黃甜,曹忠洋,楊耀輝,曹更生1 河南大學(xué) 生命科學(xué)學(xué)院,河南 開封 4750042 河南大學(xué) 生物工程研究所,河南 開封 475004
?
絨山羊細(xì)菌人工染色體重組及細(xì)胞轉(zhuǎn)染系統(tǒng)
黃甜1,2,曹忠洋1,2,楊耀輝1,2,曹更生1,2
1 河南大學(xué) 生命科學(xué)學(xué)院,河南 開封 475004
2 河南大學(xué) 生物工程研究所,河南 開封 475004
黃甜, 曹忠洋, 楊耀輝, 等. 絨山羊細(xì)菌人工染色體重組及細(xì)胞轉(zhuǎn)染系統(tǒng). 生物工程學(xué)報, 2016, 32(3): 317–328.
Huang T, Cao ZY, Yang YH, et al. Cashmere goat bacterial artificial chromosome recombination and cell transfection system. Chin J Biotech, 2016, 32(3): 317–328.
摘 要:絨山羊 (Cashmere goat) 是一類以生產(chǎn)山羊絨為主的山羊品種,因其絨毛纖細(xì)有光澤、輕盈、保暖而備受青睞。絨山羊角蛋白關(guān)聯(lián)蛋白 (Keratin associated protein,KAP) 和骨形態(tài)發(fā)生蛋白 (Bone morphogenetic protein,BMP) 在羊絨纖維毛囊細(xì)胞的增殖和分化過程中起重要作用。為了提高山羊絨的產(chǎn)量和品質(zhì),對包含kap6.3,kap8.1和bmp4基因的細(xì)菌人工染色體 (Bacterial artificial chromosome,BAC) 進(jìn)行研究。首先采用同源重組的方法對BAC進(jìn)行修飾,其次將哺乳動物密碼子優(yōu)化過的Tol2轉(zhuǎn)座子加入BAC中,最后采用Amaxa Nucleofector核轉(zhuǎn)染技術(shù)將修飾過的BAC轉(zhuǎn)入絨山羊成纖維細(xì)胞。結(jié)果表明成功構(gòu)建了含有目的基因的BAC-Tol2載體。載體上包含UBC啟動元件的egfp標(biāo)記基因和真核篩選抗性neo基因,并且載體的兩端加有l(wèi)oxp元件,為轉(zhuǎn)染細(xì)胞后標(biāo)記和抗性基因的去除作準(zhǔn)備。載體轉(zhuǎn)染細(xì)胞效率達(dá)到1%?6%,最高可達(dá)10%。成功獲得了外源整合kap6.3、kap8.1和bmp4基因的細(xì)胞株,為以后克隆絨山羊作準(zhǔn)備。研究表明,在BAC的修飾中應(yīng)用Tol2轉(zhuǎn)座子系統(tǒng)增加了電轉(zhuǎn)染后的整合率,提高了BAC無錯重組的效率和精確性。
關(guān)鍵詞:絨山羊,細(xì)菌人工染色體 (BAC),Tol2轉(zhuǎn)座子,電轉(zhuǎn)染
Received: June 24, 2015; Accepted: August 31, 2015
Supported by: Transgenic Major Projects (No. 2011zx08008-002), National Natural Science Foundation of China (No. 31271597).
