亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        OpenFlow-BasedPath-PlanningwithBandwidthGuaranteeintheInter-DatacenterNetwork

        2016-07-14 02:00:46TangWanLiuGuoYangXiminChenFan
        關(guān)鍵詞:軟件定義網(wǎng)絡(luò)路徑規(guī)劃

        Tang Wan, Liu Guo, Yang Ximin, Chen Fan

        (CollegeofComputerScience,South-CentralUniversityforNationalities,Wuhan430074,China)

        ?

        OpenFlow-BasedPath-PlanningwithBandwidthGuaranteeintheInter-DatacenterNetwork

        Tang Wan, Liu Guo, Yang Ximin, Chen Fan

        (CollegeofComputerScience,South-CentralUniversityforNationalities,Wuhan430074,China)

        AbstractCloudservicesthroughtheinter-datacenternetwork(IDN)makerequestsfordifferentbandwidthdemandsondifferenttemporalscalesintime.Inthispaper,apath-planningscheme,entitledOpenFlow-basedpath-planningwithbandwidthguarantee(OPPBG),wasproposedtoaddresstheissue.Aslongasaflowarrives,theOPPBGschemefirstlycollectsthereal-timelinkstatusofthenetworkandreturnsavirtualtopologywithsufficientremainderbandwidth.Itthenplansanoptimalroutingpathfortheflowbasedonasoftware-definednetworking(SDN)managementplatformapplyingtheOpenFlowprotocol.Simulationresultsrevealedthat,incomparisontotheIDNbasedonthetraditionalpath-planningscheme,theOPPBG-basedIDNcanachievealowerpacketlossrateandhigherbandwidthutilizationwithbandwidthguarantee.

        Keywordssoftware-definednetworking(SDN);datacenternetwork;pathplanning;bandwidthguarantee

        1Introduction

        Therapiddevelopmentofcloudcomputinginrecentyearshaspromotedtheworldwideconstructionofdatacenters.Duetotheuncertaintyandhugeamountoftrafficoccurringintheinter-datacenternetwork(inter-DCN),thepossibleflowpeakisgenerallyregardedasthehighestbandwidthdemand[1,2],usuallyleadingtolowbandwidthutilization.TraditionalroutingprotocolsrouteandforwardthetrafficbyapplyingtheShortestPathpolicy.However,althoughsomelinksalongtheshortestpathofaflowtransmitpacketsclosetofullcapability,subsequentpacketsoftheflowcontinuetobeinjected,givingrisetolink-overloadintheinter-DCN.Themostcommonlyappliedsolutiontothelink-overloadprobleminvolvestransformingorupgradingthenetwork,e.g.,byincreasingthetotaltransmissioncapabilityorsupplementingmoreredundantlinks[3].

        Variousresearchhasfocusedontheproblemoutlinedabove.Forexample,astore-and-forwardmechanismhasbeenappliedtomakebandwidthusagemoreeffective[4,5].ThealgorithmhasalargermaximumvolumeofdatatransferandashorterendtimeofaveragebulktransferincomparisontoNetStitcherproposedinRef[6].However,theexecutiontimeofthealgorithmislongerduetoitsiterativeprocessesemployedinseekingtheexactoptimalsolution.Thegreedyresidualscheduler(GRESE)proposedinRef[7]attemptstominimizeoverallbandwidthconsumptionbyleveragingtheflexiblenatureofbulkdatajobdeadlines.However,theseproposalsmadelittleconsiderationofthefactthattheinter-DCNarchitecturecontainshundredsofthousandsofswitcheswithwhichtohandlethetremendousvolumeoftrafficoriginatingfromdifferentdatacenters.Thedevelopmentofamechanismabletocontrolandmanagetheseswitchesinaunifiedmanner,wouldthusenablethekeystepsofpathplanning,i.e.routingandbandwidthallocation,tobecarriedoutmoreflexibly.

        Fortunately,suchagoalcanbeachievedbyintroducingOpenFlow-acommunicationsprotocolthatwasinitiallydevelopedtoenableinnovationexperimentsincampusnetworks[8].OpenFlowworksasafundamentalelementinsoftware-definednetworking(SDN)solutions.IntheSDN,thecontrolplaneisseparatedfromtheforwardingplane,andthecontrolleriscapableofdeterminingthepathsofpacketsthroughthenetworkofswitches[9,10],whichmakesiteasierfornetworkmanagement[11-13].SDNsuppliesaremotecontrollingmechanismbymaintainingtheflowtable(s)ineachOpenFlowswitch.Aflowtableconsistsofasetofpacket-matchingrulesandactions,withthecontrollermanagingflowtrafficbyadding,deletingormodifyingtheentriesoftheflowtables.

