(dǎo)管,至脊髓腰膨大水平處(置管深度約2 cm)[13]。取無感覺和運動障礙的大鼠,于置管后第2天經(jīng)鞘內(nèi)給予20 g/L利多卡因20 μL判斷鞘內(nèi)置管是否成功,若注藥后30 s內(nèi)大鼠出現(xiàn)雙后肢麻痹現(xiàn)象,表明導(dǎo)管位置正確。
1.5免疫組織化學(xué)各組動物在各個時間點經(jīng)腹腔注射麻醉后,開胸經(jīng)左心室至升主動脈插管,先以100 mL PBS沖洗,應(yīng)用含4%多聚甲醛的PBS 250 mL 灌注固定。取L4-6節(jié)段脊髓,置于4%多聚甲醛溶液中固定,4 ℃過夜,次日,將標(biāo)本轉(zhuǎn)入30%的蔗糖溶液中,脫水至組織沉底。做冠狀切片,片厚10 μm。收集切片于0.01 mmol/L的PBS 中,應(yīng)用漂片法進(jìn)行免疫組織化學(xué)實驗,使用生物素標(biāo)記的羊抗鼠IgG、鼠抗GFAP 及OX42(1∶500),分別檢測GFAP 和OX42 的染色情況。每只大鼠選擇5張非連續(xù)染色切片掃描圖像,應(yīng)用Meta Morph圖像分析系統(tǒng)軟件進(jìn)行光密度測定,并以無陽性產(chǎn)物處光密度為背景值以獲得校正光密度值。
1.6ELISA法檢測IL-1β的分泌冰上取大鼠L4-6節(jié)段脊髓組織,勻漿后行總蛋白測定,按試劑盒的說明檢測各組IL-1β的含量,酶標(biāo)儀測定其吸光度值,繪制標(biāo)準(zhǔn)曲線,并計算各樣品的濃度值。
2結(jié)果
2.1大鼠脊髓背角GFAP、OX42的變化CIBP組大鼠接種瘤細(xì)胞后14 d,術(shù)側(cè)腰段脊髓背角可見大量GFAP陽性星形膠質(zhì)細(xì)胞(染色加深,胞體增大,突起變粗變長)和OX42染色的小膠質(zhì)細(xì)胞(染色加深,胞體顯著肥大,突起變粗變短)數(shù)量明顯增多,在脊髓灰質(zhì)的任何部位都可觀察到GFAP和OX42增多,但在脊髓背角淺層Ⅰ~Ⅱ?qū)釉黾拥酶鼮槊黠@。Sham組大鼠術(shù)側(cè)腰段脊髓背角僅見少量GFAP、OX42陽性星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞(胞體小、突起細(xì))。CIBP組大鼠術(shù)側(cè)腰段脊髓背角GFAP、OX42積分光密度值明顯高于Sham組,差異有統(tǒng)計學(xué)意義(P<0.01)。而PD168393組的脊髓背角膠質(zhì)細(xì)胞明顯受到抑制,GFAP和OX42的表達(dá)均顯著降低,見圖1、圖2及表1。
圖1 各組手術(shù)同側(cè)脊髓GFAP的變化(n=6,Scale bar=50 μm)
圖2 各組手術(shù)同側(cè)脊髓OX42的變化(n=6,Scale bar=50 μm)
表1 脊髓背角GFAP和OX42的表達(dá)情況
注:與Sham組比較,**P<0.01;與CIBP 組比較,##P<0.01
2.2脊髓組織中IL-1β表達(dá)的變化接種瘤細(xì)胞后14 d,Sham組脊髓組織中IL-1β有少量表達(dá)。與Sham組比較,CIBP組大鼠脊髓組織中的IL-1β表達(dá)明顯增加,差異有統(tǒng)計學(xué)意義(P<0.01)。給予ErbB2受體抑制劑PD168393預(yù)處理,能顯著抑制腫瘤細(xì)胞誘導(dǎo)的IL-1β表達(dá)增加,見圖3。
圖3 各組大鼠脊髓組織中IL-1β表達(dá)水平的變化(n=6)
3討論
癌癥患者常常伴有中到重度的疼痛,尤其是晚期癌癥的患者,約75%~95%會發(fā)生難以控制的慢性疼痛,骨癌痛是腫瘤引起的慢性疼痛中最為常見的一種[14],很多常見的腫瘤,如乳腺癌、前列腺癌、肺癌容易轉(zhuǎn)移至機(jī)體的多處骨骼,引起疼痛。骨癌痛的機(jī)制復(fù)雜,存在痛覺敏化現(xiàn)象,即骨癌痛模型中肢體表現(xiàn)出痛閾降低、痛覺過敏和接觸誘發(fā)痛等疼痛相關(guān)行為。研究表明,腫瘤刺激下初級傳入神經(jīng)末梢能釋放出一系列生長因子、細(xì)胞因子和化學(xué)因子,如興奮性氨基酸、緩激肽、前列腺素、鈣基因相關(guān)肽、P物質(zhì)和酪氨酸激酶等。這些因子作用于中樞脊髓背角膠質(zhì)細(xì)胞,并使之發(fā)生活化反應(yīng)。激活后的膠質(zhì)細(xì)胞通過釋放多種神經(jīng)活性物質(zhì),直接影響神經(jīng)元可塑性,促進(jìn)初級傳入末梢傷害性神經(jīng)遞質(zhì)的釋放,改變周圍的神經(jīng)化學(xué)環(huán)境,促進(jìn)疼痛的外周與中樞敏化[15]。