轉(zhuǎn)基因重大專項 (No. 2011zx08008-002),國家自然科學(xué)基金 (No. 31271597) 資助。
網(wǎng)絡(luò)出版時間:2015-09-17 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20150917.1559.004.html
絨山羊的羊絨具有纖細(xì)、柔軟、保暖等多種優(yōu)良性狀,所以用途廣泛并具有較高的經(jīng)濟(jì)價值,但其產(chǎn)量一直不高。角蛋白 (Keratin) 及其關(guān)聯(lián)蛋白 (KAPs) 是羊絨的主要結(jié)構(gòu)蛋白,它們決定了絨毛的基本特性[1]。KAPs蛋白根據(jù)氨基酸的組成可進(jìn)一步分為高硫氨酸KAP、超高硫氨酸KAP和高甘氨酸-酪氨酸KAP。高甘氨酸-酪氨酸 (HGT) KAP是由kap6-8基因家族編碼[2-4],它們都位于絨山羊的1號染色體上[5]。Jin等研究表明高甘氨酸-酪氨酸KAP與羊毛的特性有很大的關(guān)系[6-8]。Parsons等發(fā)現(xiàn)kap6和kap8這兩個基因位點與羊毛的產(chǎn)量和纖維直徑具有直接的相關(guān)性[9]。同時Zhao等也證明了kap8.1基因與羊絨細(xì)度具有重要的相關(guān)性[10]。在不同地區(qū)和不同的品系中,絨山羊羊絨的特質(zhì)有著顯著的變化,這是由于角蛋白基因表達(dá)水平不同造成的[11]。因此從分子水平研究KAPs的基因是用來控制羊絨纖維細(xì)度和提高質(zhì)量的一個重要手段。毛囊是毛纖維的“發(fā)源地”,它的性狀和組織結(jié)構(gòu)決定著毛纖維的品質(zhì)和產(chǎn)量。骨形態(tài)發(fā)生蛋白 (BMPs) 是轉(zhuǎn)化生長因子(TGF-β) 超家族成員之一[12],是毛囊發(fā)育所涉及的重要信號分子。其中bmp4基因在絨山羊皮膚次級毛囊休止期高表達(dá),而在興盛期低表達(dá),因此它是調(diào)節(jié)山羊絨周期性生長的重要因子[13]。
細(xì)菌人工染色體 (BAC) 可以容納較大的克隆片段,包括基因上下游的調(diào)控元件,這樣可以有效地防止位置效應(yīng)。但是插入片段過大時不易操作,而且拷貝數(shù)較低。Tol2轉(zhuǎn)座子作為基因轉(zhuǎn)移的載體,可以攜帶長達(dá)11 kb的DNA片段,而且不會降低轉(zhuǎn)座效率[14]。目前Tol2轉(zhuǎn)座系統(tǒng)已用于將外源DNA導(dǎo)入斑馬魚的生殖細(xì)胞中[15-16],以及用顯微注射的方法將含有Tol2轉(zhuǎn)座子的供體質(zhì)粒和轉(zhuǎn)座酶mRNA共注射入爪蟾的二細(xì)胞胚胎中[17]。此外也有研究表明在人和小鼠體細(xì)胞中,經(jīng)過哺乳動物密碼子優(yōu)化的Tol2轉(zhuǎn)座子的轉(zhuǎn)座效率要比SB (Sleeping beauty)轉(zhuǎn)座子高[18]。為了改善羊絨的品質(zhì)并提高絨山羊的產(chǎn)絨量,我們對包含絨山羊品種優(yōu)良基因的BAC進(jìn)行修飾,使用Tol2轉(zhuǎn)座系統(tǒng)增加目的基因的整合率和整合的精確性,并采用電轉(zhuǎn)染方法提高轉(zhuǎn)染效率,為克隆絨山羊做準(zhǔn)備。
1.1菌種、載體和細(xì)胞
菌株:大腸桿菌Escherichia coli DH5α及TOP10為本實驗室保存。
質(zhì)粒載體:pGEM-3zf、pGEM-7zf、pABRG由本實驗室構(gòu)建。Tol2轉(zhuǎn)座質(zhì)粒 (含有末端反向重復(fù)序列L200、R150和原核抗性篩選基因Amp+)、pcDNA3.1-TP是由生工生物工程 (上海)股份有限公司在pcDNA的基礎(chǔ)上合成的含有Tol2轉(zhuǎn)座酶編碼基因的質(zhì)粒。pMD-19T載體購自TaKaRa公司。
BAC:169D05、706H15、572K17由內(nèi)蒙古農(nóng)業(yè)大學(xué)提供;絨山羊成纖維細(xì)胞第二代:由內(nèi)蒙古農(nóng)業(yè)大學(xué)國家動物轉(zhuǎn)基因技術(shù)研究中心提供。
1.2主要試劑
