亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the characteristic polynomials of graphs with nullity n-4

        2016-06-05 15:19:38,,
        關(guān)鍵詞:基金特征數(shù)學(xué)

        , ,

        (1. School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, China;2. Department of Mathematics, Central South University, Changsha 410083, China)

        On the characteristic polynomials of graphs with nullityn-4

        WUTingzeng1,FENGLihua2,MAHaicheng1

        (1. School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, China;2. Department of Mathematics, Central South University, Changsha 410083, China)

        The nullity of a graph is the multiplicity of zeroes in its adjacency spectrum. And the nullity of a graphGwithnverticesequalstonminustherankofadjacencymatrixofG.Thecharacteristicpolynomialsofgraphswithnullityn-4iscomputed.Inparticular,itisshownthatsomegraphswithnullityn-4aredeterminedbytheirspectra.Andsomepairsofcospectralgraphswithnullityn-4arepresented.

        characteristic polynomial; rank; nullity; cospectral graphs

        1 Introduction

        TheadjacencymatrixofGisdenotedbyA(G).ThecharacteristicpolynomialofagraphG,bydefinition,is

        whereIistheidentitymatrixofordern.

        ThespectrumofGconsistsoftheeigenvaluestogetherwiththeirmultiplicitiesofA(G).Twographsaresaidtobecospectralif they share the same spectrum or characteristic polynomial.

        A graph is said to bedeterminedbythespectrum(DS for short) if there is no other non-isomorphic graph with the same spectrum. The nullity ofG,denotedbyη(G),isthemultiplicityofzeroesinthespectrumofG.Letr(G)betherankofA(G).Obviously,η(G)=n-r(G).Whenη(G)=0,thegraphGiscallednonsingular.

        TheproblemcharacterizingallgraphsGwithη(G)>0isofgreatinterestinbothchemistryandmathematics.ForabipartitegraphGwhichcorrespondstoanalteranthydrocarboninchemistry,ifη(G)>0,itisindicatedthatthecorrespondingmoleculeisunstable.Thenullityofagraphisalsomeaningfulinmathematicssinceitisrelatedtothesingularityofadjacentmatrix.Theproblemhasnotyetbeensolvedcompletely.Anditreceivedalotofattentionfromresearchersinrecentyears,see[2-3].Herewehighlighttworesultswhichinvolveextremalnullityofgraphs.Thatis,ChengandLiu[4]characterizedthegraphswhosenullityreachtheupperboundsn-2andn-3.Changetal. [5-6]masterlyusedthedefinitionofmultiplicationofvertices(seep.53of[7])tocharacterizeallconnectedgraphswithrank4or5.Moreinformationsee[8-9].

        BythedefinitionofG°m[m1,m2,…,mn],wecanobtainsomeprimarypropertiesaboutthestructureofG°m as follows.

        Property 3 For any triangle inG°m, there exactly exists a complete 3-partite induced subgraph obtained by multiplying vertices on a triangle inGwhichcontainsit.Then

        whereuvwdenotesatriangleinG,andthesumistakenoveralltrianglesinG.

        Property4Every4-cycleinG°m must be contained in an induced subgraph obtained by multiplying every vertex on an edge, oneP3oroneC4inG.Directcomputationyields

        wherethefirstsumistakenoveralledgesinG,thesecondsumistakenoverallP3’sinG,andthethirdsumistakenoverallC4’sinG.

        Thispaperisorganizedasfollows.InSection2,wepresentsomelemmasandcharacterizeallgraphswithnullityn-4.InSection3,wecomputethecharacteristicpolynomialsofgraphswithnullityn-4.InSection4,weinvestigatewhichgraphswithnullityn-4areDS.Precisely,weshowthattwoclassesofregulargraphsandoneclassofnon-bipartitegraphsareDS.Andwepresentsomepairsofcospectralbipartitegraphs.

        2 Preliminaries

        Inthissection,wewillpresentsomeresultswhichplayakeyroleintheproofsofthemaintheorems.

        Lemma 1[1]LetGbeagraphwithpverticesandqedges,andlet(d1,d2,…,dp)bethedegreesequenceofG.ThecoefficientsofthecharacteristicpolynomialofagraphGsatisfy:

        (i)a0=1;

        (ii)a1=0;

        (iii)a2=-q;

        (iv)a3=-2c3(G);

        Lemma 2[10]LetGbeagraph.Fortheadjacencymatrix,thefollowingcanbeobtainedfromthespectrum.

        (i) The number of vertices.

        (ii) The number of edges.

        (iii) WhetherGisregular.

