景志剛董浩狄棟棟田莉莉范偉興
(1. 中國動物衛(wèi)生與流行病學(xué)中心,青島 266032;2. 中國動物疫病預(yù)防控制中心,北京 102600)
重組酶聚合酶擴(kuò)增技術(shù)研究進(jìn)展
景志剛1董浩2狄棟棟1田莉莉1范偉興1
(1. 中國動物衛(wèi)生與流行病學(xué)中心,青島 266032;2. 中國動物疫病預(yù)防控制中心,北京 102600)
重組酶聚合酶擴(kuò)增(recombinase polymerase amplification,RPA)技術(shù)是一種新興的核酸恒溫擴(kuò)增技術(shù),具有靈敏度高、特異性強(qiáng)、反應(yīng)快速等特點。利用RPA技術(shù)可以對核酸拷貝數(shù)進(jìn)行絕對定量并且可以同時檢測多個靶標(biāo)核酸序列,結(jié)合側(cè)流層析試紙條或熒光信號監(jiān)測裝置等簡易實驗設(shè)備即可直接觀察檢測結(jié)果。就RPA技術(shù)的原理、發(fā)展、技術(shù)特點及其近年來在體外診斷、病原檢測等領(lǐng)域的研究進(jìn)展作一綜述,旨在為該技術(shù)的深入研究和應(yīng)用提供參考。
重組酶聚合酶擴(kuò)增技術(shù);核酸恒溫擴(kuò)增;核酸檢測
核酸體外擴(kuò)增是分子生物學(xué)、遺傳學(xué)、醫(yī)學(xué)等研究領(lǐng)域最常用的技術(shù)之一。其中聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction,PCR)以及在此基礎(chǔ)上發(fā)展的多重PCR、單分子PCR、實時熒光定量PCR等技術(shù)使用最為廣泛,但這些技術(shù)均依賴于控溫準(zhǔn)確的熱循環(huán)儀器,限制了其在臨床現(xiàn)場檢測中的應(yīng)用。核酸恒溫擴(kuò)增技術(shù)由于不需反復(fù)熱變性,無需特殊儀器,反應(yīng)速度更快,適合現(xiàn)場快速檢測,在生命科學(xué)研究及相關(guān)諸多領(lǐng)域已經(jīng)得到了廣泛應(yīng)用。
目前已有10余種核酸恒溫擴(kuò)增技術(shù),其中重組酶聚合酶擴(kuò)增(recombinase polymerase amplification,RPA)是2006年由英國公司TwistDx Inc研發(fā)的一種核酸恒溫擴(kuò)增技術(shù)[1]。RPA技術(shù)使用重組酶與引物結(jié)合形成的復(fù)合物能在模板上尋找同源序列,定位后就會引發(fā)鏈交換反應(yīng)并啟動DNA合成,對模板上的目標(biāo)區(qū)域進(jìn)行指數(shù)式擴(kuò)增。RPA技術(shù)可以在25-42℃恒溫條件下快速完成核酸擴(kuò)增,產(chǎn)物可以通過探針法熒光定量進(jìn)行實時監(jiān)測,也可以與側(cè)流層析試紙條、生物芯片、凝膠電泳等多種方法相結(jié)合進(jìn)行檢測[2-4]。目前基于RPA技術(shù)建立的檢測方法在疾病診斷、食品安全檢測、轉(zhuǎn)基因作物檢測、病原學(xué)檢測等多個領(lǐng)域的應(yīng)用越來越廣泛?,F(xiàn)就RPA技術(shù)的發(fā)展及其當(dāng)前應(yīng)用研究進(jìn)展作一介紹。
RPA技術(shù)包括3種關(guān)鍵組分,分別是重組酶(如T4 uvsX、E.coli recA等)、單鏈結(jié)合蛋白(如T4 gp32等)和鏈置換DNA聚合酶(如B. subtilis Pol I、S. aureus Pol等)。RPA技術(shù)的原理,見圖1[5]:a.重組酶與長約30-35 nt的引物結(jié)合形成的復(fù)合物在雙鏈DNA模板中尋找靶位點;b. 復(fù)合物在模板上定位后可以直接引發(fā)鏈交換反應(yīng)形成D-Loop結(jié)構(gòu),單鏈結(jié)合蛋白隨即結(jié)合被置換的DNA鏈,穩(wěn)定形成的D-Loop結(jié)構(gòu)并且防止引物解離;c. 重組酶-引物復(fù)合物主動水解體系中的ATP導(dǎo)致復(fù)合物構(gòu)象改變,重組酶解離后引物3'端暴露并被DNA聚合酶識別,DNA聚合酶按照模板序列在引物3'末端添加相應(yīng)堿基,DNA擴(kuò)增啟動;d. 鏈置換DNA聚合酶在延伸引物的同時繼續(xù)解開模板的雙螺旋DNA結(jié)構(gòu),DNA合成過程繼續(xù)進(jìn)行;e. 兩條引物擴(kuò)增完成即形成一個完整的擴(kuò)增子。RPA擴(kuò)增體系中還含有T4 uvsY和Carbowax20M等成分,可以改變重組酶-引物復(fù)合體解離及重新結(jié)合的可逆反應(yīng)過程,使反應(yīng)向更有利于RPA的進(jìn)行[1]。同時,RPA體系中可以加入反轉(zhuǎn)錄酶將RNA作為模板合成DNA后再進(jìn)行擴(kuò)增,使RPA可以同時應(yīng)用于RNA的檢測[6,7]。按照上述體系建立的RPA反應(yīng)體系一般稱為Basic-RPA。