        SomeSDN-basedsolutionshavealsobeenproposedtosolvetheproblemoftrafficmanagementininter-DCNs.Kanagaveluetal.proposedare-routingcontrolframeworkbasedonOpenFlowtosolvenetworkcongestion[14].But,there-routingprocessrequiresextratimeandistosolveratherthantoavoidnetworkcongestion.Additionally,inordertodealwithdatareplicationbetweendifferentdatacenters,anSDN-basedroutingschemewasproposedinRef[15].However,calculatingallthesepossiblepathsleadstohighspatialandtemporalresourceconsumption.

        Inthispaper,weproposeapath-planningschemeforinter-DCNs,namedOpenFlow-basedpath-planningwithbandwidthguarantee(OPPBG).OPPBGcollectsnetworkinformationincludingnetworktopology,remainderbandwidthofeachlink,etc.,viaacontroller,andcalculatestheroutingpathsconsideringtheon-demandbandwidthbyflows.Whenaflowarrivesattheedgenode,OPPBGfirstlyextractstheappropriatetopologyinwhichthelinksmeetthebandwidthrequirementoftheflow,withtheshortestpaththendeterminedaccordingtotheextractedtopology.Finally,thebandwidthofeachlinkonthepathisalsoreservedforthearrivalflow.

        2OpenFlow-basedpath-planningwithbandwidthguarantee

        Inthissection,wedescribethekeypointsofOPPBGindetail,includingtheSDNmanagementplatform,timesequence,andpath-planningstrategy.

        2.1SDNmanagementplatform

        InordertocarryouttheOPPBGscheme,wedevelopedanSDNmanagementplatformbelongingtotheapplicationlayeroftheSDNstructuregiveninFig.1.IntheSDNstructure,thelowestlayeristhephysicalinter-SDNnetworkcomprisingOpenFlowswitches,links,anddatacenterstreatedastheterminaloftheInter-SDNandconnectingwiththeOpenFlowswitches.ThemiddlelayeristhecontrollerthatmanagesswitchesinaunifiedmannerbasedontheOpenFlowprotocol.TheSDNmanagementplatformisoverthecontrollerandcollectsthereal-timestatusoflinksanddevicesviaanumberofRESTAPIs[16].Accordingtotheobtainedinformation,themanagementplatformcalculatesthepaths,withthecontrollerthensendingthepathinformationtotherelatedOpenFlowswitchesbymeansofflowentries.

        Thedevelopedplatform,whichisbasedonthenortherninterfacesofferedbythecontroller,consistsofseveralmoduleswithdifferentfunctions,includingobtainingnetworktopology,loadbalancing,flowtablemanagement,etc.Inthissubsection,webrieflyintroducesomeofthemodulesrelatedtorouting,anddescribehowtheyworktogethertoachievethetaskofpath-planningwithbandwidthguarantee.

        (1)Topologyaccessor.ThetopologyaccessormodulemaintainsaJavaScriptobjectnotation(JSON),alightweightdata-interchangeformattotransmitthedataobjectsconsistingofattribute-valuepairs.ThismodulecollectsthetopologyinformationusingthreeRESTAPIs: (a)FeatureAPI,whichcapturesthestatusinformationofeachportinswitches(e.g.bandwidth);(b)LinkAPI,whichcollectsinter-switchlinkinformation;(c)DeviceAPI,whichprovidesthepropertyinformationofeachdevice,aswellaslinkinformationbetweenterminalsandswitches.

        (2)Routingmanager.Theroutingmanagermoduleistheprimarymodulecarryingoutpath-planningandservicestwomajorfunctions.Thefirstofthesefunctionsistocalculatethepathsbyexecutingtheroutingalgorithmstoredinanalgorithmcontainer;theglobalnetworkinformationforroutingisprovidedbytheTopologyAccessormodule.ThesecondmajorfunctionistogenerateorupdatetheflowentriesaccordingtothecalculatedpathandthensendtheseflowentriestoeachcorrespondingswitchviatheController.

