王國(guó)強(qiáng),孫煥明,彭婧,薛書浩
(西藏職業(yè)技術(shù)學(xué)院農(nóng)業(yè)科學(xué)技術(shù)學(xué)院,西藏拉薩 850030)
生物硝化抑制劑應(yīng)用研究進(jìn)展
王國(guó)強(qiáng),孫煥明,彭婧,薛書浩
(西藏職業(yè)技術(shù)學(xué)院農(nóng)業(yè)科學(xué)技術(shù)學(xué)院,西藏拉薩 850030)
摘要在現(xiàn)有相關(guān)研究的基礎(chǔ)上,結(jié)合國(guó)內(nèi)外研究進(jìn)展,綜述了國(guó)內(nèi)外生物硝化抑制劑的特性及作用機(jī)理,總結(jié)了生物硝化抑制劑在農(nóng)業(yè)生產(chǎn)中的應(yīng)用效果,歸納了國(guó)內(nèi)外當(dāng)前生物硝化抑制劑的研究熱點(diǎn)及取得的研究成果,并展望了今后的研究方向。
關(guān)鍵詞硝化作用;生物硝化抑制劑;溫室效應(yīng);氮素利用率;作物產(chǎn)量
從1978年到2008年,我國(guó)氮肥(氮肥用量均以純氮計(jì))施用量增加了3.58倍,平均每年增加約7.8×105t[1]。氮肥施用量在逐年增加,在提高作物產(chǎn)量和經(jīng)濟(jì)效益的同時(shí),通過揮發(fā)、徑流、淋溶以及硝化反硝化等途徑對(duì)生態(tài)系統(tǒng)的健康和功能產(chǎn)生負(fù)面影響[2]。銨態(tài)氮肥和硝態(tài)氮肥是最常用的氮肥。銨態(tài)氮帶正電荷,易被一般情況下帶負(fù)電荷的土壤膠體吸附而不易流失,而硝態(tài)氮帶負(fù)電荷,不易被壤膠體吸附,易在土壤中遷移和淋溶,是導(dǎo)致我國(guó)農(nóng)業(yè)氮肥利用率低下以及地表水和地下水污染的主要原因[3]。并且通過施肥直接或間接從農(nóng)田釋放出來的N2O排放量占農(nóng)業(yè)源N2O排放量的80%[4-5]。N2O濃度的增加不僅加劇了全球氣候變暖,而且極有可能成為21世紀(jì)最主要的臭氧層破壞物質(zhì)[6]。
1生物硝化抑制劑的來源及特性
Subbara 等[18]發(fā)現(xiàn)某些植物通過根系釋放硝化抑制劑具有抑制土壤硝化作用的能力,被稱為生物硝化抑制作用;分泌的能夠抑制硝化作用并顯著提高土壤氮素利用率的物質(zhì),被稱為生物硝化抑制劑(BNIs)[19]。在熱帶草原中,非洲濕生臂形草(Brachiariahumidicola)和筋骨草(B.decumbens)對(duì)南美熱帶稀樹草原的低氮環(huán)境有高度的適應(yīng)能力,顯示出很強(qiáng)的生物硝化抑制作用能力[20-22]。在谷類作物中,高粱(Sorghumbicolor)表現(xiàn)出顯著的植物硝化抑制作用的能力[23]。此外,卡蘭賈樹(PongamiaglabraVent)、印度苦楝樹(Azadiractaindica)、洋楊梅(Arbutusunedo)、茶樹(Camelliasinesis)、水稻、野生型小麥、十字花科植物組織也具有生物硝化抑制作用能力[24-30]。通過生物活性導(dǎo)向分離純化的方法,幾個(gè)屬于不同化學(xué)基團(tuán)的生物硝化抑制劑已成功地從不同植物組織或根系分泌物中分離和鑒定出來[31-32](表1)。
表1 植物分離和鑒定出的生物硝化抑制劑及其效果
與目前市場(chǎng)上普遍應(yīng)用的人工合成硝化抑制劑相比,生物硝化抑制劑有許多優(yōu)點(diǎn),如對(duì)農(nóng)作物無毒害,易在土壤中分解,對(duì)土壤不產(chǎn)生污染,有環(huán)保、除草、殺蟲、改良土壤等作用,但其最大的優(yōu)點(diǎn)是易從自然界中獲得,價(jià)格低廉,硝化抑制作用時(shí)間長(zhǎng),用量少,硝化抑制效率高,成本效益高。生物硝化抑制劑抑制土壤硝化作用,提高作物對(duì)土壤的氮素利用率。