圖1 RPA反應(yīng)的原理示意圖
最初使用的RPA技術(shù),即Basic-RPA的反應(yīng)條件一般為37-39℃恒溫20-40 min,然后通過瓊脂糖凝膠電泳檢測擴(kuò)增產(chǎn)物。Basic-RPA反應(yīng)具有很高的敏感性,Rohrman等[8]建立的Basic-RPA方法可以檢測低至10拷貝的HIV病毒核酸。Basic-RPA的缺點是反應(yīng)體系中存在一些可能影響DNA在瓊脂糖凝膠中遷移的物質(zhì),可能導(dǎo)致電泳結(jié)果出現(xiàn)抹帶等現(xiàn)象,因此擴(kuò)增產(chǎn)物一般需要純化后才可以進(jìn)行電泳檢測[9]。盡管如此,Basic-RPA仍有很大的實用價值,利用RPA可以常溫擴(kuò)增的特點與生物芯片結(jié)合,研究者建立了on-chip RPA檢測方法,可以在20 min內(nèi)特異性檢測淋病奈瑟氏菌、沙門氏菌和耐甲氧西林金黃色葡萄球菌[2]。Sara Santiago-Felipe等[10]基于Basic-RPA建立的disc-based RPA技術(shù)可以高靈敏度檢測多種病原體。
在Basic-RPA基礎(chǔ)上,Piepenburg等[1]利用序列特異性熒光探針建立了可以實時監(jiān)測熒光信號判斷產(chǎn)物擴(kuò)增情況的探針法RPA以及可以直接肉眼觀察最終擴(kuò)增結(jié)果的側(cè)流層析試紙條RPA(lateral flow RPA,LF-RPA)。
2.1 探針法RPA
與Basic-RPA的反應(yīng)體系相比,探針法 RPA體系中一般含有核酸外切酶III(exonuclease III,即exo)和exo熒光探針(根據(jù)酶的名稱命名為exo探針),通過檢測熒光信號實時監(jiān)測RPA產(chǎn)物的擴(kuò)增情況。exo探針含有一個堿基模擬物四氫呋喃分子(tetrahydrofuran,THF),THF分子兩側(cè)分別帶有熒光基團(tuán)和淬滅基團(tuán),探針3'端帶有防止探針延伸的阻斷物。當(dāng)探針與靶DNA結(jié)合形成雙鏈雜合DNA結(jié)構(gòu)后,exo III作為一種DNA修復(fù)酶,識別THF位點并切割探針使熒光基團(tuán)和淬滅基團(tuán)分離從而產(chǎn)生熒光[11,12]。用exo探針的RPA反應(yīng)不能使用凝膠電泳等方法進(jìn)行終點定量,一般使用可以實時收集熒光信號的裝置(如熒光定量PCR儀、ESEQuant Tube Scanner device、Twista?等)監(jiān)測反應(yīng)情況。此外,exo探針法RPA反應(yīng)速度更快,一般在20 min內(nèi)即可完成檢測,靈敏度和特異性均很高[13-15]。
2.2 側(cè)流層析試紙條RPA
與Basic-RPA的反應(yīng)體系相比,LF-RPA體系中加入了核酸外切酶IV(endonuclease IV,即nfo)和nfo探針(根據(jù)酶的名稱命名為nfo探針),而且在反應(yīng)中使用帶有生物素或者地高辛等標(biāo)記物的反向引物[16,17]。nfo探針的5'末端帶有熒光基團(tuán),3'端帶有阻斷物,探針序列中也帶有一個THF分子。隨著反應(yīng)的進(jìn)行,剪切后的探針與下游引物形成既帶有探針熒光基團(tuán)標(biāo)記物又帶有引物特殊標(biāo)記物的雙標(biāo)記擴(kuò)增子。這種雙標(biāo)記擴(kuò)增產(chǎn)物可以使用凝膠電泳等終點定量方法和側(cè)流層析法進(jìn)行檢測,目前主要使用的基于“夾心法”的側(cè)流試紙條進(jìn)行檢測。側(cè)流試紙條包括檢測線和對照線,也有的只使用檢測線,其原理是:檢測線處使用相應(yīng)的抗體來捕獲引物所帶有的標(biāo)記物,膠體金顆粒標(biāo)記的抗探針熒光基團(tuán)抗體結(jié)合擴(kuò)增子帶有的熒光基團(tuán)即可以觀察到檢測產(chǎn)物(也可以先捕獲探針標(biāo)記物,再結(jié)合引物標(biāo)記物)[8]。LF-RPA的優(yōu)點是經(jīng)過37-39℃的恒溫短時間擴(kuò)增反應(yīng)后,肉眼即可觀察擴(kuò)增產(chǎn)物在側(cè)流試紙條上的檢測結(jié)果,不需復(fù)雜儀器設(shè)備,適合現(xiàn)場快速檢測。