實驗所用限制性內(nèi)切酶購自TaKaRa公司。KOD-Plus DNA聚合酶購自TOYOBO公司。質(zhì)粒小提試劑盒購自O(shè)MEGA公司。去內(nèi)毒素質(zhì)粒大提試劑盒購自北京康為世紀(jì)公司。BAC磁珠小提試劑盒購自河南惠爾納米科技有限公司。BAC去內(nèi)毒素大提試劑盒NucleoBond BAC100購自MACHEREY-NAGEL公司。Amaxa@Nucleofector Ⅱ Kit for Primary Mammalian Fibroblasts電轉(zhuǎn)染試劑盒購自Thermo公司。DMEM/F12培養(yǎng)基為Gibco進(jìn)口分裝。標(biāo)準(zhǔn)胎牛血清為Hyclone進(jìn)口分裝。引物使用Primer 6.0軟件設(shè)計,基因測序及引物合成由北京金唯智生物技術(shù)公司完成。本實驗所用引物見表1。
1.3方法
1.3.1構(gòu)建LoxP-EGFP-Neo載體
首先對pPB-UBC-EGFP質(zhì)粒進(jìn)行XhoⅠ和SalⅠ雙酶切得到帶有egfp基因及真核表達(dá)調(diào)控元件的完整片段:UBC-EGFP-polyA,與XhoⅠ(XhoⅠ和SalⅠ是同尾酶) 單酶切的PGL3-contro載體連接,構(gòu)建新的PGL3-EGFP質(zhì)粒。然后用Bgl Ⅱ和KpnⅠ雙酶切PGL3-EGFP質(zhì)粒,得到帶有Bgl Ⅱ和KpnⅠ酶切位點的UBC-EGFP-ployA片段,并連接到被Bgl Ⅱ和KpnⅠ雙酶切的7zf-mcs載體上 (這個載體是由Promega公司的原載體進(jìn)行多克隆位點改造后的載體),構(gòu)建新的載體7zf-EGFP。最后再使用Bgl Ⅱ和NotⅠ雙酶切7zf-EGFP載體,得到帶有Bgl Ⅱ和NotⅠ粘性末端的UBC-EGFP-ployA片段,與被BamHⅠ (BamHⅠ和Bgl Ⅱ是同尾酶) 和NotⅠ雙酶切的LoxP-Neo的骨架載體連接,構(gòu)建新的LoxP-EGFP-Neo載體 (圖1),并進(jìn)行PCR鑒定和XhoⅠ酶切鑒定。
表1 引物序列Table 1 Sequence of primer
圖1 LoxP-EGFP-Neo載體構(gòu)建流程圖Fig. 1 Construction of LoxP-EGFP-Neo vector.
1.3.2BAC克隆的鑒定與第一次重組
BAC的載體骨架為pCC1BAC,在Hind Ⅲ克隆位點處攜帶有目的基因的基因組。3個絨山羊的BAC克隆分別為169D05、706H15、572K17,對應(yīng)的基因分別為kap6.3、kap8.1、bmp4,其基因序列經(jīng)過PCR擴(kuò)增并測序比對后確定為絨山羊基因。我們以含有Tol2轉(zhuǎn)座子的質(zhì)粒為模板,設(shè)計同源臂引物Homo-F1和Homo-R1,并進(jìn)行PCR擴(kuò)增轉(zhuǎn)座子的L200-Amp+-R150片段,使用電轉(zhuǎn)染方法將其轉(zhuǎn)到帶有pABRG質(zhì)粒的BAC感受態(tài)細(xì)胞中,在BAC骨架pCC1BAC上插入L200-Amp+-R150,構(gòu)建pCC1BAC-Tol2載體 (圖2)。分別使用Homo-F1、Homo-R1引物和Tol2-F1、Tol2-R1引物進(jìn)行PCR鑒定 (引物位置如圖2所示)。
1.3.3BAC第二次重組
分別在LoxP-EGFP-Neo載體的上下游設(shè)計同源引物Homo-R2和 Homo-F2并進(jìn)行PCR擴(kuò)增,將得到的片段通過電轉(zhuǎn)染轉(zhuǎn)到含有pCC1BAC-Tol2載體的感受態(tài)細(xì)胞中,得到重組質(zhì)粒pCC1BAC-Tol2-EGFP,分別是含有kap6.3、kap8.1和bmp4 基因的載體169D05-Tol2-EGFP、706H15-Tol2-EGFP、572K17-Tol2-EGFP(圖3)。為了驗證Tol2轉(zhuǎn)座子的轉(zhuǎn)座效率,我們使用相同的方法構(gòu)建了不含Tol2轉(zhuǎn)座子的質(zhì)粒即pCC1BAC-EGFP載體 (圖4)。載體構(gòu)建完成后使用PCR和測序進(jìn)行鑒定。
圖2 pCC1BAC-Tol2載體構(gòu)建流程圖Fig. 2 Construction of pCC1BAC-Tol2 vector.