本實驗前期研究顯示,大鼠脛骨注射Walker256 瘤細(xì)胞誘發(fā)的骨癌痛模型中,脊髓背角NRG1和ErbB2的表達(dá)從術(shù)后第6天起呈時間依賴性顯著增多,同時大鼠機(jī)械性痛閾明顯降低、熱輻射潛伏期顯著縮短,給予外源性ErbB2受體抑制劑PD168393,能有效緩解大鼠因腫瘤細(xì)胞植入而產(chǎn)生的痛敏行為,證明NRG1-ErbB2信號通路與骨癌痛的產(chǎn)生和維持有關(guān)[16]。本實驗通過應(yīng)用ErbB2受體抑制劑PD168393來阻斷NRG1-ErbB2信號通路,發(fā)現(xiàn)大鼠脛骨注射Walker256細(xì)胞造模后,術(shù)側(cè)腰段脊髓背角星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞均被廣泛激活,接種腫瘤細(xì)胞后14 d,GFAP和OX42染色陽性細(xì)胞數(shù)明顯增多,染色加深,突起顯著增多,IL-1β表達(dá)顯著增加。PD168393能顯著抑制腫瘤細(xì)胞導(dǎo)致的脊髓背角GFAP和OX42的改變,降低 IL-1β的表達(dá),表明阻斷NRG1-ErbB2受體信號通路能有效抑制脊髓中膠質(zhì)細(xì)胞的表達(dá)和活化,抑制炎癥介質(zhì)IL-1β的釋放,從而產(chǎn)生鎮(zhèn)痛作用。因此推測,大鼠脛骨接種腫瘤細(xì)胞后,初級傳入中樞表達(dá)NRG1增加,星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞上的ErbB2受體被激活,NRG1信號通過ErbB2受體引起星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞增殖和活化,促使炎癥介質(zhì)IL-1β大量釋放,這些炎癥介質(zhì)又激活星形膠質(zhì)細(xì)胞和小膠質(zhì)細(xì)胞,導(dǎo)致痛敏的持續(xù)發(fā)生。
綜上所述,NRG1-ErbB2信號通路促進(jìn)脊髓膠質(zhì)細(xì)胞的活化,參與骨癌痛的發(fā)病機(jī)制,抑制NRG1-ErbB2信號通路將成為骨癌痛治療的新靶點。
參考文獻(xiàn):
[1]Li Y,Lein PJ,Liu C,et al.Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury[J].Toxicol Appl Pharmacol,2012,262(2):194-204.
[2]Jay SM,Murthy AC,Hawkins JF,et al.An engineered bivalent neuregulin protects against doxorubicin-induced cardiotoxicity with reduced proneoplastic potential[J].Circulation,2013,128(2):152-161.
[3]Mei L,Xiong WC.Neuregulin 1 in neural development,synaptic plasticity and schizophrenia[J].Nat Rev Neurosci,2008,9(6):437-452.
[4]Perlin JR,Lush ME,Stephens WZ,et al.Neuronal neuregulin 1 type III directs Schwann cell migration[J].Development,2011,138(21):4639-4648.
[5]Calvo M,Zhu N,Tsantoulas C,et al.Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury[J].J Neurosci,2010,30:5437- 5450.
