李慧君,王澤偉
(華北電力大學(xué) 能源與動(dòng)力工程學(xué)院,河北 保定071003)
機(jī)組基于能質(zhì)系數(shù)法的會(huì)計(jì)模式熱經(jīng)濟(jì)學(xué)節(jié)能分析
李慧君,王澤偉
(華北電力大學(xué) 能源與動(dòng)力工程學(xué)院,河北 保定071003)
摘要:現(xiàn)有補(bǔ)充方程建立原則在能量定價(jià)方面沒(méi)有考慮能量品質(zhì)的高低,存在著不合理性;并且對(duì)于以何種原則作為能量定價(jià)的依據(jù),補(bǔ)充方程建立原則中沒(méi)有明確的規(guī)定。為此提出了能質(zhì)系數(shù)概念,并利用該系數(shù),改進(jìn)了補(bǔ)充方程建立原則,并建立了補(bǔ)充方程,使得能流單價(jià)與其品質(zhì)相匹配;同時(shí)對(duì)能量損失進(jìn)行了重新定價(jià)。以某N300-16.67/537/537火力機(jī)組為例,進(jìn)行了會(huì)計(jì)模式熱經(jīng)濟(jì)學(xué)分析,并與質(zhì)系數(shù)法進(jìn)行了比較。結(jié)果表明,除氧器與7號(hào)低壓加熱器的經(jīng)濟(jì)系數(shù)變化較大,其他設(shè)備變化均很小,由此驗(yàn)證了能質(zhì)系數(shù)法的準(zhǔn)確性。對(duì)于熱電聯(lián)產(chǎn)所生產(chǎn)的不同產(chǎn)品的定價(jià),也可參考這種方法。
關(guān)鍵詞:能質(zhì)系數(shù);熱經(jīng)濟(jì)學(xué)會(huì)計(jì)模式;效率;經(jīng)濟(jì)系數(shù)
能源是國(guó)民經(jīng)濟(jì)的重要物質(zhì)基礎(chǔ),也是人類賴以生存的基本條件。作為耗能大戶,火電廠的節(jié)能降耗對(duì)解決我國(guó)能源的現(xiàn)實(shí)問(wèn)題有著舉足輕重的作用。熱經(jīng)濟(jì)學(xué)發(fā)展歷史不長(zhǎng),但是其綜合分析了經(jīng)濟(jì)性與熱經(jīng)濟(jì)性兩方面因素,計(jì)算結(jié)果更合理、準(zhǔn)確,這一優(yōu)勢(shì)使得越來(lái)越多的學(xué)者對(duì)其進(jìn)行深入的研究[1-6]。熱經(jīng)濟(jì)學(xué)尚處在發(fā)展過(guò)程中,目前較成熟的幾種研究模式包括會(huì)計(jì)模式熱經(jīng)濟(jì)學(xué)、優(yōu)化模式熱經(jīng)濟(jì)學(xué)、結(jié)構(gòu)系數(shù)模式熱經(jīng)濟(jì)學(xué)、矩陣模式熱經(jīng)濟(jì)學(xué)。
1能質(zhì)系數(shù)
(1)
2補(bǔ)充方程建立原則的改進(jìn)
(2)
對(duì)于多個(gè)輸入和輸出,能質(zhì)系數(shù)等于其加權(quán)平均值。
3實(shí)例計(jì)算
3.1熱力系統(tǒng)建模及機(jī)組參數(shù)
SH—鍋爐過(guò)熱器;RH—鍋爐再熱器;HP—汽輪機(jī)高壓缸;IP—汽輪機(jī)中壓缸;LP—汽輪機(jī)低壓缸;GEN—發(fā)電機(jī);CND—凝汽器;CP—凝結(jié)水泵;DTR—除氧器;BFPT—給水泵驅(qū)動(dòng)用汽輪機(jī);FWP—給水泵;H1—1號(hào)高壓加熱器;H2—2號(hào)高壓加熱器;H3—3號(hào)高壓加熱器;H5—5號(hào)低壓加熱器;H6—6號(hào)低壓加熱器;H7—7號(hào)低壓加熱器;H8—8號(hào)低壓加熱器。圖1 某300 MW機(jī)組熱力系統(tǒng)
機(jī)組主要參數(shù)為:
a)主蒸汽流量為903.220t/h,壓力為16.67MPa,溫度為537 ℃;
b)再熱蒸汽流量為749.824t/h,壓力為3.533MPa,溫度為318.3 ℃;
c)中壓缸進(jìn)汽溫度為537 ℃,進(jìn)汽壓力為3.180MPa;
d)低壓缸進(jìn)汽溫度為337.9 ℃,壓力為0.799MPa;
e)發(fā)電機(jī)輸出功率為300.002MW;
f)給水泵驅(qū)動(dòng)用汽輪機(jī)耗汽量為33.089t/h,輸出功率為6.178MW。
3.2能質(zhì)系數(shù)計(jì)算
根據(jù)能質(zhì)系數(shù)定義式及系統(tǒng)中“燃料”雙線流的參數(shù)值,可得其能質(zhì)系數(shù),結(jié)果見(jiàn)表2。