        Fig.1 SDN basic structure for Inter-DCN圖1 數(shù)據(jù)中心間網(wǎng)絡(luò)的SDN基本架構(gòu)

        2.2TimesequenceofOPPBG

        OPPBGworksaccordingtothesequencesshowninFig.2.Inordertoacquirethetopologyinformation,theTopologyAccessorsendsaTopologyInformationRequesttotheController.Afterthat,theControllercollectstheinformationofeachdeviceorlinkandsendsittotheTopologyAccessor,whichreceivestheinformationtoobtainthenetworkstatusandbuildtheglobaltopology.Followingthisstep,thetopologyinformationissenttotheRoutingManager,whichcomputesthecorrespondingpathsbasedonthespecifiedroutingalgorithm.Finally,theseroutingresultsaresubmittedtotheController,whichupdatestheflowtablesofcorrespondingswitchesusingthecontroller-to-switchMessages.

        Inthetaskofpath-planningintheinter-DCN,OPPBGattemptstotakefulladvantageoftheSDNfeaturesnetworkprogrammability,controlcentralization,andseparationbetweenthecontrolplaneanddataplane.OPPBG′sSDNmanagementplatformcaneasilyobtaintheglobaltopologyinformationbymonitoringthelinkstatusinrealtime.Furthermore,inordertodecreasethepacketlossrateandsettlelinkoverload,theroutingworkintheSDNmanagementplatformappliestheroutingwithbandwidthguarantee(RBG)routingalgorithm.Asthepresentpaperfocusesonpath-planning,theRoutingManageristhemainpartoftheSDNmanagementplatform.

        Fig.2 OPPBG time sequence圖2 OPPBG時(shí)序圖

        Itisworthnotingthattheplatformcanalsobeexpandedforotherfunctions,suchasasecuritymoduleoraQoSanalyzer.

        2.3Path-planning----routingwithbandwidth

        guarantee(RBG)

        Inordertoprovideenoughbandwidthtotrafficbyusingoptimalroutingpaths,wehereproposetheRBGroutingalgorithm,whichisstoredinthealgorithmcontainerandexecutedintheRoutingManager.RBGfollowsthreesteps,takingconsiderationofthelinkbandwidthconstraints.Moreover,thetriplefw (src, dst, ban)denotesanarrivingflowfwwithsourcenodesrc,destinationnodedst,andbandwidthdemandban,respectively.

        *Step1:extractthepropertopologymeetingthebandwidthrequirement.Morespecifically,thisstepcreatesaduplicateofcurrentnetworktopology,anddeletesthelinksonwhichtheremainingbandwidthcannotmeetthebandwidthbanrequiredbytheapproachingflowfw;

        *Step2:withthenodepair(src, dst),calculatetheshortestpathpausingtheDijkstraalgorithmonthetopologyobtainedinStep1.Eachlinkofpahassufficientremainderbandwidthfortheflowfw;

        *Step3:reservebandwidthalongthepathpa,sothattheavailablebandwidthofeachlinkonpawilldecreasebyban.

        Fig.3showsasimpleexampledescribinghowRBGroutesthroughthethreesteps,inwhichf1isaflowwiththesourcenodeN1,thedestinationnodeN7and15Mbit/sbandwidthdemand.Inthetopology,thenumberoveralinkrepresentsitsremainderbandwidth,andalllinksareequalinlength.Fig.3(a)describeshowStep1extractsthepropertopologyfortheflowf1.Link(N2,N6)isdeletedbecauseitsunemployedbandwidthislessthanthebandwidthdemandoff1.Pathselectionisthencarriedoutonthenewtopologygivenintheleft-handpartofFig.3(a).ThedottedlineinFig.3(b)indicatesthedeterminedroutingpathforf1.Eachlinkalongthepathupdatesitsunemployedbandwidth,asshowninFig.3(c).

        3Performanceevaluation

        Inthissection,weevaluatetheproposedOPPBGschemeviasimulationcomparedwiththeShortestPathscheme.Packetlossrate,linkbandwidthutilizationandaveragehopcountareappliedasperformancemetrics.