目前應(yīng)用較多的核酸恒溫擴(kuò)增技術(shù)主要有:核酸依賴性擴(kuò)增檢測(nuclear acid sequence-based amplification,NASBA)、環(huán)介導(dǎo)恒溫擴(kuò)增(loop-mediated isothermal amplification,LAMP)、鏈替代擴(kuò)增(strand displacement amplification,SDA)、滾環(huán)擴(kuò)增(rolling circle amplification,RCA)、依賴解旋酶的恒溫基因擴(kuò)增(helicase-dependent isothermal DNA amplification,HDA)及轉(zhuǎn)錄介導(dǎo)的擴(kuò)增技術(shù)(transcription mediated amplification)等[18-21]。核酸恒溫擴(kuò)增技術(shù)與基于PCR的核酸擴(kuò)增技術(shù)相比,具有高敏感性、高特異性、操作簡便、反應(yīng)時間短、不需復(fù)雜儀器設(shè)備等優(yōu)點,在檢驗檢疫、醫(yī)學(xué)、法醫(yī)等需要快速現(xiàn)場檢測的一些領(lǐng)域?qū)嵱眯愿鼜?qiáng)。以上擴(kuò)增技術(shù)各有優(yōu)缺點,RPA與這些技術(shù)相比,操作更簡單,并且可以根據(jù)條件選擇恰當(dāng)?shù)臋z測方法,目前在病原學(xué)檢測領(lǐng)域應(yīng)用特別廣泛。RPA技術(shù)與其他核酸恒溫擴(kuò)增方法簡要對比,見表1[22],從表中可以看出RPA技術(shù)不需熱變性因此反應(yīng)時間更短,可以多通道同時檢測多個靶基因,而且有多種方法可用來檢測擴(kuò)增產(chǎn)物。
RPA技術(shù)具有靈敏度高、特異性強(qiáng)、操作快速便捷等優(yōu)點,而且可以實現(xiàn)定量分析,因此在疾病診斷和病原鑒定等許多領(lǐng)域具有廣闊的應(yīng)用前景。在癌癥研究中,RPA技術(shù)可以用于癌癥突變檢測和抗癌藥物篩選[23,24]。RPA技術(shù)在病原學(xué)檢測領(lǐng)域的研究尤為熱門,目前已經(jīng)建立了針對細(xì)菌、病毒、寄生蟲等多種病原體的RPA檢測方法(表2)。RPA
技術(shù)在維護(hù)人類公共衛(wèi)生和生物反恐方面發(fā)揮著重要作用,如Euler等[12]研發(fā)的RPA檢測板可以同時檢測土拉弗朗西斯氏菌、鼠疫耶爾森氏菌、炭疽芽孢桿菌、天花病毒、裂谷熱病毒、埃博拉病毒及馬爾堡病毒等多種生物恐怖因子。在食品安全方面,RPA技術(shù)也應(yīng)用廣泛,如 Santiago-Felipe等[25]建立的RPA-ELISA方法可以同時檢測食品中多種過敏原(榛子、花生、番茄、大豆及玉米)、病原微生物以及轉(zhuǎn)基因成分;Chao等[26]建立的RPA方法可以檢測玉米、水稻、棉花和大豆等作物中轉(zhuǎn)基因成分。由于RPA技術(shù)對實驗設(shè)備的要求非常低,使得該技術(shù)在經(jīng)濟(jì)條件差,資源不足的區(qū)域具有廣闊的應(yīng)用前景[7,17,27-29]。
表1 RPA與其他核酸恒溫擴(kuò)增方法比較
表2 RPA檢測在病原學(xué)檢測領(lǐng)域的應(yīng)用
RPA技術(shù)被稱作有望替代PCR的核酸檢測技術(shù),主要優(yōu)勢在于不需溫控儀器即可快速進(jìn)行痕量DNA或RNA的特異性擴(kuò)增,在臨床檢測和現(xiàn)場快速診斷方面具有顯著的優(yōu)越性。以RPA技術(shù)為基礎(chǔ)建立的RPA-ELISA、on chip RPA等擴(kuò)增技術(shù)可以高通量檢測多種病原體,因此RPA技術(shù)在癌癥突變檢測、遺傳病的定期和快速普查、轉(zhuǎn)基因成分檢測等領(lǐng)域也有廣闊的應(yīng)用前景。雖然目前RPA技術(shù)的檢測成本高于PCR等其他核酸擴(kuò)增技術(shù),但隨著RPA技術(shù)的進(jìn)一步發(fā)展、完善以及生產(chǎn)工藝的改良,RPA技術(shù)有望成為常規(guī)的快速診斷手段,并在分子生物學(xué)、醫(yī)學(xué)、遺傳學(xué)等各個研究領(lǐng)域得到更加廣泛的應(yīng)用。
[1]Piepenburg O, Williams CH, Stemple DL, et al. DNA detection using recombination proteins[J]. PLoS Biology, 2006, 4(7):e204.
[2]Kersting S, Rausch V, Bier FF, et al. Multiplex isothermal solidphase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens[J]. Microchimica Acta, 2014, 181(13-14):1715-1723.