因此,對(duì)生物硝化抑制劑的開發(fā)和應(yīng)用是一種轉(zhuǎn)向低硝化農(nóng)業(yè)生產(chǎn)的系統(tǒng)模式,是促進(jìn)農(nóng)業(yè)系統(tǒng)發(fā)展的強(qiáng)大戰(zhàn)略[9]。對(duì)于根系釋放生物硝化抑制劑的植物來說,利用農(nóng)牧結(jié)合的方式來發(fā)展農(nóng)業(yè)和畜牧業(yè)生產(chǎn),即利用根系分泌的生物硝化抑制劑來抑制土壤硝化活性和硝化潛勢(shì),提高下一階段1年生作物氮素利用率和經(jīng)濟(jì)效益。如臂形草生長(zhǎng)3、4個(gè)月后生物量可作為覆蓋層,接著在覆蓋層上直接播種玉米或大豆。對(duì)于植物組織產(chǎn)生但不從根系釋放生物硝化抑制劑的植物(如十字花科)來說,在土壤中加入植物殘?bào)w是控制土壤硝化作用、提高氮素利用率的一種方式[30]。
2生物硝化抑制劑的作用機(jī)理
圖1 生物硝化抑制劑的作用機(jī)理示意Fig.1 Schematic diagram of inhibitory mechanisms of nitrification inhibitors
生物硝化抑制劑通過抑制氨單加氧酶和羥胺氧化還原酶來抑制硝化作用。非洲濕生臂形草地上部分含有BNI活性的化合物為不飽和游離脂肪酸、亞油酸(LA)和α-亞麻酸(LN),是相對(duì)較弱的硝化抑制劑。亞油酸和α-亞麻酸通過抑制氨單加氧酶和羥胺氧化還原酶來抑制亞硝化單胞菌,該反應(yīng)是催化氨氧化過程中的基本反應(yīng)(圖1)[22]。苯丙素對(duì)香豆酸甲酯和阿魏酸甲酯是非洲濕生臂形草根組織中起生物硝化抑制作用的物質(zhì),非洲濕生臂形草分解或轉(zhuǎn)化來自根系組織的硝化抑制劑對(duì)改變土壤硝化勢(shì)可能起主要作用[38]。非洲濕生臂形草根系分泌的硝化抑制劑有近60%~90%均是來自臂形草內(nèi)酯,是非洲濕生臂形草根系釋放的主要硝化抑制劑。臂形草內(nèi)酯通過抑制氨單加氧酶和羥胺還原酶的功能來抑制亞硝化單胞菌,但它似乎對(duì)氨單加氧酶的抑制作用比羥胺還原酶強(qiáng)[39]。高粱的根系分泌物高粱醌可同時(shí)抑制氨氧化和羥氨氧化過程,而另一種高粱根系分泌物對(duì)羥基苯丙酸甲酯僅能抑制氨單加氧酶催化氧化過程,而對(duì)羥胺氧化還原酶過程無抑制作用(圖1)[39]。從印度卡蘭賈樹種子和苦楝樹分離出來的水黃皮素(Karanjin)和Nimin對(duì)土壤硝化細(xì)菌活性有明顯抑制作用,能有效抑制土壤硝化作用、提高土壤氮素利用率并減少N2O的排放[40-41]。洋楊梅在葉凋落物分解過程中釋放兒茶素和兒茶酚抑制土壤硝化作用和N2O排放[29]。十字花科植物組織在降解過程中形成一些異硫氰酸鹽(2-propenyl-glucosinolate,methyl-isothiocyanate,2-propenylisothiocyanate,butyl-isothiocyanate,phenyl-isothiocyanate,benzylisothiocyanate,phenethyl-isothiocyanate)對(duì)土壤硝化反應(yīng)產(chǎn)生抑制作用[42]。此外,有些生物硝化抑制劑還可能擾亂硝化微生物中HAO與輔酶Q和細(xì)胞色素之間的電子傳遞(需要維護(hù)生成還原能力,例如NADPH)[14](圖1)。
3生物硝化抑制劑的使用效果
3.3生物硝化抑制劑對(duì)全球增溫潛勢(shì)和溫室氣體強(qiáng)度的影響全球增溫潛勢(shì)(GWP)作為一種相對(duì)指標(biāo),用于定量衡量不同溫室氣體對(duì)全球變暖的相對(duì)影響。在評(píng)價(jià)農(nóng)田生態(tài)系統(tǒng)全球增溫潛勢(shì)的同時(shí),綜合考慮作物生產(chǎn)效益對(duì)溫室氣體效應(yīng)的影響是十分必要的。Van Groenigen 等[51]研究認(rèn)為,產(chǎn)量尺度下的全球增溫潛勢(shì)即溫室氣體強(qiáng)度(GHGI)能夠更加全面科學(xué)地評(píng)估農(nóng)業(yè)生產(chǎn)對(duì)農(nóng)田溫室氣體排放和作物產(chǎn)量的雙重影響。