        Fig.3 An example of the RBG process圖3 RBG過(guò)程示例

        3.1Simulationenvironmentandsetting

        Inthesimulation,thecontroller,datacentersandOpenFlowswitchesaresoftware-baseddevicesconstructedwithinMininet(version2.1.0p2)[16]runningontheLinuxsystem(Ubuntu14.04,installedonVirtualBoxversion4.3.12).ThecontrollerisFloodlightController(version0.90)[17]runningonaPCwith64-bitWindows7.ThePCcontainstwophysicalcoreswithIntel(R)Core(TM)i5-3230processorsand4GBRAM.Furthermore,theSDNManagementPlatform,holdingtheproposedroutingalgorithm,alsorunsinthePC.Thetraditionalshortestpathroutingschemewasalsotestedinthesameenvironmentforcomparison.

        Inthesimulation,UDPtrafficisgeneratedviaIperf,asoftwaretoolmainlyusedformeasuringTCPandUDPbandwidth[18].Iperfisabletobothgeneratestabletrafficfortestingandprovidefeedbackinformation,suchasthetransmitbandwidth,delayjitteranddatagramlossrate.Notethatalthoughthebandwidthunit(inMbit/s)inoursimulationisthreeordersofmagnitudelowerthanthatintherealinter-DCN(inGbit/s)duetothelimitationofIperf,however,thisdoesnotimpactontheevaluation.

        ThephysicaltopologyofthesimulationnetworkispresentedinFig.4.ThenetworkconsistsoftenOpenFlowswitchesandeightdatacenters.Thebandwidthcapabilityofeachlinkis100Mbit/s,withthevalueshownonthelinkrepresentingitsweightinlinkdelaytime(inms).AlthoughnotshowninFig.4,alltheOpenFlowswitchesareconnectedtotheSDNcontroller.

        Fig.4 Topology of the test network圖4 測(cè)試網(wǎng)絡(luò)的拓?fù)?/p>

        3.2FeasibilityofRBG

        Inthissubsection,weverifythefeasibilityoftheRBGalgorithmbasedontheuseoftwotestscenarios,whoseflowinformationislistedinTab.1.InScenario1,thebandwidthdemandofflowislessthanthelinkbandwidth,inordertocheckwhethertheselectedpathistheshortestavailableinsuchasituation.InScenario2,thetotalrequiredbandwidthoftwoarrivingflowsislargerthantheunemployedlinkbandwidth.ThisistocheckwhethertheRBGcanprovideanalternativepathwhentheshortestoneiscongested.Inaddition,theshortestpathroutingisalsotestedinbothscenariosforpathcomparison.

        Tab.1 Flowinformation

        Tab.2 Comparisonofpath-planningresults

        TheroutingpathsachievedinthesimulationscenariosaregiveninTab.2.InScenario1,thebandwidthdemandoff1is80Mbit/s,whichislessthanthemaximumlinkbandwidth.ThepathcalculatedbyRBG,D1-S1-S4-S6-S10-D8,isequaltothatcalculatedbytheShortestPathalgorithm;thisisbecausethetopologyobtainedfromRBGStep1isthesameastheoriginal.Thatistosay,whentherequiredbandwidthofaflowcanbesatisfied,theRBGplaystheroleofthetraditionalShortestPathalgorithm.

        InScenario2,thesourcenodes,destinationnodesandon-demandbandwidthsforthetwoflowsaredifferent.Thetotalbandwidthrequirementis130Mbit/s,whichislargerthanthelinkcapabilityof100Mbit/s.Asaresult,oncethepathsofthetwoflowshaveacommonlink,acollisionwilltakeplaceonthelink.

        Forinstance,asshowninFig.5,byusingthetraditionalShortestPathroutingscheme,thepathsoff2andf3areD4-S4-S6-D5 (thebluesolidarrowlinesinFig.5(a))andD1-S1-S4-S6-S10-D8 (theblackdottedarrowlinesinFig.5(a)),respectively.Thismayleadtocongestionasthetwopathshaveacommonlink(betweenS4andS6).

        Incontrast,packetcongestionbetweenthetwoflowswillbeavoidedwhenapplyingtheproposedRBGinScenario2.Inthiscase,f3acquiresanotherpath:D1-S1-S2-S3-S5-S7-S9-S10-D8 (thedottedarrowlinesinFig.5(b)).Thisalternativepathisdisjointedwiththatoff2,thatistosay,thereisnocommonlinkbetweenthepathsofthetwoflowsandthusthepacketcollisionisprevented.