[6]Sharif A,Prevot V.ErbB receptor signaling in astrocytes:a mediator of neuron-glia communication in the mature central nervous system[J].Neurochem Int,2010,57(4):344-358.
[7]Sharif A,Duhem-Tonnelle V,Allet C,et al.Differential ErbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain[J].Glia,2009,57(4):362-379.
[8]Kanzaki H,Mizobuchi S,Obata N,et al.Expression changes of the neuregulin 1 isoforms in neuropathic pain model rats [J].Neurosci Lett,2012,508(2):78-83.
[9]Lacroix-Fralish ML,Tawfik VL,Nutile-McMenemy N,et al.Neuregulin 1 is a pronociceptive cytokine that is regulated by progesterone in the spinal cord:implications for sex specific pain modulation[J].Eur J Pain,2008,12:94-103.
[10]Calvo M,Zhu N,Grist J,et al.Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway[J].Glia,2011,59:554-568.
[11]Medhurst SJ,Walker K,Bowes M,et al.A rat model of bone cancer pain[J].Pain,2002,96(1-2):129-140.
[12]姚鵬,丁遠(yuǎn)遠(yuǎn),馬佳明,等.NR1 磷酸化在神經(jīng)生長因子加劇大鼠骨癌痛中的作用[J].中國醫(yī)科大學(xué)學(xué)報,2011,40(2):117-121.
[13]Sluka KA,Audette KM.Activation of protein kinase C in the spinal cord produces mechanical hyperalgesia by activating glutamate receptors,but does not mediate chronic muscle-induced hyperalgesia[J].Mol Pain,2006,2:13.
[14]Sabino MA,Mantyh PW.Pathophysiology of bone cancer pain[J].J Support Oncol,2005,3(1):15-24.
[15]Tiwari V,Guan Y,Raja SN.Modulating the delicate glial-neuronal interactions in neuropathic pain:promises and potential caveats[J].Neurosci Biobehav Rev,2014,45:19-27.
[16]Jiang JJ,Zhang J,Yao P,et al.Activation of spinal neuregulin 1-ErbB2 signaling pathway in a rat model of cancer-induced bone pain[J].Int J Oncol,2014,45(1):235-244.
Effect of NRG1-ErbB2 signaling pathway on spinal cord glia and IL-1β of rats with cancer-induced bone pain
JIANG Jing-jinga*,YAO Pengb,TIAN Yuea,WU Xiu-yinga,ZHANG Jina
(a.Department of Anesthesiology,b.Department of Pain Management,Shengjing Hospital of China Medical University,Shenyang 110004,China)
[Abstract]ObjectiveTo investigate the effect of neuregulin1 (NRG1)-ErbB2 signaling pathway on the expression of spinal cord glia and IL-1β in rats with cancer-induced bone pain (CIBP).MethodsFemale SD rats were randomly divided into three groups (12 rats in each group).Sham group:sham operation group.CIBP group:walker256 mammary gland carcinoma cell was inoculated into the tibia of rats.CIBP+PD168393 group:10 μg PD168393 was injected intrathecally once daily at 6 d after inoculation for 9 d.Intrathecal injection of saline was given in another groups.The expression of Glial fibrillary acidic protein(GFAP),OX42 and IL-1β was detected at 14 d after inoculation.ResultsThe mean optical density of OX42 and GFAP in CIBP group was higher than that of sham group at 14 d after inoculation (P<0.01).The inoculation of walker256 tumor cell could significantly increase the expression of GFAP and OX42 in ipsilateral spinal cord dorsal,make the astrocytes and microglia hypertrophy.The alterations were inhibited by PD168393,an ErbB2 receptor blocking agent,and the GFAP and OX42 expression decreased (P<0.01).The expression of IL-1β in CIBP group was higher than that of sham group at 14 d after inoculation(P<0.01),which was attenuated by PD168393.ConclusionTumor cell inoculation induces the activation of spinal astrocytes and microglia and promotes the release of IL-1β.Inhibiting NRG1-ErbB2 signaling pathway can reduce the CIBP by suppressing the activation of spinal glia and the expression of inflammatory cytokine IL-1β.
Key words:Cancer-induced bone pain;NRG1;ErbB2;Spinal cord;Glia;Intrathecal injection;Hyperalgesia
收稿日期:2016-03-15
基金項目:國家自然科學(xué)基金(81500958);遼寧省科學(xué)技術(shù)計劃項目(2012225016)
*通信作者
DOI:10.14053/j.cnki.ppcr.201606001