[3] Xu C, Li L, Jin W, et al. Recombinase polymerase amplification(RPA)of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops[J]. International Journal of Molecular Sciences, 2014, 15(10):18197-18205.
[4]Shen F, Davydova EK, Du W, et al. Digital isothermal quantification of nucleic acids via simultaneous chemical initiation of recombinase polymerase amplification reactions on SlipChip[J]. Analytical Chemistry, 2011, 83(9):3533-3540.
[5]Boyle DS, McNerney R, Teng Low H, et al. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification[J]. PLoS One, 2014, 9(8):e103091.
[6]Mekuria TA, Zhang S, Eastwell KC. Rapid and sensitive detection of Little cherry virus 2 using isothermal reverse transcriptionrecombinase polymerase amplification[J]. Journal of Virological Methods, 2014, 205(1):24-30.
[7]Abd El Wahed A, El-Deeb A, El-Tholoth M, et al. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus[J]. PLoS One, 2013, 8(8):e71642.
[8]Rohrman BA, Richards-Kortum RR. A paper and plastic device for performing recombinase polymerase amplification of HIV DNA[J]. Lab Chip, 2012, 12(17):3082-3088.
[9]Wee EJ, Lau HY, Botella JR, et al. Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resourcepoor settings[J]. Chemical Communications, 2015, 51(27):5828-5831.
[10]Santiago-Felipe S, Tortajada-Genaro LA, Morais S, et al. One-pot isothermal DNA amplification-Hybridisation and detection by a disc-based method[J]. Sensors and Actuators B:Chemical, 2014, 204(1):273-281.
[11]Aebischer A, Wernike K, Hoffmann B, et al. Rapid genome detection of schmallenberg virus and bovine viral diarrhea virus by use of isothermal amplification methods and high-speed real-time reverse transcriptase PCR[J]. Journal of Clinical Microbiology, 2014, 52(6):1883-1892.
[12]Euler M, Wang Y, Heidenreich D, et al. Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents[J]. Journal of Clinical Microbiology, 2013, 51(4):1110-1117.
[13]Ahmed A, van der Linden H, Hartskeerl RA. Development of a recombinase polymerase amplification assay for the detection of pathogenic Leptospira[J]. Int J Environ Res Public Health, 2014, 11(5):4953-4964.
