龍世雄
摘 要: 大學階段的數(shù)學教育與初高中階段的基礎數(shù)學教學有所不同,其在知識的深度與廣度上都要遠遠高于中學階段的數(shù)學知識。大學數(shù)學側(cè)重于培養(yǎng)學生的數(shù)學分析能力,因此其主要涉及一些數(shù)學理論的教育。數(shù)學科目本身就具有極強的抽象性特點,大學數(shù)學教學更是如此。因此,為了進一步提高大學數(shù)學教學效率就需要將抽象的數(shù)學知識與現(xiàn)實生活聯(lián)系起來,將數(shù)學建模思想應用到數(shù)學教學中。
關鍵詞: 大學數(shù)學 數(shù)學建模思想 滲透措施
目前,由于我國的大學數(shù)學教學多受到傳統(tǒng)數(shù)學教學觀念的影響,我國大學數(shù)學教學一直收效甚微。要增強大學數(shù)學教學效果就要將數(shù)學建模思想引入數(shù)學教學中,以培養(yǎng)學生理論聯(lián)系實際的能力。
一、數(shù)學建模思想在大學數(shù)學教學中的作用
(一)有利于大學數(shù)學教學改革
數(shù)學建模思想與傳統(tǒng)的大學數(shù)學教學方法不同,其注重教師與學生的互動,尊重教師與學生的主體地位,以師生互動為基本特點。數(shù)學建模思想打破了傳統(tǒng)數(shù)學教學中教師主導課堂,以教師為中心的教學局面,有利于大學數(shù)學教學方法的改革,有利于增強大學數(shù)學教學效果。數(shù)學建模思想在教學方法上有所創(chuàng)新,數(shù)學建模所使用的教學方法多來自于“數(shù)學模型”、“數(shù)學實驗”及“數(shù)學軟件介紹及應用”等,數(shù)學建模思想有助于大學數(shù)學教學方法的改革[1]。數(shù)學建模思想中還包括很多先進的科技知識,這些知識的教授可以有效改善傳統(tǒng)數(shù)學教學中教學內(nèi)容陳舊缺乏新意、知識面狹窄等問題。
(二)有助于激發(fā)學生的數(shù)學學習興趣
教學內(nèi)容多、學時少是大學數(shù)學教學普遍存在的問題,該問題導致很多大學教師在大學數(shù)學課堂教學中只重視理論與習題的講解,而忽視對學生利用數(shù)學知識解決現(xiàn)實問題能力的培養(yǎng),進而使很多學生認為大學數(shù)學學習無關緊要,甚至對大學數(shù)學學習失去興趣。數(shù)學建模思想主要強調(diào)的是用數(shù)學知識解決現(xiàn)實中的問題,并幫助學生將生活中遇到的實際問題轉(zhuǎn)化為規(guī)范的數(shù)學問題,并加以解決。數(shù)學建模思想注重培養(yǎng)學生的合理假設能力,使學生將實際問題合理假設為一道規(guī)范的數(shù)學問題,并通過一些相關實例的講解,幫助學生架構(gòu)起一座連接數(shù)學知識與現(xiàn)實問題的橋梁,從而提高學生對大學數(shù)學知識的掌握程度及應用能力。數(shù)學建模思想可以將數(shù)學知識與現(xiàn)實問題有機地結(jié)合起來,使學生感受到大學數(shù)學知識在解決現(xiàn)實問題中的重要作用,從而激發(fā)他們的數(shù)學學習興趣,促使他們積極投身大學數(shù)學學習。
(三)有助于提高學生多方面的能力
數(shù)學建模思想的獨特性使其對學生多方面能力的提高具有積極意義。數(shù)學建模過程中需要將數(shù)學知識反復應用到實際問題中,并在應用過程中進行縝密的計算、分析與推理,從而找出解決實際問題的最佳方案。這一過程能夠有效提高學生的分析及推理能力;數(shù)學建模思想具有一定的開放性特點,其沒有統(tǒng)一的答案,學生可以根據(jù)自己的知識基礎從不同的角度出發(fā)尋求解決問題的辦法,這有助于提高學生的想象力與創(chuàng)新能力。數(shù)學建模中涉及生活中的諸多領域,作為在校大學生不可能對每一個領域的專業(yè)知識都熟練掌握,因此其必須在建模過程中查閱并迅速消化相關的文獻資料,并將這些知識應用到建模過程中。因此,建?;顒釉谠黾訉W生數(shù)學知識的同時,還可以開闊學生的眼界,豐富學生的知識涉獵。由此可見,數(shù)學建模思想對于大學生各方面能力的提高有著重要的作用。
二、在大學數(shù)學教學中滲透數(shù)學建模思想的具體措施
(一)在定理公式的講解中滲透數(shù)學建模思想
數(shù)學知識本身都是對現(xiàn)實世界中的數(shù)學模型進行的研究[2]。因此,教師可以在定理公式的講解過程中滲透一定的數(shù)學建模思想。例如,在教授線性代數(shù)時,教師可以將線性代數(shù)中抽象的概念與定理以一種現(xiàn)實中的模型代替,即用現(xiàn)實例子表達數(shù)學知識;由于概率統(tǒng)計具有極強的理論性與實用性,且其與現(xiàn)實生活中很多領域息息相關。在教授概率統(tǒng)計知識時,教師可以利用現(xiàn)實例子幫助學生理解。如讓學生用概率統(tǒng)計原理來分析籃球比賽中球員籃球投不中的原因。
(二)在考試中滲透數(shù)學建模思想
傳統(tǒng)的大學數(shù)學考試,往往將測試重點放在學生的知識掌握程度上,而忽視對學生的數(shù)學綜合素質(zhì)的考量。在大學數(shù)學考試中滲透數(shù)學建模思想就是將學生的思維能力、創(chuàng)新能力、想象力等納入數(shù)學考評中。教師可以將現(xiàn)實中存在的問題加入試題,讓學生利用數(shù)學建模的方式解決。數(shù)學建模思想在大學數(shù)學考試中的滲透既可以增強數(shù)學考試測評的針對性,又可以促進學生積極思考。
(三)加強數(shù)學建模的相關訓練
數(shù)學建模思想可以通過一定的訓練強化,因此大學數(shù)學教師可以對學生進行一系列的數(shù)字建模訓練,提高他們的數(shù)學建模能力。數(shù)學建模能力的培養(yǎng)不可能一蹴而就,需要學生堅持不懈地鍛煉和逐步積累[3]。為了更好地培養(yǎng)學生的數(shù)學建模能力,可以在大學中組織一些小型的數(shù)學建模比賽,在比賽中對于表現(xiàn)比較好的學生予以鼓勵,進一步激發(fā)他們對數(shù)學建模思想的興趣,提高他們的數(shù)學建模能力。
綜上所述,數(shù)學建模思想在大學數(shù)學教學中占有重要地位,其對于提高大學數(shù)學教學效率,推進大學數(shù)學教學改革,提高學生的綜合素質(zhì)具有重要意義。
參考文獻:
[1]劉菊芬.大學數(shù)學教學中滲透數(shù)學建模思想的策略探析[J].新課程研究,2014,(10):43-44.
[2]許小芳.對在大學數(shù)學教學中滲透數(shù)學建模思想的研究[J].甘肅聯(lián)合大學學報,2011,(10):34-35.
[3]張仕清.在大學數(shù)學教學中滲透數(shù)學建模思想的思考[J].廊坊師范學院學報,2012,(01):103-104.