        (a) Path calculated by the Shortest Path              (b) Path calculated by RBGFig.5 Routing Paths of f2(D4,D5,50) and f3(D1,D8,80) in Scenario 2圖5 場(chǎng)景2中 f2(D4,D5,50) 和f3(D1,D8,80)的路徑

        3.3Networkperformance

        Tab. 3 Simulationsettings

        Accordingtothedifferentcombinationsofsource-destinationpairs,wecarriedoutatotalof24simulationtests.Thepacketlossratesofthese24testsarepresentedinFig.6.Insomecases(tests1,3,4,7,9,10,11,12,15,16,21,22,23and24),thepacketlossrateoftheOPPBGcasesareequaltothatoftheShortestPathmethod,becausetheroutingpathscalculatedbythetwoschemesarethesame.AsshowninFig.7,thesinglepacketend-to-enddelaysofthetwoschemesareclose.Intheothercases(tests2,5,6,8,13,14,17,18,19and20),OPPBGoffersanalternativepathinordertopreventbandwidthresourcecompetitionwhentheshortestonecannotsupplyenoughbandwidth.Consequently,fewerpacketswillbediscardedthanintheShortestPathcase.Inthesecases,thesinglepacketend-to-enddelaysdonotshowevidentregularity.

        Fig.6 Packet loss rate comparison圖6 丟包率比較

        Intests5,6,17,18,19and20,thepacketlossrateofOPPBGisclosetozero,whichismuchlowerthanthatoftheShortestPathscheme.However,asshowninFig.8,theaveragehopcountsoftheOPPBGcasesarehigherbecausetheirroutingpathsmaynotbetheshortest(theaveragehopcountdenotestheaveragenumberofswitchesintheflowpaths).

        Fig.9depictsthelinkbandwidthutilization.Duetomoresuccessfullytransferredpacketsandlesscongestion,thelinkbandwidthutilizationishigherwhenusingintheOPPBG.Here,thenetworklinkbandwidthutilizationiscalculatedbyEq.(1),withthebandwidthutilizationofasinglelinkbeingequaltotheratiooftheusedbandwidthtolinkcapability.

        Ulink_bandwidth=

        (1)

        Fig.7 End-to-end delay comparison圖7 端到端延遲比較

        Fig.8 Average hop count comparison圖8 平均跳數(shù)比較

        Fig.9 Link bandwidth utilization comparison圖9 鏈路帶寬利用率比較

        Finally,Tab.4displaysanoverallcomparison(theaverageresultof24tests)intermsofpacketlossrate,linkbandwidthutilizationandhopcount.TheseresultsshowthatthenetworkbasedonOPPBGachievedasmallerpacketlossprobabilityandbetterbandwidthutilization.InthecaseofOPPBG,Thepacketsrequiremorehopsonroutetotheirdestinationsbecausetheforwardingpathoftheflowmaynotbetheshortestonetoavoidpacketcongestionandthusfulfilthebandwidthguarantee.Foraninter-DCNthatcallsforhighthroughput,theproposedOPPBGsystemwouldbeapplicable.

        Tab. 4 Performancecomparison

        4Conclusion

        Inthispaper,weaddresstheproblemoflinkoverloadinaninter-DCNbyproposingtheuseofOPPBG,anOpenFlow-basedpath-planningschemewithbandwidthguaranteefortrafficflows.DuetotheSDN′scentralizedcontrolapplyingtheOpenFlowprotocol,OPPBGcollectstheglobalinformationoftheinter-SDN,especiallythatregardinglinkstatus,forroutingandforwardingpackets,consideringthebandwidthconstraintsofdifferenttrafficflows.SimulationrevealedthatthenetworkapplyingOPPBGhadalowerpacketlossrateandbetterlinkbandwidthutilizationthanthatusingtheShortestPathroutingscheme.Inaddition,thankstothesuperiorityoftheSDNarchitectureandOpenFlow,inter-DCNnetworkmanagementtaskscanbecarriedoutinamoreeasyandflexiblemanner.

        References

        [1]GuoJ,LiuF,HuangX,etal.Onefficientbandwidthallocationfortrafficvariabilityindatacenters[C]//IEEE.Proceedingsofthe33rdAnnualIEEEInternationalConferenceonComputerCommunications(INFOCOM′14).Toronto:IEEE,2014:1572-1580.

        [2]ChenM,QianY,MaoS,etal.Software-definedmobilenetworkssecurity[J].ACM/SpringerMobileNetworksandApplications,2016(1):1-15,DOI:10.1007/s11036-015-0665-5.