1.3.4細(xì)胞轉(zhuǎn)染與篩選
重組完成后的BAC用MACHEREY-NAGEL試劑盒提取后測定濃度備用。因為電轉(zhuǎn)染使用的是絨山羊的成纖維細(xì)胞,所以其傳代次數(shù)不能太多,我們在轉(zhuǎn)染前兩天對細(xì)胞進(jìn)行復(fù)蘇,傳代一次進(jìn)行電轉(zhuǎn)染,以防止對后續(xù)的克隆動物實驗產(chǎn)生影響。選取細(xì)胞融合為70%?80%,細(xì)胞數(shù)目為0.5×106?1×106時進(jìn)行轉(zhuǎn)染。轉(zhuǎn)染時同時加入pcDNA3.1-TP質(zhì)粒。在細(xì)胞轉(zhuǎn)染24 h后更換新鮮培養(yǎng)基觀測熒光信號。細(xì)胞生長到一定時候加入400 μg/mL新霉素進(jìn)行篩選。待克隆島孤立出現(xiàn)后停止加藥繼續(xù)培養(yǎng),等到克隆點長到一定大小的時候進(jìn)行單克隆挑取。根據(jù)加入新霉素篩選后熒光細(xì)胞數(shù)和轉(zhuǎn)染前細(xì)胞數(shù)計算轉(zhuǎn)染效率。
圖4 無Tol2轉(zhuǎn)座子pCC1BAC-EGFP載體構(gòu)建流程圖Fig. 4 Construction of pCC1BAC-EGFP vector less Tol2 transposon.
1.3.5標(biāo)記基因的去除與重組效率鑒定
本實驗構(gòu)建載體時在遺傳標(biāo)記基因 (egfp)和抗性基因 (neo) 的兩端插入了兩個方向相同的loxP位點,在挑取單克隆后利用電轉(zhuǎn)染的方法轉(zhuǎn)染含有Cre酶編碼基因的質(zhì)粒 (轉(zhuǎn)染約400 ng),利用Cre-LoxP系統(tǒng)去除遺傳標(biāo)記基因 (egfp)和抗性基因 (neo)。經(jīng)過Cre-LoxP系統(tǒng)處理后的細(xì)胞在6孔板上培養(yǎng)后用胰酶消化,收集細(xì)胞提取基因組并做PCR鑒定重組效率。
2.1載體鑒定
2.1.1UBC-EGFP-ployA載體鑒定
載體構(gòu)建完成后進(jìn)行了PCR鑒定、酶切鑒定和測序鑒定。首先挑取單克隆進(jìn)行菌體PCR擴(kuò)增egfp基因,擴(kuò)增片段大小為751 bp (圖5A),測序證明結(jié)果正確。然后取陽性克隆1提質(zhì)粒并用Xho Ⅰ進(jìn)行酶切,酶切后片段大小分別為2 930 bp和4 390 bp (圖5B)。結(jié)果表明PCR和酶切結(jié)果正確,載體構(gòu)建成功。
2.1.2pCC1BAC-Tol2載體鑒定
首先我們使用同源臂引物Homo-F1、Homo-R1進(jìn)行菌體PCR擴(kuò)增Tol2轉(zhuǎn)座子。如圖6所示,擴(kuò)增產(chǎn)物片段大小為1 516 bp。其中2、3、26號的菌體PCR結(jié)果條帶較弱,其余全部為陽性。然后我們使用Tol2-F1、Tol2-R1作為引物對陽性克隆進(jìn)行PCR驗證重組是否成功,如圖7所示,PCR片段大小為591 bp,與預(yù)期結(jié)果一致。同時我們對PCR產(chǎn)物進(jìn)行測序,測序結(jié)果與載體序列一致,結(jié)果表明第一次重組成功。
圖5 LoxP-EGFP-Neo載體PCR和酶切鑒定Fig. 5 Identification of LoxP-EGFP-Neo vector. (A) PCR amplification of egfp gene. 1, 2, 4: positive clones; 3: false positive clone; 5: negative control. (B) XhoⅠ enzyme digestion o f LoxP-EGFP-Neo. M: DNA marker.