生物硝化抑制劑能明顯降低全球變暖潛勢(shì)和溫室氣體強(qiáng)度。Zhang等[10]發(fā)現(xiàn)生物硝化抑制劑能明顯降低全球變暖潛勢(shì)和溫室氣體強(qiáng)度,與尿素處理相比,應(yīng)用生物硝化抑制劑使全球變暖潛勢(shì)和溫室氣體強(qiáng)度分別下降了10.1%和17.6%。Datta 等[45]通過熱帶稻田試驗(yàn)比較人工合成硝化抑制劑DCD、生物硝化抑制劑Nimin和水黃皮素對(duì)全球增溫潛勢(shì)的影響,與施用尿素相比,DCD能顯著提高全球變暖潛勢(shì),而生物硝化抑制劑Nimin能降低全球變暖潛勢(shì);同時(shí)施用生物硝化抑制劑Nimin和水黃皮素生產(chǎn)單位重量水稻CH4和N2O排放量最低。
3.4生物硝化抑制劑對(duì)作物產(chǎn)量的影響生物硝化抑制劑施入土壤能降低土壤硝化細(xì)菌的活性和增加土壤氮吸存量,明顯提高植物對(duì)氮素的吸收和利用,從而提高了農(nóng)作物的產(chǎn)量[52-53]。印度通過長(zhǎng)期和大量的試驗(yàn)發(fā)現(xiàn)施用印度苦楝餅和卡蘭賈餅?zāi)茱@著提高水稻和小麥的產(chǎn)量[54-55]。Zhang等[10]發(fā)現(xiàn)施用生物硝化抑制劑處理的蔬菜總產(chǎn)量為(163.2±9.8)t/(hm2·a),比對(duì)照(施用尿素)增加了10.3 t/(hm2·a),施用生物硝化抑制劑的蔬菜產(chǎn)量最高。Datta 等[45]發(fā)現(xiàn)施用生物硝化抑制劑Nimin和水黃皮素能顯著提高水稻產(chǎn)量,同時(shí)降低單位重量水稻CH4和N2O排放量,表明施用生物硝化抑制劑不僅降低了土壤CH4和N2O排放而且也增加了水稻產(chǎn)量。Roy 等[56]研究也發(fā)現(xiàn),與對(duì)照相比施用Nimin水稻產(chǎn)量增加了5%~10%。
4展望
氮肥的投入是增加作物產(chǎn)量、提高經(jīng)濟(jì)效益的重要手段,然而氮肥過量施用產(chǎn)生湖泊水體富營(yíng)養(yǎng)化、地下水污染,N2O甚至CH4排放量增加,導(dǎo)致全球溫室效應(yīng)日益嚴(yán)重。對(duì)生物硝化抑制劑的開發(fā)和應(yīng)用是一種轉(zhuǎn)向低硝化農(nóng)業(yè)生產(chǎn)的系統(tǒng)模式,是促進(jìn)農(nóng)業(yè)系統(tǒng)發(fā)展的強(qiáng)大戰(zhàn)略。農(nóng)田生態(tài)系統(tǒng)中應(yīng)用生物硝化抑制劑,可抑制土壤硝化作用,提高氮素的利用率和作物產(chǎn)量,降低N2O和CH4排放并降低全球增溫潛勢(shì)和溫室氣體強(qiáng)度。通過現(xiàn)代遺傳學(xué)與分子生物學(xué)培育和改良具有生物硝化抑制作用的植物,開發(fā)出硝化抑制活性更高的生物硝化抑制劑,發(fā)揮生物硝化抑制劑最優(yōu)的抑制效果是今后研究的一個(gè)重要方向。生物硝化抑制劑在印度和南美熱帶稀樹草原的應(yīng)用和研究較多,而我國(guó)應(yīng)用和研究生物硝化抑制才剛剛起步,因此,在我國(guó)農(nóng)田生態(tài)系統(tǒng)加強(qiáng)生物硝化抑制劑對(duì)氮素流失、溫室氣體排放效應(yīng)、作用機(jī)理研究以及生物硝化抑制劑的開發(fā)、應(yīng)用和推廣顯得尤為重要。另外,很多生物硝化抑制劑對(duì)土壤微生物以及一些酶類的影響效果還不夠明確,尤其是生物硝化抑制劑抑制N2O等溫室氣體排放的微生物等深層機(jī)理以及生物硝化抑制劑的長(zhǎng)期效應(yīng)鮮見報(bào)道,也是今后研究的一個(gè)熱點(diǎn)。
參考文獻(xiàn)
[1] 于飛,施衛(wèi)明.近10年中國(guó)大陸主要糧食作物氮肥利用率分析[J].土壤學(xué)報(bào),2015(6):1311-1324.