3.3構(gòu)造補(bǔ)充方程
表1 各股能流的值
表2能質(zhì)系數(shù)計(jì)算結(jié)果
能流編號(hào)能質(zhì)系數(shù)能流編號(hào)能質(zhì)系數(shù)能流編號(hào)能質(zhì)系數(shù)30.44714100.31254310.1793640.39401110.31254320.2078650.36878120.08460340.2456960.37406210.019098,32,410.2868770.39393230.0788415,270.2273380.35629240.1050216,240.1845890.31251270.1284517,230.33851
3.4各設(shè)備非能量費(fèi)用計(jì)算
非能量費(fèi)用包括設(shè)備折舊費(fèi)、維修費(fèi)、管理費(fèi)、人員工資等若干項(xiàng),為了簡(jiǎn)化計(jì)算,本文只以設(shè)備折舊費(fèi)作為非能量費(fèi)用。一般情況下,計(jì)算投資成本一方面信息從生產(chǎn)制造商獲得,另一方面從成本計(jì)算方程獲得。根據(jù)文獻(xiàn)[9]中各個(gè)設(shè)備的成本計(jì)算方程以及各參數(shù)的定義,計(jì)算出機(jī)組各設(shè)備的投資成本及折舊費(fèi),見(jiàn)表3。
表3各設(shè)備投資成本及折舊費(fèi)
設(shè)備成本/萬(wàn)美元折舊/(萬(wàn)美元·a-1)設(shè)備成本/萬(wàn)美元折舊/(萬(wàn)美元·a-1)SH4641.3411185.6536H2175.43627.0174RH466.508718.6603H3134.99565.3998HP1902.164376.0865DTR90.46913.6188IP2805.5808112.2232H589.03453.5614LP7866.2016314.6480H687.95773.5183GEN958.112338.3244H791.17883.6472CND977.525939.1010H8183.46347.3385CP15.54700.6219FWP44.72501.7890H1176.49797.0599BFPT47.28631.8914
(3)
(4)
圖2 兩種方法下經(jīng)濟(jì)系數(shù)計(jì)算結(jié)果
3.6熱經(jīng)濟(jì)性指標(biāo)計(jì)算
設(shè)備η/%θ/%設(shè)備η%θ/%SH53.176.89H292.90.41RH54.912.95H388.80.42HP93.41.91DTR84.20.33IP95.90.98FWP91.40.17LP92.43.18H587.60.18GEN96.71.14H686.10.16BFPT85.50.24H780.30.13CP87.10.03H866.80.63H195.70.22
4結(jié)果分析
5結(jié)束語(yǔ)
參考文獻(xiàn):
[1] 彭啟珍. 基于矩陣模式熱經(jīng)濟(jì)學(xué)的熱電產(chǎn)品成本分析方法研究[D]. 保定:華北電力大學(xué),2004.
[2] 程偉良,季輝,狄安. 1 000 MW燃煤機(jī)組的熱經(jīng)濟(jì)學(xué)分析[J]. 熱能動(dòng)力工程,2013(2):187-191,220.
CHENG Weiliang,JI Hui,DI An. Thermo Economic Analysis of 1 000 MW Coal Fired Units[J]. Journal of Engineering for Thermal Energy and Power,2013(2):187-191,220.
WANG Jixuan,HAN Zhonghe,QIAN Jiangbo,et al. Exergy Analysis of Thermal Power System of Power Plant Based on the Theory of Thermoeconomic[J]. Journal of North China Electric Power University,2013(6):91-96.
LI Huijun,MA Chao,GU Kaina. Equivalent Exergy-drop Quality Coefficient Based Thermal Economics Matrix Method Analysis[J]. Thermal Power Generation,2014(2):87-92.