        (iv) WhetherGisregularwithanyfixedgirth.

        (v) The number of closed walk of any length.

        (vi) WhetherGisbipartite.

        Theorem 1[4]Suppose thatGisasimplegraphonnverticesandn≥2.Thenη(G)=n-2ifandonlyifGisisomorphictoKn1,n2∪kK1,wheren1+n2+k=n,n1andn2>0,andk≥0.

        Theorem 2[5]LetGbeaconnectedgraph.Thenr(G)=4ifandonlyifG∈M(G1,G2,G3,G4,G5,G6,G7,G8),whereGi(i=1,2,…,8)isdepictedinFig.1.

        CombiningTheorems1and2,wecanobtainthefollowingresult.

        Fig.1 The graphs G1,G2,G3,G4,G5,G6,G7,G8,G9

        3 The characteristic polynomials of graphs with nullity n-4

        Inthissection,wewillcomputethecharacteristicpolynomialsofgraphswithrank4.

        Proof

        cd)xa+b+c+d-2-2bcdxa+b+c+d-3+abcdxa+b+c+d-4

        bd+ce)x2-2abcx+abdc+abec+dbec]

        xa+b+c+d+e-4[x4-(ab+ae+be+bc+cd+de)·

        x2-2abex+abed+adec+abcd+abec]

        cf+cd+de+ef)x2-2bcfx+abed+

        abcd+bdec+abcf+abef+bcef+fbcd+fbed]

        3abcd4-cycles.ByLemma1,wehave

        bc+bd+cd)x2-

        2(abc+abd+acd+bcd)x-3abcd]

        abef+acdf+bcde4-cycles.ByLemma1,wehave

        [x4-(ab+ac+af+bc+be+cd+

        df+de+fe)x2-2(abc+def)x+abed+

        abdf+acbe+aced+acef+afed+abcd+fcde+

        abcf+bcef+fbcd+fbed]

        [x4-(ab+bc+cd)x2+abcd]

        [x4-(ab+bc+cd+ed)x2+abcd]

        [x4-(ab+cd)x2+abcd]

        Bytheaboveargument,weobtainthedesiredresult.

        4 The spectral characterization of graphs with nullity n-4

        MaandRen[15]investigatedwhichkindofcompletemultipartitegraphisDSsinceitiswellknownthatnotallcompletemultipartitegraphsareDS.Andtheyprovedthefollowingresults.

        ByTheorems5and6,weobtaindirectlyacorollaryasfollows.

        Theorem 7

        (ii) The complete regular 4-partite graph is DS.

        Additionally, by the definition ofG5。 m[m1,m2,m3,m4],wenotethatG5°m is a complete 4-partite graphs. Observing Theorem 4, it is easy to see that only the fifth coefficient of characteristic polynomial ofG5°m is negative, which implies that the following proposition.

        Theorem 9 2Kt,tisDS.

        Fromtheargumentabove,weobtainthatGisDS.

        Proof. By Theorem 4 (vii) and (viii), we obtain that

        Therefore,G∪kK1andH∪kK1arecospectral,wherea,k≥0.

        5 Conclusion

        [1] BIGGS N. Algebraic graph theory [M]. Cambridge: Cambridge University Press, 1993.

        [2] BOROVICANIN B, GUTMAN I. Nullity of graphs [C]. Applications of Graph Spectra, Math Inst. Belgrade, 2009:107-122.

        [3] GUTMAN I, BOROVICANIN B. Nullity of graphs: an updated survey [C]. Selected Topics on Applications of Graph Spectra, Math Inst. Belgrade, 2011: 137-154.

        [4] CHENG B, LIU B. On the nullity of graphs [J]. Electron J Linear Algebra Ela, 2007, 16: 60-67.

        [5] CHANG G, HUANG L, YEH H. A characterization of graphs with rank 4 [J]. Linear Algebra Appl, 2011, 434(8): 1793-1798.

        [6] CHANG G, HUANG L, YEH H. A characterization of graphs with rank 5 [J]. Linear Algebra Appl, 2012, 436(11): 4241-4250.

        [7] GOLUMBIC M. Algorithmic graph theory and perfect graphs [M]. Amsterdam: North-Holland Publishing Co, 2004.

        [8] WANG X, ZHAO X, YAO B. Spanning trees of totally edge-growing network models [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(1): 48-53.

        [9] TANG B, REN H. The number of perfect matching in two types of 3-regular graph [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53 (5): 54-58.

        [10] van DAM E, HAEMERS W. Which graphs are determined by their spectrum? [J]. Linear Algebra Appl, 2003, 373: 241-272.