[2] 朱兆良.農(nóng)田中氮肥的損失與對(duì)策[J].土壤與環(huán)境,2000,9(1):1-6.
[3] FARMAHA B S.Evaluating Animo model for predicting nitrogen leaching in rice and wheat[J].Arid land research and management,2014,28(1):25-35.
[4] ZAEHLE S,CIAIS P,F(xiàn)RIEND A D,et al.Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions[J].Nature geoscinece,2011,4(9):601-605.
[5] PARK S,CROTEAU P,BOERING K,et al.Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940[J].Nature geoscinece,2012,5(4):261-265.
[6] RAVISHANKARA A R,DANIEL J S,PORTMANN R W.Nitrous oxide(N2O):The dominant ozone depleting substance emitted in the 21st century[J].Science,2009,326(5949):123-125.
[7] GUO Y J,DI H J,CAMERON K C,et al.Effect of 7-year application of a nitrification inhibitor,dicyandiamide(DCD),on soil microbial biomass,protease and deaminase activities,and the abundance of bacteria and archaea in pasture soils[J].Journal of soils & sediments,2013,13(4):753-759.
[8] CHEN D,SUTER H C,ISLAM A,et al.Influence of nitrification inhibitors on nitrification and nitrous oxide mission from a clay loam soil fertilized with urea[J].Soil biology & biochemistry,2010,42(4):660-664.
[9] SUBBARAO G V,SAHRAWAT K L,NAKAHARA K,et al.A paradigm shift towards low-nitrifying production systems:The role of biological nitrification inhibition(BNI)[J].Annals of botany,2013,112:297-316.
[10] ZHANG M,F(xiàn)AN C H,LI Q L,et al.A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system[J].Agriculture,ecosystems and environment,2015,201:43-50.
[11] LAN T,HAN Y,ROELCKE M,et al.Effects of the nitrification inhibitor dicyandiamide(DCD)on gross N transformation rates and mitigating N2O emission in paddy soils[J].Soil biology & biochemistry,2013,67:174-182.
[12] DE ANTONI MIGLIORATI M,SCHEER C,GRACE P R,et al.Influence of different nitrogen rates and DMPP nitrification inhibitor on annual N2O emissions from a subtropical wheat-maize cropping system[J].Agriculture,ecosystems and environment,2014,186:33-43.
[13] SUBBARAO G V,ITO O,SAHRAWAT K L,et al.Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities[J].Critical reviews in plant sciences,2006,25:303-335.
[14] SUBBARAO G V,SAHRAWAT K L,NAKAHARA K,et al.Biological nitrification inhibition-A novel strategy to regulate nitrification in agricultural systems[J].Advances in agronomy,2012,114:249-302.
[15] 俞巧鋼,殷建禎,馬軍偉,等.硝化抑制劑DMPP應(yīng)用研究進(jìn)展及其影響因素[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(6):1057-1066.
[16] 李香蘭,徐華,蔡祖聰.氫醌、雙氰胺組合影響稻田甲烷和氧化亞氮排放研究進(jìn)展[J].土壤學(xué)報(bào),2009,46(5):917-924.
[17] LI X L,ZHANG X Y,XU H,et al.Methane and nitrous oxide emissions from rice paddy soil as influenced by timing of application of hydroquinone and dicyandiamide[J].Nutrient cycling in agroecosystems,2009,85:31-40.
[18] SUBBARAO G V,KISHII M,NAKAHARA K,et al.Biological nitrification inhibition(BNI):Is there potential for genetic interventions in the Triticeae?[J].Breeding science,2009,59:529-545.