2.1.3pCC1BAC-Tol2-EGFP載體鑒定
第二次重組之后,我們首先使用Tol2-F1、Tol2-R1引物來鑒定第一次重組后的效果是否存在。如圖8所示,擴(kuò)增產(chǎn)物片段大小為591 bp,除了8號和12號之外其余均為陽性克隆。
圖6 pCC1BAC-Tol2載體Tol2轉(zhuǎn)座子菌體PCR鑒定Fig. 6 PCR amplification of Tol2 transposon in pCC1BAC-Tol2 vector. M: DNA marker. 1–8: PCR products of Tol2 transposon using 706H15-Tol2 vector as template; 9–24: PCR products of Tol2 transposon using 169D05-Tol2 vector as template; 25–43: PCR products of Tol2 transposon using 572K17-Tol2 vector as template; 44–46: negative control using BAC 706H15, 169D05 and 572K17 as templates; 47: negative control using double-distilled water as template.
圖7 pCC1BAC-Tol2載體菌體PCR鑒定Fig. 7 PCR amplification of pCC1BAC-Tol2 vectors using Tol2F1 and Tol2R1 primers. M: DNA marker. 1–8: PCR products of 706H15-Tol2 vector as template; 9–24: PCR products of 169D05-Tol2 vector as template; 25–42: PCR products of 572K17-Tol2 vector as template; 43: negative control.
圖8 第二次重組跨Tol2轉(zhuǎn)座子和BAC骨架的菌體PCR鑒定Fig. 8 PCR amplification of the second recombination products using Tol2-F1 and Tol2-R1 primers. M: DNA marker. 1–4: PCR products of 706H15-Tol2-EGFP vector as template; 5–9: PCR products of 169D05-Tol2-EGFP vector as template; 10–13: PCR products of 572K17-Tol2-EGFP vector as template; 14: positive control using construct of first recombination as template; 15: negative control using BAC as template; 16: negative control using double-distilled water as template.
然后我們在第一次鑒定的基礎(chǔ)上選取陽性克隆菌落為模板,分別在BAC骨架和UBC啟動子上設(shè)計上下游引物pBAC-EGFP-F和pBAC-EGFP-R,進(jìn)行進(jìn)一步的PCR鑒定和測序。如圖9所示,擴(kuò)增產(chǎn)物片段大小為529 bp,除9號外其他均是陽性克隆。然后對PCR產(chǎn)物進(jìn)行測序,結(jié)果與同源重組后的序列基本相同,這表明第二次重組成功。
2.1.4無Tol2轉(zhuǎn)座子的pCC1BAC-EGFP載體(陰性對照) 鑒定
對于不含Tol2轉(zhuǎn)座子的BAC重組質(zhì)粒,利用引物pBAC-EGFP-F、pBAC-EGFP-R進(jìn)行PCR鑒定。如圖10所示,片段大小為529 bp。對其中的陽性克隆進(jìn)行測序,結(jié)果與載體序列一致。
圖9 pCC1BAC-Tol2-EGFP載體菌體PCR鑒定Fig. 9 PCR amplification of the pCC1BAC-Tol2-EGFP vectors using pBAC-EGFP-F and pBAC-EGFP-R primers. M: DNA marker. 1–4: PCR products of 706H15-Tol2-EGFP vector as template; 5–7, 9: PCR products of 169D05-Tol2-EGFP vector as template; 10–11, 13: PCR products of 572K17-Tol2-EGFP vector as template; 14: negative control using double-distilled water as template.
圖10 菌體PCR鑒定無Tol2轉(zhuǎn)座子的pCC1BAC-EGFP載體Fig. 10 PCR amplification of pCC1BAC-EGFP vector less Tol2 transposon. M: DNA marker. 1–9: positive clones; 10: negative control; 11: positive control using construct of second recombination as template.
