亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        探究小學(xué)數(shù)學(xué)思想滲透

        2016-05-30 04:06:24左佳
        儷人·教師版 2016年13期
        關(guān)鍵詞:應(yīng)用題方程解題

        左佳

        【摘要】數(shù)學(xué)思想是指人們對數(shù)學(xué)理論和內(nèi)容的本質(zhì)的認(rèn)識,數(shù)學(xué)方法是數(shù)學(xué)思想的具體化形式,實際上兩者的本質(zhì)是相同的,差別只是站在不同的角度看問題。通?;旆Q為“數(shù)學(xué)思想方法”。而小學(xué)數(shù)學(xué)教材是數(shù)學(xué)教學(xué)的顯性知識系統(tǒng),看不到由特殊實例的觀察、試驗、分析、歸納、抽象概括或探索推理的 心智活動過程。而數(shù)學(xué)思想方法是數(shù)學(xué)教學(xué)的隱性知識系統(tǒng)。

        【關(guān)鍵詞】小學(xué)數(shù)學(xué) 思想

        一、方程和函數(shù)思想

        在已知數(shù)與未知數(shù)之間建立一個等式,把生活語言“翻譯”成代數(shù)語言的過程就是方程思想。笛卡兒曾設(shè)想將所有的問題歸為數(shù)學(xué)問題,再把數(shù)學(xué)問題轉(zhuǎn)化成方程問題,即通過問題中的已知量和未知量之間的數(shù)學(xué)關(guān)系,運用數(shù)學(xué)的符號語言轉(zhuǎn)化為方程(組),這就是方程思想的由來。

        在小學(xué)階段,學(xué)生在解應(yīng)用題時仍停留在小學(xué)算術(shù)的方法上,一時還不能接受方程思想,因為在算求解題時,只允許具體的已知數(shù)參加運算,算術(shù)的結(jié)果就是要求未知數(shù)的解,在算術(shù)解題過程中最大的弱點是未知數(shù)不允許作為運算對象,這也是算術(shù)的致命傷。而在代數(shù)中未知數(shù)和已知數(shù)一樣有權(quán)參加運算,用字母表示的未知數(shù)不是消極地被動地靜止在等式一邊,而是和已知數(shù)一樣,接受和執(zhí)行各種運算,可以從等式的一邊移到另一邊,使已知與未知之間的數(shù)學(xué)關(guān)系十分清晰,在小學(xué)中高年級數(shù)學(xué)教學(xué)中,若不滲透這種方程思想,學(xué)生的數(shù)學(xué)水平就很難提高。例如稍復(fù)雜的分?jǐn)?shù)、百分?jǐn)?shù)應(yīng)用題、行程問題、還原問題等,用代數(shù)方法即假設(shè)未知數(shù)來解答比較簡便,因為用字母x表示數(shù)后,要求的未知數(shù)和已知數(shù)處于平等的地位,數(shù)量關(guān)系就更加明顯,因而更容易思考,更容易找到解題思路。在近代數(shù)學(xué)中,與方程思想密切相關(guān)的是函數(shù)思想,它利用了運動和變化觀點,在集合的基礎(chǔ)上,把變量與變量之間的關(guān)系,歸納為兩集合中元素間的對應(yīng)。數(shù)學(xué)思想是現(xiàn)實世界數(shù)量關(guān)系深入研究的必然產(chǎn)物,對于變量的重要性,恩格斯在自然辯證法一書有關(guān)“數(shù)學(xué)”的論述中已闡述得非常明確:“數(shù)學(xué)中的轉(zhuǎn)折點是笛卡兒的變數(shù),有了變數(shù),運動進(jìn)入了數(shù)學(xué);有了變數(shù),辨證法進(jìn)入了數(shù)學(xué);有了變數(shù),微分與積分也立刻成為必要的了?!睌?shù)學(xué)思想本質(zhì)地辨證地反映了數(shù)量關(guān)系的變化規(guī)律,是近代數(shù)學(xué)發(fā)生和發(fā)展的重要基礎(chǔ)。在小學(xué)數(shù)學(xué)教材的練習(xí)中有如下形式:

        6×3= 20×5= 700×800=

        60×3= 20×50= 70×800=

        600×3= 20×500= 7×800=

        有些老師,讓學(xué)生計算完畢,答案正確就滿足了。有經(jīng)驗的老師卻這樣來設(shè)計教學(xué):先計算,后核對答案,接著讓學(xué)生觀察所填答案有什么特點(找規(guī)律),答案的變化是怎樣引起的?然后再出現(xiàn)下面兩組題:

        45×9= 1800÷200=

        15×9= 1800÷20=

        5×9= 1800÷2=

        通過對比,讓學(xué)生體會“當(dāng)一個數(shù)變化,另一個數(shù)不變時,得數(shù)變化是有規(guī)律的”,結(jié)論可由學(xué)生用自己的話講出來,只求體會,不求死記硬背。研究和分析具體問題中變量之間關(guān)系一般用解析式的形式來表示,這時可以把解析式理解成方程,通過對方程的研究去分析函數(shù)問題。中學(xué)階段這方面的內(nèi)容較多,有正反比例函數(shù),一次函數(shù),二次函數(shù),冪指對函數(shù),三角函數(shù)等等,小學(xué)雖不多,但也有,如在分?jǐn)?shù)應(yīng)用題中十分常見,一個具體的數(shù)量對應(yīng)于一個抽象的分率,找出數(shù)量和分率的對應(yīng)恰是解題之關(guān)鍵;在應(yīng)用題中也常見,如行程問題,客車的速度與所行時間對應(yīng)于客車所行的路程,而貨車的速度與所行時間對應(yīng)于貨車所行的路程;再如一元方程x+a=b等等。 學(xué)好這些函數(shù)是繼續(xù)深造所必需的;構(gòu)造函數(shù),需要思維的飛躍;利用函數(shù)思想,不但能達(dá)到解題的要求,而且思路也較清晰,解法巧妙,引人入勝。

        二、化歸思想

        化歸思想是把一個實際問題通過某種轉(zhuǎn)化、歸結(jié)為一個數(shù)學(xué)問題,把一個較復(fù)雜的問題轉(zhuǎn)化、歸結(jié)為一個較簡單的問題。應(yīng)當(dāng)指出,這種化歸思想不同于一般所講的“轉(zhuǎn)化”、“轉(zhuǎn)換”。它具有不可逆轉(zhuǎn)的單向性。

        例: 狐貍和黃鼠狼進(jìn)行跳躍比賽,狐貍每次可向前跳4 1/2 米,黃鼠狼每次可向前跳2 3/4米。它們每秒種都只跳一次。比賽途中,從起點開始,每隔12 3/8米設(shè)有一個陷阱, 當(dāng)它們之中有一個掉進(jìn)陷阱時,另 一個跳了多少米?

        這是一個實際問題,但通過分析知道,當(dāng)狐貍(或黃鼠狼)第一次掉進(jìn)陷阱時,它所跳過的距離即是它每 次所跳距離4 1/2(或2 3/4)米的整倍數(shù),又是陷阱間隔12 3/8米的整倍數(shù),也就是4 1/2和12 3/8的“ 最小公倍數(shù)”(或2 3/4和12 3/8的“最小公倍數(shù)”)。針對兩種情況,再分別算出各跳了幾次,確定誰先掉 入陷阱,問題就基本解決了。上面的思考過程,實質(zhì)上是把一個實際問題通過分析轉(zhuǎn)化、歸結(jié)為一個求“最小公倍數(shù)”的問題,即把一個實際問題轉(zhuǎn)化、歸結(jié)為一個數(shù)學(xué)問題,這種化歸思想正是數(shù)學(xué)能力的表現(xiàn)之一。

        三、極限的思想方法

        極限的思想方法是人們從有限中認(rèn)識無限,從近似中認(rèn)識精確,從量變中認(rèn)識質(zhì)變的一種數(shù)學(xué)思想方法,它是事物轉(zhuǎn)化的重要環(huán)節(jié),了解它有重要意義。