[19] 曾后清,朱毅勇,王火焰,等.生物硝化抑制劑:一種控制農(nóng)田氮素流失的新策略[J].土壤學(xué)報(bào),2012,49(2):382-388.
[20] MILES J M,DO VALLE C B,RAO I M,et al.Brachiaria grasses[M]//MOSER L,BURSON B,SOLLENBERGER L E.Warm-season(C4)grasses.Madison,WI:ASA-CSSA-SSA,2004:745-783.
[21] SUBBARAO G V,RONDON M,ITO O,et al.Biological nitrification inhibition(BNI)- Is it a widespread phenomenon?[J].Plant and soil,2007,294:5-18.
[22] SUBBARAO G V,NAKAHARA K,ISHIKAWA T,et al.Free fatty acids from the pasture grassBrachiariahumidicolaand one of their methyl esters as inhibitors of nitrification[J].Plant and soil,2008,313:89-99.
[23] SUBBARAO G V,NAKAHARA K,ISHIKAWA T,et al.Biological nitrification inhibition(BNI)activity in sorghum and its characterization[J].Plant and soil,2012,366:243-259.
[24] MAJUMDER D.Suppression of nitrification and N2O emission by karanjine-A nitrification inhibitor prepared from karanja(PongamiaglabraVent.)[J].Chemosphere,2002,47:845-850.
[25] MAJUMDER D,PANDIYA B,ARORA A,et al.Potential use of karanjin(3-methoxy furano-20,30,7,8-flavone)as a nitrification inhibitor in different soil types[J].Archives of agronomy and soil science,2004,50:455-465.
[26] ABBASI M K,HINA M,TAHIR M M.Effect of Azadirachta indica(Neem),sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions[J].Chemosphere,2011,82:1629-1635.
[27] KRISHNAPILLAI S.Inhibition of nitrification by waste tea(tea fluff)[J].Plant and soil,1979,51:563-569.
[28] TANAKA J P,NARDI P,WISSUWA M.Nitrification inhibition activity,a novel trait in root exudates of rice[J].AoB Plants,2010,61(4):705-720.
[29] CASTALDI S,CARFORA A,F(xiàn)IORENTINO A,et al.Inhibition of net nitrification activity in Mediterranean woodland:Possible role of chemicals produced byArbutusunedo[J].Plant and soil,2009,315:273-283.
[30] BENDING G D,LINCOLN S D.Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products[J].Soil biology and biochemistry,2000,32:1261-1269.
[31] SUBBARAO G V,ISHIKAWA T,ITO O,et al.A bioluminescence assay to detect nitrification inhibitors released from plant roots:A case study withBrachiariahumidicola[J].Plant and soil,2006,288:101-112.
[32] ZAKIR H A K M,SUBBARAO G V,PEARSE S J,et al.Detection,isolation and characterization of a root-exuded compound,methyl 3-(4-hydroxyphenyl)propionate,responsible for biological nitrification inhibition by sorghum(Sorghumbicolor)[J].New phytologist,2008,180:442-451.
[33] ZHANG L M,HU H W,SHEN J P,et al.Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J].Mccarthy,2012,6(5):1032-1045.
[34] ARP D J,SAYAVEDRA-SOTO L A,HOMMES N G.Molecular biology and biochemistry of ammonia oxidation byNitrosomonaseuropaea[J].Archives of microbiology,2002,178(4):250-255.
[35] TREUSCH A H,LEININGER S,KLETZIN A,et al.Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J].Environmental microbiology,2005,7(12):1985-1995.
[36] HALLAM S J,MINCER T J,SCHLEPER C,et al.Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J].PLoS Biology,2006,4(4):520-536.
[37] WALKER C B,DE LA TORRE J,KLOTZ M G,et al.Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea[J].Proceedings of the national academy of sciences of the United States of America,2010,107(19):8818-8823.
[38] GOPALAKRISHNAN S,SUBBARAO G V,NAKAHARA K,et al.Nitrification inhibitors from the root tissues ofBrachiariahumidicola,a tropical grass[J].Journal of agricultural and food chemistry,2007,55:1385-1388.
[39] SUBBARAO G V,NAKAHARA K,HURTADO M P,et al.Evidence for biological nitrification inhibition inBrachiariapastures[J].Proceedings of the national academy of sciences of the United States of America,2009,106(41):17302-17307.
[40] SAHRAWAT K L.Comparison of karanjin with other nitrification inhibitors for retardation of nitrification of urea N in soil[J].Plant and soil,1981,59:494-498.