[14]Xia X, Yu Y, Weidmann M, et al. Rapid detection of shrimpwhite spot syndrome virus by real time, isothermal recombinase polymerase amplification assay[J]. PLoS One, 2014, 9(8):e104667.
[15]Boyle DS, Lehman DA, Lillis L, et al. Rapid detection of HIV-1 proviral DNA for early infant diagnosis using recombinase polymerase amplification[J]. MBio, 2013, 4(2):e00135-00113.
[16]Kersting S, Rausch V, Bier FF, et al. Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis[J]. Malaria Journal, 2014, 13(1):99.
[17]Escadafal C, Faye O, Sall AA, et al. Rapid molecular assays for the detection of yellow fever virus in low-resource settings[J]. PLoS Neglected Tropical Diseases, 2014, 8(3):e2730.
[18]Yan L, Zhou J, Zheng Y, et al. Isothermal amplified detection of DNA and RNA[J]. Molecular Biosystems, 2014, 10(5):970-1003.
[19]Fakruddin M, Mannan KS, Chowdhury A, et al. Nucleic acid amplification:Alternative methods of polymerase chain reaction[J]. Journal of Pharmaceutical Sciences, 2013, 5(4):245-252.
[20]Craw P, Balachandran W. Isothermal nucleic acid amplification technologies for point-of-care diagnostics:a critical review[J]. Lab Chip, 2012, 12(14):2469-2486.
[21] Gill P, Ghaemi A. Nucleic acid isothermal amplification technologies:a review[J]. Nucleosides Nucleotides Nucleic Acids, 2008, 27(3):224-243.
[22]Zaghloul H, El-Shahat M. Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis[J]. World Journal of Hepatology, 2014, 6(12):916-922.
[23]Shin Y, Perera AP, Kim KW, et al. Real-time, label-free isothermal solid-phase amplification/detection(ISAD)device for rapid detection of genetic alteration in cancers[J]. Lab Chip, 2013, 13(11):2106-2114.
[24]Loo JF, Lau PM, Ho HP, et al. An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening[J]. Talanta, 2013, 115(4):159-165.
[25]Santiago-Felipe S, Tortajada-Genaro LA, Puchades R, et al. Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis[J]. Analytica Chimica Acta, 2014, 811(5):81-87.
[26]徐潮, 李亮, 金蕪軍, 宛煜嵩. 熒光RPA技術(shù)檢測轉(zhuǎn)基因水稻科豐6號[J]. 分子植物育種, 2014, 12(5):875-880.
[27]Liljander A, Yu M, O’Brien E, et al. Field-applicable recombinase polymerase amplification assay for rapid detection of Mycoplasma capricolum subsp. capripneumoniae[J]. Journal of Clinical Microbiology, 2015, 53(9):2810-2815.
[28]Lillis L, Lehman D, Singhal MC, et al. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA[J]. PLoS One, 2014, 9(9):e108189.
[29]Abd El Wahed A, Weidmann M, Hufert FT. Diagnostics-ina-Suitcase:Development of a portable and rapid assay for the detection of the emerging avian influenza A(H7N9)virus[J]. Journal of Clinical Virology, 2015, 69(3):16-21.
[30] Euler M, Wang Y, Otto P, et al. Recombinase polymerase amplification assay for rapid detection of Francisella tularensis[J]. Journal of Clinical Microbiology, 2012, 50(7):2234-2238.
[31]Daher RK, Stewart G, Boissinot M, et al. Isothermal recombinase polymerase amplification assay applied to the detection of group B streptococci in vaginal/anal samples[J]. Clinical Chemistry, 2014, 60(4):660-666.
[32]Kim TH, Park J, Kim CJ, et al. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens[J]. Analytical Chemistry, 2014, 86(8):3841-3848.
[33]Tsaloglou MN, Watson RJ, Rushworth CM, et al. Real-time microfluidic recombinase polymerase amplification for the toxin B gene of Clostridium difficile on a SlipChip platform[J]. Analyst, 2015, 140(1):258-264.
[34]Murinda SE, Ibekwe AM, Zulkaffly S, et al. Real-time isothermal detection of Shiga toxin-producing Escherichia coli using recombinase polymerase amplification[J]. Foodborne Pathogens and Disease, 2014, 11(7):529-536.
[35] Ahmed SA, van de Sande WW, Desnos-Ollivier M, et al. Application of isothermal amplification techniques for the identification of Madurella mycetomatis, the prevalent agent of human mycetoma[J]. Journal of Clinical Microbiology, 2015, 53(10):3280-3285.