        [3]ChenY,JainS,AdhikariV,etal.Afirstlookatinter-datacentertrafficcharacteristicsviaYahoo!Datasets[C]//IEEE.Proceedingsofthe30rdAnnualIEEEInternationalConferenceonComputerCommunications(INFOCOM′11).Shanghai:IEEE,2011:1620-1628.

        [4]LiY,WangH,ZhangP,etal.D4D:Inter-datacenterbulktransferswithISPfriendliness[C]//IEEE.ProceedingsofIEEEInternationalConferenceonClusterComputing(Cluster′12).Beijing:IEEE,2012:597-600.

        [5]WangY,SuS,JiangS,etal.Optimalroutingandbandwidthallocationformultipleinter-datacenterbulkdatatransfers[C]//IEEE.ProceedingsofIEEEInternationalConferenceonCommunications(ICC′12).Ottawa:IEEE,2012:5538-5542.

        [6]LaoutarisN,SirivianosM,YangX,etal.Inter-datacenterbulktransferswithNetStitcher[J].ACMSIGCOMMComputerCommunicationReview,2011,41(4):74-85.

        [7]NandagopalT,PuttaswamyKPN.Loweringinter-datacenterbandwidthcostsviabulkdatascheduling[C]//IEEE.Proceedingsofthe12thIEEE/ACMInternationalSymposiumonCluster,CloudandGridComputing(CCGrid′12).Ottawa:IEEE,2012:244-251.

        [8]McKeownN,AndersonT,BalakrishnanH,etal.OpenFlow:enablinginnovationincampusnetworks[J].ACMSIGCOMMComputerCommunicationReview,2008,38(2):69-74.

        [9]ONF.Software-definednetworking:thenewnormfornetworks(whitepaper)[EB/OL].[2015-01-02].https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf.

        [10]XuY,YanY,DaiZ,etal.AmanagementmodelforSDN-baseddatacenternetworks[C]//IEEE.ProceedingsofIEEEConferenceonComputerCommunicationsWorkshops(INFOCOMWKSHPS).Toronto:IEEE,2014:113-114.

        [11]KimH,FeamsterN.Improvingnetworkmanagementwithsoftwaredefinednetworking[J].IEEECommunicationsMagazine,2013,51(2):114-119.

        [12]LaraA,KolasaniA,RamamurthyB.SimplifyingnetworkmanagementusingsoftwaredefinednetworkingandOpenFlow[C]//IEEE.ProceedingsofIEEEInternationalConferenceonAdvancedNetworksandTelecommuncationsSystems(ANTS′12).Bangalore:IEEE,2012:24-29.

        [13]JarschelM,OechsnerS,SchlosserD,etal.ModelingandperformanceevaluationofanOpenFlowarchitecture[C]//IEEE.Proceedingsofthe23rdInternationalTeletrafficCongress(ITC′11).SanFrancisco:IEEE,2011:1-7.

        [14]KanagaveluR,MingjieLN,AungKMM,etal.OpenFlowbasedcontrolforre-routingwithdifferentiatedflowsindatacenternetworks[C]//IEEE.Proceedingsofthe17thIEEEInternationalConferenceonNetworks(ICON).Singapore:IEEE,2012:228-233.

        [15]KanagaveluR,LeeB,MiguelRF,etal.Softwaredefinednetworkbasedadaptiveroutingfordatareplicationindatacenters[C]//IEEE.ProceedingsofIEEEInternationalConferenceonNetworks(ICON).Singapore:IEEE,2013:1-6.

        [16]MininetTeam.Mininet[EB/OL].[2016-01-04].http://mininet.org.

        [17]ProjectFloodlight.Floodlightcontroller[EB/OL].[2015-01-02].http://www.projectfloodlight.org/floodlight/.

        [18]NLANR/DAST.Iperf[EB/OL].[2015-04-20].https://iperf.fr/.