[5] 李慧君,鈕偉靜,劉磊,等. 600 MW凝汽機(jī)組變工況熱經(jīng)濟(jì)學(xué)分析[J]. 汽輪機(jī)技術(shù),2009,51(5):343-345.
LI Huijun,NIU Weijing,LIU Lei,et al. Thermoeconomic Analysis of 600 MW Condensing Power Plant in Off-design Conditions[J]. Turbine Technology, 2009,51(5):343-345.
[6] 金雅萱. 1 000 MW燃煤機(jī)組的熱經(jīng)濟(jì)學(xué)分析與優(yōu)化[D]. 北京:華北電力大學(xué),2011.
[7] 王加璇,張恒良.動(dòng)力工程熱經(jīng)濟(jì)學(xué)[M]. 北京:水利水電出版社,1995.
[8] 彭啟珍,張樹(shù)芳,郭江龍.熱經(jīng)濟(jì)學(xué)成本分析中補(bǔ)充方程的合理構(gòu)造[J]. 熱力發(fā)電,2003(10):29-31,55.
PENG Qizhen,ZHANG Shufang,GUO Jianglong. The Reasonable Structure of Supplementary Equation in the Cost Analysis of Thermal Economics[J]. Thermal Power Generation,2003(10):29-31,55.
[9] 熊杰,張超,趙海波,等.基于熱經(jīng)濟(jì)學(xué)結(jié)構(gòu)理論的電站熱力系統(tǒng)全局優(yōu)化[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2007,27(26):65-71.
XIONG Jie,ZHANG Chao,ZHAO Haibo,et al. Global Optimization of Thermal Power System Based on Structure Theory of Thermoeconomics[J]. Proceedings of the CSEE,2007,27(26):65-71.
[10] 李慧君,王澤偉. 基于熱經(jīng)濟(jì)學(xué)會(huì)計(jì)模式的機(jī)組節(jié)能分析[J]. 節(jié)能,2015(7):35-39,3.
LI Huijun,WANG Zewei. Analysis on the Energy Saving of Unit Based on Accounting Model of Thermoeconomics[J]. Energy Conservation,2015(7):35-39,3.
[11] 李慧君,劉學(xué)敏.基于熱經(jīng)濟(jì)學(xué)會(huì)計(jì)模式亞臨界600 MW機(jī)組節(jié)能分析[J]. 華北電力大學(xué)學(xué)報(bào)(自然科學(xué)版),2013(2):89-94.
LI Huijun,LIU Xuemin. Analysis on the Energy Saving of A 600 MW Subcritical Unit Based on Accounting Model of Thermoeconomics[J]. Journal of North China Electric Power University (Natural Science Edition),2013(2):89-94.
Thermo-economicsEnergySavingAnalysisforAccountingModeforUnits
BasedonEnergyQualityCoefficientMethod
LIHuijun,WANGZewei
(CollegeofEnergyandPowerEngineering,NorthChinaElectricPowerUniversity,Baoding,Hebei071003,China)
Abstract:In aspect of energy pricing, establishment principle of existing complementary equation does not consider the level of energy quality which means its irrationality. And there are no precise provisions in establishment principle for determining basis for energy pricing by using what kind of principle. Therefore, this paper proposes concept of energy quality coefficient which is used for improving establishment principle of the complementary equation and establishing the complementary equation so as to make energy flow unit price match with its quality. Meanwhile, energy loss is re-priced as well. Taking some N300-16.67/537/537 thermal power unit for an example, this paper carries out thermo-economics analysis for accounting mode and compares with exergy energy coefficient method. Results indicate that exergy economic coefficients of the deaerator and No.7 low pressure heater change a lot while those of other equipments change a little which prove veracity of energy quality coefficient method. This method is also useful to be referred for pricing for different products of thermo-electric cogeneration.
Key words:energy quality coefficient; thermo-economics accounting mode; exergy efficiency; exergy economic coefficient
收稿日期:2016-02-01
doi:10.3969/j.issn.1007-290X.2016.05.004
中圖分類號(hào):TK11
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-290X(2016)05-0015-05
作者簡(jiǎn)介:
李慧君(1964),男,吉林伊通人。教授,工學(xué)博士,主要研究方向?yàn)閺?qiáng)化換熱及數(shù)值計(jì)算、熱力系統(tǒng)節(jié)能與監(jiān)測(cè)診斷。
王澤偉(1991),男,河北無(wú)氏人。在讀碩士研究生,主要研究方向?yàn)闊崃ο到y(tǒng)節(jié)能與監(jiān)測(cè)診斷。
(編輯霍鵬)