[36]Yehia N, Arafa AS, Abd El Wahed A, et al. Development of reversetranscription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection[J]. Journal of Virological Methods, 2015, 223:45-49.
[37]Teoh BT, Sam SS, Tan KK, et al. Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification[J]. Journal of Clinical Microbiology, 2015, 53(3):830-837.
[38]Zhang S, Ravelonandro M, Russell P, et al. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal Amplify-RP?using reverse transcription-recombinase polymerase amplification[J]. Journal of Virological Methods, 2014, 207(2):114-120.
[39]Abd El Wahed A, Patel P, Heidenreich D, et al. Reverse transcription recombinase polymerase amplification assay for the detection of middle east respiratory syndrome coronavirus[J]. PLoS Currents, 2013, 5:ecurrents. outbreaks. 62df1c7c75ffc96cd 59034531e2e8364.
[40]Amer HM, Abd El Wahed A, Shalaby MA, et al. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay[J]. Journal of Virological Methods, 2013, 193(2):337-340.
[41]Silva G, Bomer M, Nkere C, et al. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification[J]. Journal of Virological Methods, 2015, 15(1):138-144.
[42]Xia X, Yu Y, Hu L, et al. Rapid detection of infectious hypodermal and hematopoietic necrosis virus(IHHNV)by real-time, isothermal recombinase polymerase amplification assay[J]. Archives of Virology, 2015, 160(4):987-994.
[43]Krolov K, Frolova J, Tudoran O, et al. Sensitive and rapid detection of Chlamydia trachomatis by recombinase polymerase amplification directly from urine samples[J]. J Mol Diagn, 2014, 16(1):127-135.
[44]Chao CC, Belinskaya T, Zhang Z, et al. Development of recombinase polymerase amplification assays for detection of Orientia tsutsugamushi or Rickettsia typhi[J]. PLoS Negl Trop Dis, 2015, 9(7):e0003884.
[45]Nair G, Rebolledo M, White AC Jr, et al. Detection of entamoeba histolytica by recombinase polymerase amplification[J]. American Journal of Tropical Medicine and Hygiene, 2015, 93(3):591-595.
[46]Crannell ZA, Cabada MM, Castellanos-Gonzalez A, et al. Recombinase polymerase amplification-based assay to diagnose giardia in stool samples[J]. American Journal of Tropical Medicine and Hygiene, 2015, 92(3):583-587.
[47]Castellanos-Gonzalez A, Saldarriaga OA, Tartaglino L, et al. A novel molecular test to diagnose canine visceral Leishmaniasis at the point of care[J]. American Journal of Tropical Medicine and Hygiene, 2015, 3:15-0145.
[48]Rosser A, Rollinson D, Forrest M, et al. Isothermal recombinase polymerase amplification(RPA)of Schistosoma haematobium DNA and oligochromatographic lateral flow detection[J]. Parasites & Vectors, 2015, 8:446.
(責(zé)任編輯 狄艷紅)
Research Progress on Recombinase Polymerase Amplification
JING Zhi-gang1DONG Hao2DI Dong-dong1TIAN Li-li1FAN Wei-xing1
(1. Laboratory of Zoonoses,China Animal Health & Epidemiology Center,Qingdao 266032;2. China Animal Disease Prevention and Control Center,Beijing 102600)
Recombinase Polymerase Amplification(RPA)is a recently developed isothermal amplification method that offers highly sensitive and specific DNA and RNA detection. Using RPA,the initial copy number of target nucleic acid sequence from different samples can be absolutely quantified,and multiple target nucleic acid sequences can also be detected simultaneously. Combining with less complicated device such as lateral flow strips or a sequence-specific fluorescent probe,the results can be observed directly. This article summarized the fundamental principles,continuous development and technical features of RPA. In addition,research and application progress of RPA in the field of in vitro diagnostic,pathogen detection and so forth were reviewed,aiming at providing guidance for further development and application of this method.
recombinase polymerase amplification;nucleic acid isothermal amplification technologies;nucleic acid detection
10.13560/j.cnki.biotech.bull.1985.2016.06.008
2015-08-31
景志剛,男,碩士,研究方向:人畜共患病流行病學(xué);E-mail:damonjing@126.com
范偉興,男,博士,研究員,研究方向:人畜共患病流行病學(xué);E-mail:fwxsjl@126.com