2.2絨山羊成纖維細(xì)胞的轉(zhuǎn)染、篩選與鑒定
2.2.1細(xì)胞轉(zhuǎn)染與篩選
電轉(zhuǎn)染后在倒置熒光顯微鏡下觀察細(xì)胞,都出現(xiàn)熒光,但熒光出現(xiàn)的時間不同。轉(zhuǎn)染706H15-Tol2 -EGFP質(zhì)粒的細(xì)胞在轉(zhuǎn)染48 h后即出現(xiàn)熒光,轉(zhuǎn)染572K17-Tol2-EGFP和169D05-Tol2-EGFP質(zhì)粒的細(xì)胞熒光出現(xiàn)的較晚,但熒光細(xì)胞數(shù)目較多 (圖11)。然后我們使用400 μg/mL的新霉素進(jìn)行抗性篩選,并挑取單克隆繼續(xù)培養(yǎng) (圖12A–C)。經(jīng)過計算,不同批次轉(zhuǎn)染效率達(dá)到1%?6%,最高可達(dá)10%。單克隆培養(yǎng)一段時間后,我們利用電轉(zhuǎn)染的方法將包含Cre酶基因的質(zhì)粒轉(zhuǎn)入細(xì)胞,然后在倒置顯微鏡下觀察,熒光基本消失 (圖12D)。在本實驗中所有的BAC電轉(zhuǎn)染實驗都進(jìn)行了無轉(zhuǎn)座重組酶的對照組實驗,而且轉(zhuǎn)染后沒有熒光出現(xiàn)。
圖11 細(xì)胞轉(zhuǎn)染后熒光檢測Fig. 11 Detection of cell fluorescence after transfected with 706H15-Tol2-EGFP (kap8.1 gene) constructs (A), 572K17-Tol2-EGFP (bmp4 gene) constructs (B) and 169D05-Tol2-EGFP (kap6.3 gene) constructs (C). Scale bars=100 μm.
圖12 新霉素抗性篩選后細(xì)胞熒光檢測Fig. 12 Detection of cell fluorescence after screened with neomycin. (A) 706H15-Tol2-EGFP. (B) 572K17-Tol2-EGFP. (C) 169D05-Tol2-EGFP. (D) Cells transfected with Cre plasmid. Scale bars=100 μm.
2.2.2陽性細(xì)胞克隆鑒定
我們把經(jīng)過Cre-LoxP系統(tǒng)處理后的細(xì)胞收集后提取基因組做PCR鑒定。首先對目的基因作鑒定,分別是kap8.1、kap6.3和bmp4基因。如圖13A所示,目的基因kap8.1擴(kuò)增產(chǎn)物是199 bp。圖13B中目的基因kap6.3擴(kuò)增產(chǎn)物為314 bp,bmp4擴(kuò)增產(chǎn)物為306 bp。
在轉(zhuǎn)染時,我們把表達(dá)轉(zhuǎn)座酶 (TP蛋白)的質(zhì)粒pcDNA3.1-TP同時轉(zhuǎn)入細(xì)胞,表達(dá)的TP蛋白和轉(zhuǎn)入的BAC質(zhì)粒相互作用,將Tol2轉(zhuǎn)座子左右兩端的L200和R150序列與BAC攜帶的目的基因融合并整合到基因組上,因此中間的原核抗性基因amp+被刪除,所以我們使用同源臂引物Homo-F1/ R1對細(xì)胞基因組進(jìn)行PCR鑒定。如圖14所示,如果TP蛋白沒有發(fā)揮作用,擴(kuò)增產(chǎn)物應(yīng)為1 576 bp。
圖13 目的基因鑒定Fig. 13 Identification of target genes by genomic PCR. M: DNA marker. (A) 1–2: PCR amplification of kap8.1 gene using cell genome after transfected with 706H15-Tol2-EGFP vector; 3–4: positive control using BAC as template; 5: negative control. (B) 1: PCR amplification of kap6.3 gene using cell genome after transfected with 169D05-Tol2-EGFP vector; 2: PCR amplification of bmp4 gene using cell genome after transfected with 572K17-Tol2-EGF vector; 3–4: positive control of targets genes; 5: negative control.
圖14 細(xì)胞基因組amp+基因鑒定Fig. 14 Identification of amp+gene by genomic PCR. 1–4: PCR amplification of amp+gene using cell genome after transfected with 706H15-Tol2-EGFP vector (line 1,2), 169D05-Tol2-EGFP vector (line 3), and 572K17-Tol2-EGF vector (line 4), respectively; 5: PCR amplification of amp+ gene using pCC1BAC-Tol2-EGFP vector as positive control; 6: negative control of BAC as template; 7: negative control of cells not transfected with pcDNA3.1-TP plasmid; 8: negative control using double-distilled water as template.