        [11] van DAM E, HAEMERS W. Developments on spectral characterizations of graphs [J]. Discrete Math, 2009, 309: 576-586.

        [12] CAMARA M, HAEMERS W. Spectral characterizations of almost complete graphs [J]. Discrete Appl Math, 2014, 176: 19-23.

        [13] LIU F, HUANG Q, LAI H. Note on the spectral characterization of some cubic graphs with maximum number of triangles [J]. Linear Algebra Appl, 2013, 438(3): 1393-1397.

        [14] ZHANG X, ZHANG H. Some graphs determined by their spectra [J]. Linear Algebra Appl, 2009, 431(9): 1443-1454.

        [15] MA H, REN H. On the spectral characterization of the union of complete multipartite graph and some isolated vertices [J]. Discrete Math, 2010, 310: 3648-3652.

        2015-11-28

        國家自然基金資助項(xiàng)目 (11101245, 11271208, 11301302, 11561056);青海省自然基金資助項(xiàng)目(2016-ZJ-947Q);山東省自然基金資助項(xiàng)目(BS2013SF009);中南大學(xué)數(shù)學(xué)與交叉科學(xué)項(xiàng)目資助項(xiàng)目;青海民族大學(xué)自然科學(xué)基金資助項(xiàng)目(2015XJZ12)

        吳廷增(1978年生),男;研究方向:數(shù)學(xué)化學(xué)、圖的匹配理論和計(jì)算機(jī)網(wǎng)絡(luò);E-mail:mathtzwu@163.com

        零度為n-4的圖的特征多項(xiàng)式*

        吳廷增1, 馮立華2, 馬海成1

        (1. 青海民族大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 青海 西寧 810007;2. 中南大學(xué)數(shù)學(xué)系, 湖南 長沙 410083)

        圖的零度是指圖的鄰接譜中零特征根的重數(shù)。顯然,n個頂點(diǎn)的圖G的零度等于n減去其鄰接矩陣的秩。計(jì)算了零度為n-4的所有圖的特征多項(xiàng)式。特別地, 證明了許多零度為n-4的圖是譜唯一確定的, 并構(gòu)造了許多對零度為n-4的同譜圖。

        特征多項(xiàng)式; 秩; 零度; 同譜圖

        O157.6;O

        A

        0529-6579(2016)06-0057-07

        10.13471/j.cnki.acta.snus.2016.06.008

        猜你喜歡
        基金特征數(shù)學(xué)
        如何表達(dá)“特征”
        不忠誠的四個特征
        抓住特征巧觀察
        我為什么怕數(shù)學(xué)
        新民周刊(2016年15期)2016-04-19 18:12:04
        數(shù)學(xué)到底有什么用?
        新民周刊(2016年15期)2016-04-19 15:47:52
        線性代數(shù)的應(yīng)用特征
        河南科技(2014年23期)2014-02-27 14:19:15
        私募基金近1個月回報前后50名
        私募基金近1個月回報前后50名
        私募基金近6個月回報前50名
        私募基金近1個月回報前50名
        夜夜未满十八勿进的爽爽影院| 午夜不卡av免费| 亚洲乱码视频在线观看| 亚洲成成品网站源码中国有限公司| 国产91对白在线观看| 久久aⅴ无码av高潮AV喷| 国产三级在线观看高清| 亚洲不卡av二区三区四区| 亚洲av专区国产一区| 熟女一区二区三区在线观看| 国产三级在线观看完整版| 色伦专区97中文字幕| 亚洲国产精品久久九色| 免费观看在线视频播放| 免费人成视频网站在在线| 少妇被爽到高潮喷水久久欧美精品| 国产午夜精品久久久久免费视 | 亚洲午夜成人片| 黄片亚洲精品在线观看| 日本不卡视频一区二区| 欧美丰满熟妇bbbbbb| 国产成人无码区免费网站| JIZZJIZZ国产| 黄页免费人成网址大全| 精品亚洲成a人在线观看| 亚洲国产精品毛片av不卡在线| 国产精品白浆在线观看无码专区| 国产精品久久中文字幕第一页| 国产免费人成视频在线观看播放播| 又大又粗欧美黑人aaaaa片| 夜先锋av资源网站| 亚洲日本va中文字幕久久| 女同性恋亚洲一区二区| 日韩精品一区二区三区在线视频 | 胳膊肘上有白色的小疙瘩| 日本熟女精品一区二区三区| 精品国产乱码久久久久久婷婷| 国产午夜福利精品久久2021| 国产美女胸大一区二区三区| 男女互舔动态视频在线观看| 山外人精品影院|