        數(shù)據(jù)中心間網(wǎng)絡(luò)中保證帶寬的基于OpenFlow路徑規(guī)劃

        唐菀,劉果,楊喜敏,陳凡

        (中南民族大學(xué) 計(jì)算機(jī)科學(xué)學(xué)院,武漢 430074)

        摘要為了實(shí)時(shí)滿(mǎn)足依托于數(shù)據(jù)中心間網(wǎng)絡(luò)(IDN)的云服務(wù)在不同時(shí)間尺度的不同帶寬需求,提出了一個(gè)基于OpenFlow的保證帶寬路徑規(guī)劃(OPPBG)策略. 當(dāng)一個(gè)流到達(dá)時(shí),OPPBG采集實(shí)時(shí)網(wǎng)絡(luò)鏈路狀態(tài),生成一個(gè)滿(mǎn)足帶寬需求的虛擬拓?fù)?,并通過(guò)基于OpenFlow的軟件定義網(wǎng)絡(luò)(SDN)平臺(tái)為該流規(guī)劃出一條優(yōu)化路徑. 仿真結(jié)果表明:與采用傳統(tǒng)路徑規(guī)劃策略的IDN相比,基于OPPBG的IDN能夠在保證帶寬的同時(shí),實(shí)現(xiàn)低丟包率和較高的帶寬利用率.

        關(guān)鍵詞軟件定義網(wǎng)絡(luò);數(shù)據(jù)中心網(wǎng)絡(luò);路徑規(guī)劃;帶寬保證

        收稿日期2016-02-13

        作者簡(jiǎn)介唐菀 (1974-),女,副教授,博士,研究方向:光/無(wú)線(xiàn)網(wǎng)絡(luò)協(xié)議、軟件定義網(wǎng)絡(luò)、網(wǎng)絡(luò)安全,E-mail:tangwan@scuec.edu.cn

        基金項(xiàng)目國(guó)家自然科學(xué) 項(xiàng)目(61103248)

        中圖分類(lèi)號(hào)TP393

        文獻(xiàn)標(biāo)識(shí)碼A

        文章編號(hào)1672-4321(2016)02-0128-07

        猜你喜歡
        軟件定義網(wǎng)絡(luò)路徑規(guī)劃
        中國(guó)聯(lián)通SDN的思考和應(yīng)用實(shí)例
        業(yè)務(wù)功能鏈技術(shù)及其應(yīng)用探析
        針對(duì)大規(guī)模軟件定義網(wǎng)絡(luò)的子域劃分及控制器部署方法
        公鐵聯(lián)程運(yùn)輸和售票模式的研究和應(yīng)用
        一種新的SDN架構(gòu)下端到端網(wǎng)絡(luò)主動(dòng)測(cè)量機(jī)制
        基于數(shù)學(xué)運(yùn)算的機(jī)器魚(yú)比賽進(jìn)攻策略
        清掃機(jī)器人的新型田埂式路徑規(guī)劃方法
        自適應(yīng)的智能搬運(yùn)路徑規(guī)劃算法
        科技視界(2016年26期)2016-12-17 15:53:57
        超高吞吐率Wi—Fi融合應(yīng)用新技術(shù)分析
        基于B樣條曲線(xiàn)的無(wú)人車(chē)路徑規(guī)劃算法
        国产精品第一二三区久久蜜芽| 日本免费一区二区三区在线播放| 国产精品美女久久久免费| 人妻无码一区二区视频 | 浪货趴办公桌~h揉秘书电影| 999国内精品永久免费视频| 丰满少妇爆乳无码专区| 中文字幕久久国产精品| 国产精品久久久天天影视| 在线不卡av片免费观看| 国内精品人妻无码久久久影院94| 男女啦啦啦视频在线观看| 亚洲av熟女少妇久久| 欧美a级情欲片在线观看免费| 日韩国产欧美| 精品国精品自拍自在线| 最新中文字幕一区二区| 少妇丰满大乳被男人揉捏视频| 99ri国产在线观看| 亚洲大片一区二区三区四区| 日出白浆视频在线播放| 久久人与动人物a级毛片| 妺妺窝人体色www聚色窝韩国| 国产成人亚洲综合二区| 亚洲国产精品成人久久| a亚洲va欧美va国产综合| 亚洲国产日韩欧美高清片a| 精品人妻码一区二区三区红楼视频| 亚洲人成电影网站色| 蜜桃臀无码内射一区二区三区 | 在线亚洲精品一区二区三区| 亚洲爆乳无码精品aaa片蜜桃 | 十八禁无遮挡99精品国产| 日本三级欧美三级人妇视频 | 久久久久99精品国产片| 亚洲一二三四五区中文字幕| 国产熟女露脸91麻豆| 人妻少妇精品无码专区二区 | 精品一区二区在线观看免费视频| 黑色丝袜秘书夹住巨龙摩擦| 真实国产乱视频国语|