在BAC的重組過程中我們選用了2012年Bird等提出的一種新的重組體系即pABRG,它只包括依賴阿拉伯糖誘導(dǎo)的Red β和鼠李糖誘導(dǎo)的Red γ兩種蛋白,可以有效地減少BAC質(zhì)粒內(nèi)部的重組,保證了BAC質(zhì)粒的完整性,同時在定向位點誘變效率上比其他方法如pkD46、sw102等高出一個數(shù)量級[19]。但是這種重組體系需要兩種不同的糖來進(jìn)行誘導(dǎo),對糖的加入時間和加入量都需要有嚴(yán)格的要求,并且加入前后溫度變化也都需要嚴(yán)格的控制,這提高了制備電轉(zhuǎn)感受態(tài)細(xì)胞的難度。到目前為止PiggyBac (PB) 轉(zhuǎn)座子已經(jīng)廣泛地應(yīng)用于哺乳動物細(xì)胞,但是其轉(zhuǎn)座效率較低[20-21]。睡美人 (SB) 轉(zhuǎn)座子在介導(dǎo)轉(zhuǎn)基因時,基因轉(zhuǎn)移效率會隨轉(zhuǎn)座酶的過量表達(dá)而降低[22]。Tol2轉(zhuǎn)座子目前在哺乳動物中應(yīng)用得較少,但是在小鼠和人的體細(xì)胞中,Tol2轉(zhuǎn)座子的轉(zhuǎn)座效率比睡美人 (SB) 轉(zhuǎn)座子高[18]。我們首次在絨山羊成纖維細(xì)胞中應(yīng)用Tol2轉(zhuǎn)座子,并且取得了成功。
細(xì)胞轉(zhuǎn)染方法包括脂質(zhì)體轉(zhuǎn)染、病毒介導(dǎo)的轉(zhuǎn)染、顯微注射和電轉(zhuǎn)染等,但是很少有報道使用電轉(zhuǎn)染方法來轉(zhuǎn)染BAC,因為電轉(zhuǎn)染BAC的效率很低,當(dāng)BAC達(dá)到200 kb時其電轉(zhuǎn)染的效率不到1%,所以一般對BAC的轉(zhuǎn)染都是應(yīng)用顯微注射的方法[23-24]。但是顯微注射對設(shè)備和技術(shù)的要求很高,一般實驗室很難達(dá)到要求,而且一次處理細(xì)胞數(shù)量不能太多。我們通過在BAC中應(yīng)用Tol2轉(zhuǎn)座子系統(tǒng),增加了電轉(zhuǎn)染后的整合率,提高了轉(zhuǎn)染效率。
本文成功地構(gòu)建了含有目的基因的BAC-Tol2-EGFP載體,載體上包含Tol2轉(zhuǎn)座子,提高了目的基因的整合效率,同時載體上攜帶有UBC啟動子的egfp標(biāo)記基因和真核抗性篩選基因neo,并且載體的兩端分別加入loxp元件,使得細(xì)胞轉(zhuǎn)染后可以將標(biāo)記和抗性基因去除。轉(zhuǎn)染效率最高可達(dá)10%。此外我們也獲得了整合有山羊絨角蛋白關(guān)聯(lián)蛋白 (kap8.1、kap6.3)和骨形態(tài)發(fā)生蛋白相關(guān)基因和 (bmp4) 的絨山羊成纖維細(xì)胞株,為絨山羊的克隆奠定基礎(chǔ)。
REFERENCES
[1] Yin J, Li JQ, Zhang YJ, et al. Sequence analysis and expression of a type I hair keratin gene in goat skin. Acta Veterinar Zootech Sin, 2006, 37(1): 18–22 (in Chinese).
尹俊, 李金泉, 張燕軍, 等. 一個山羊Ⅰ型毛角蛋白基因的序列及其在皮膚中的表達(dá). 畜牧獸醫(yī)學(xué)報, 2006, 37(1): 18–22.
[2] Rogers MA, Langbein L, Winter H, et al. Characterization of a first domain of human high glycine-tyrosine and high sulfur keratin-associated protein (KAP) genes on chromosome 21q22.1. J Biol Chem, 2002, 277(50): 48993–49002.
[3] Yin J, Hu TM, Li JQ, et al. Cloning and analysis of six full-length cDNA similar to sheep KAP6-1 from cashmere goat. Acta Genet Sin, 2004, 31(5): 502–507 (in Chinese).
尹俊, 扈廷茂, 李金泉, 等. 與綿羊KAP6-1相似的6個絨山羊全長cDNA的克隆與序列分析. 遺傳學(xué)報, 2004, 31(5): 502–507.
[4] Langbein L, Rogers MA, Winter H, et al. The catalog of human hair keratins. II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. J Biol Chem, 2001, 276(37): 35123–35132.