[41] KUMAR R,DEVAKUMAR C,SHARMA V,et al.Influence of physicochemical parameters of Neem(AzadirachtaindicaA Juss)oils on nitrification inhibition in soil[J].Journal of agricultural and food chemistry,2007,55:1389-1393.
[42] FENWICK G R,HEANEY R K,MULLIN W J.Glucosinolates and their breakdown products in food and food plants[M]//FURIA T E.Critical reviews in food science and nutrition.Boca Raon,F(xiàn)L:CRC Press,1983:123-201.
[43] IPCC.Climate Change 2007-The Physical Science Basis[R].Cambridge:Cambridge University Press,2007.
[44] CHEN Z,LUO X Q,HU R G,et al.Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J].Microbial ecology,2010,60(4):850-861.
[45] DATTA A,ADHYA T K.Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy[J].Atmospheric environment,2014,92:533-545.
[46] RATH A K,SWAIN B,RAMAKRISHNAN B,et al.Influence of fertilizer management and water regime on methane emissions from rice fields[J].Agriculture ecosystems & environment,1999,76:99-107.
[47] GLASS A D M.Nitrogen use efficiency of crop plants:Physiological constraints upon nitrogen absorption[J].Critical reviews in plant sciences,2003,22:453-470.
[48] FINZI A C,NORBY R J,CALFAPIETRA C,et al.Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2[J].Proceedings of the national academy of sciences of the United States of America,2007,104:14014-14019.
[49] LIU C,WANG K,ZHENG X.Effects of nitrification inhibitors(DCD and DMPP)on nitrous oxide emission,crop yield and nitrogen uptake in a wheat-maize cropping system[J].Biogeoscience,2013,10:2427-2437.
[50] ABBAS M K,HINA M,TAHIR M M.Effect ofAzadirachtaindica(Neem),sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions[J].Chemosphere,2011,82:1629-1635.
[51] VAN GROENIGEN J W,VELTHOF G L,OENEMA O,et al.Towards an agronomic assessment of N2O emissions:A case study for arable crops[J].European journal of soil science,2010,61(6):903-913.
[52] SUBBARAO G V,RAO I M,NAKAHARA K,et al.Nitrogen management in grasslands in forage-based production systems :Role of biological nitrification inhibition(BNI)[J].Tropical grasslands-forrajes tropicales,2013,1(2):168-174.
[53] MORETA D,ARANGO J,SOTELO M,et al.Biological nitrification inhibition(BNI)inBrachiariapastures:A novel strategy to improve eco-efficiency of crop-livestock systems and to mitigate climate change[J].Tropical grasslands-forrajes tropicales,2014,2(1):88-91.
[54] PATRA D D,PANDE U K P.Urease and nitrification retardation properties in natural essential oils and their by-products[J].Communications in soil science & plant analysis,2006,37(11):1663-1673.
[55] PRASAD R.Efficient fertilizer use:The key to food security and better environment[J].Journal of tropical agriculture,2009,47:1-17.
[56] ROY R N,F(xiàn)RINK A,BLAIR G J,et al.Plant nutrition for food security[J].FAO fertilizer and plant nutrition bulletin,2006,16:141-186.
Research Progress of the Application of Biological Nitrification Inhibitors
WANG Guo-qiang, SUN Huan-ming, PENG Jing et al
(College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa, Tibet 850030)
AbstractBased on the current research, the characteristics and action mechanism of biological nitrification inhibitors at home and abroad were reviewed by combining with the nearest research progress. Using effects of biological nitrification inhibitors on agricultural production were summarized. Research hotspot and achievements of biological nitrification inhibitors at home and abroad were summarized. The research direction in future was forecasted.
Key wordsNitrification; Biological nitrification inhibitors; Greenhouse effect; Nitrogen use efficiency; Crop yield
基金項(xiàng)目西藏自然科學(xué)基金項(xiàng)目(ZJ2014068);西藏職業(yè)技術(shù)學(xué)院校級(jí)重點(diǎn)課題(2012L07)。
作者簡(jiǎn)介王國(guó)強(qiáng)(1979- ),男,河南南陽(yáng)人,副教授,在讀博士,從事土壤生態(tài)與肥料研究。
收稿日期2016-03-22
中圖分類號(hào)S 143.1+6
文獻(xiàn)標(biāo)識(shí)碼A
文章編號(hào)0517-6611(2016)11-066-04