        現(xiàn)行小學(xué)教材中有許多處注意了極限思想的滲透。在“自然數(shù)”、“奇數(shù)”、“偶數(shù)”這些概念教學(xué)時,教師可讓學(xué)生體會自然數(shù)是數(shù)不完的,奇數(shù)、偶數(shù)的個數(shù)有無限多個,讓學(xué)生初步體會“無限”思想;在循環(huán)小數(shù)這一部分內(nèi)容中,1÷3=0.333…是一循環(huán)小數(shù),它的小數(shù)點后面的數(shù)字是寫不完的,是無限的;在直線、射線、平行線的教學(xué)時,可讓學(xué)生體會線的兩端是可以無限延長的。

        當(dāng)然,在數(shù)學(xué)教育中,加強(qiáng)數(shù)學(xué)思想不只是單存的思維活動,它本身就蘊(yùn)涵了情感素養(yǎng)的熏染。而這一點在傳統(tǒng)的數(shù)學(xué)教育中往往被忽視了。我們在強(qiáng)調(diào)學(xué)習(xí)知識和技能的過程和方法的同時,更加應(yīng)該關(guān)注的是伴隨這一過程而產(chǎn)生的積極情感體驗和正確的價值觀?!稑?biāo)準(zhǔn)》把“情感與態(tài)度”作為四大目標(biāo)領(lǐng)域之一,與“知識技能”、“數(shù)學(xué)思考”、“解決問題”三大領(lǐng)域相提并論,這充分說明新一輪的數(shù)學(xué)課程標(biāo)準(zhǔn)改革對培養(yǎng)學(xué)生良好的情感與態(tài)度的高度重視。它應(yīng)該包括能積極參與數(shù)學(xué)學(xué)習(xí)活動,對數(shù)學(xué)有好奇心與求知欲。在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心。初步認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性,形成實事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨立思考的習(xí)慣。另一方面引導(dǎo)學(xué)生在學(xué)習(xí)知識的過程中,學(xué)會合作學(xué)習(xí),培養(yǎng)探究與創(chuàng)造精神,形成正確的人格意識。

        猜你喜歡
        應(yīng)用題方程解題
        應(yīng)用題
        用“同樣多”解題
        設(shè)而不求巧解題
        方程的再認(rèn)識
        有限制條件的排列應(yīng)用題
        方程(組)的由來
        用“同樣多”解題
        圓的方程
        解題勿忘我
        走近打折應(yīng)用題
        操国产丝袜露脸在线播放| 最新69国产成人精品视频免费 | 国产美女一级做a爱视频| 中文字幕二区三区在线| 美妇炮灰被狂躁爽到高潮h| 国产午夜福利精品一区二区三区 | 伊人久久大香线蕉综合影院首页| 亚洲日韩欧美一区二区三区| 一区二区三区国产97| 国产午夜免费啪视频观看| 亚洲欧美日韩另类精品一区| 亚洲av无码电影网| 亚洲AV成人综合五月天在线观看| 中文字幕日韩高清乱码| 东京热久久综合久久88| 少妇激情av一区二区| 亚洲国产精品日韩专区av| 久久精品国产亚洲av影院毛片| 亚洲国产精品一区二区www| 精品人妻少妇一区二区不卡| 国产一区二区三区四区色| 99久久99久久久精品蜜桃| 在线看片免费人成视频久网下载| 538在线啪在线观看| 成人在线视频自拍偷拍| 精品人妻av一区二区三区| 一本加勒比hezyo无码人妻| 中文岛国精品亚洲一区| 美女被内射很爽的视频网站| 全黄性性激高免费视频| 国产黑色丝袜在线观看下| av毛片一区二区少妇颜射| 日本av一区二区三区在线| 亚洲av日韩综合一区在线观看| 日韩五十路| 美利坚合众国亚洲视频| 亚洲av综合av一区| A午夜精品福利在线| 亚洲午夜精品国产一区二区三区 | 国产精久久一区二区三区| 国产98在线 | 免费|