[5] Liu GF, Tian KC, Zhang EP, et al. Candidate gene analysis of high quality merino sheep. Hereditas, 2007, 29(1): 70–74 (in Chinese).
劉桂芬, 田可川, 張恩平, 等. 優(yōu)質(zhì)細(xì)毛羊羊毛細(xì)度的候選基因分析. 遺傳, 2007, 29(1): 70–74.
[6] Jin M, Wang L, Li S, et al. Characterization and expression analysis of KAP7.1, KAP8.2 gene in Liaoning new-breeding cashmere goat hair follicle. Mol Biol Rep, 2010, 38(5): 3023?3028.
[7] Gong H, Zhou H, Hickford JGH. Diversity of the glycine/tyrosine-rich keratin-associated protein 6 gene (KAP6) family in sheep. Mol Biol Rep, 2010, 38(1): 31?35.
[8] Matsunaga R, Abe R, Ishii D, et al. Bidirectional binding property of high glycine-tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair. J Struct Biol, 2013, 183(3): 484?494.
[9] Parsons YM, Cooper DW, Piper LR. Evidence of linkage between high-glycine-tyrosine keratin gene loci and wool fibre diameter in a Merino half-sib family. Anim Genet, 1994, 25(2): 105–108.
[10] Zhao M, Chen H, Wang X, et al. aPCR-SSCP and DNA sequencing detecting two silent SNPs at KAP8.1 gene in the cashmere goat. Mol Biol Rep, 2009, 36(6): 1387–1391.
[11] Plowman JE, Bryson WG, Jordan TW. Application of proteomics for determining protein markers for wool quality traits. Electrophoresis, 2000, 21(9): 1899–1906.
[12] Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science, 1988, 242(4885): 1528–1534.
[13] Hu XZ, Wang YJ. Research progress on the periodic development and molecular regulation ofhair follicles in cashmere goats. Acta Ecolog Anim Domast, 2012, 33(3): 1–6 (in Chinese).
胡秀芝, 王永軍. 絨山羊毛囊的周期性發(fā)育及其分子調(diào)控研究進(jìn)展. 家畜生態(tài)學(xué)報, 2012, 33(3): 1–6.
[14] Urasaki A, Morvan G, Kawakami K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics, 2006, 174(2): 639–649.
[15] Kawakami K, Takeda H, Kawakami N, et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell, 2004, 7(1): 133–144.
[16] Kawakami K, Shima A, Kawakami N. Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA, 2000, 97(21): 11403–11408.
[17] Kawakami K, Imanaka K, Itoh M, et al. Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis. Gene, 2004, 338(1): 93–98.
[18] Wu SC, Meir YJ, Coates CJ, et al. piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA, 2006, 103(41): 15008–15013.
[19] Bird AW, Erler A, Fu J, et al. High-efficiency counterselection recombineering for site-directed mutagenesis in bacterial artificial chromosomes. Nat Methods, 2012, 9(1): 103–109.
[20] Nakazawa Y, Huye LE, Dotti G, et al. Optimization of the PiggyBac transposon system for the sustained genetic modification of human T-lymphocytes. J immunother, 2009, 32(8): 826–836.
[21] Yusa K, Rad R, Takeda J, et al. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods, 2009, 6(5): 363–369.
[22] Geurts AM, Yang Y, Clark KJ, et al. Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol Ther, 2003, 8(1): 108–117.
[23] Suster ML, Abe G, Schouw A, et al. Transposon-mediated BAC transgenesis in zebrafish. Nat Protoc, 2011, 6(12): 1998–2021.
[24] Suster ML, Sumiyama K, Kawakami K. Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics, 2009, 10: 477.
(本文責(zé)編 陳宏宇)
Cashmere goat bacterial artificial chromosome recombination and cell transfection system
Tian Huang1,2, Zhongyang Cao1,2, Yaohui Yang1,2, and Gengsheng Cao1,2
1 School of Life Science, Henan University, Kaifeng 475004, Henan, China
2 Institute of Bioengineering, Henan University, Kaifeng 475004, Henan, China
Abstract:The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture’s instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.
Keywords:Cashmere goat, bacterial artificial chromosome, Tol2 transposon, electric transfection
Corresponding author:Gengsheng Cao. Tel: +86-371-23858418; E-mail: gscao@henu.edu.cn