陳曉雯 杜曉燕 劉文婷 陳文靜 李紅瑜 彭芬芬 陳毅華 龍海波
高糖及核因子κB通路誘導(dǎo)足細(xì)胞上皮間充質(zhì)轉(zhuǎn)分化的研究
陳曉雯 杜曉燕 劉文婷 陳文靜 李紅瑜 彭芬芬 陳毅華 龍海波
目的:探討高糖對(duì)小鼠足細(xì)胞上皮間充質(zhì)轉(zhuǎn)分化(EMT)與遷移的影響及其分子機(jī)制。 方法:以永生化小鼠足細(xì)胞株(足細(xì)胞)為研究對(duì)象,設(shè)置正常糖組(5 mmol/L葡萄糖)、甘露醇組(5 mmol/L葡萄糖+25 mmol/L甘露醇)、高糖組(30 mmol/L葡萄糖)、核因子κB(NF-κB)特異性抑制劑小白菊內(nèi)酯(PTL)+高糖組,作用時(shí)間24h。采用Transwell檢測(cè)細(xì)胞遷移能力,Western Blot檢測(cè)蛋白表達(dá),qPCR檢測(cè)mRNA表達(dá)情況,免疫熒光檢測(cè)NF-κB入核情況。 結(jié)果:與正常糖及甘露醇組比較,高糖刺激足細(xì)胞 24h后細(xì)胞的遷移能力明顯增強(qiáng)(P<0.05),足細(xì)胞特征性蛋白nephrin明顯下調(diào)(P<0.05),纖連蛋白(FN)及mRNA表達(dá)顯著增加(P<0.05),而E鈣黏蛋白(E-cadherin)及其mRNA表達(dá)明顯下降(P<0.05)。同時(shí),與上述對(duì)照組比較,高糖明顯上調(diào)p-IκBα(P<0.05)下調(diào)IκBα(P<0.05)促使足細(xì)胞胞質(zhì)中的NF-κB入核同時(shí)上調(diào)p-p65的表達(dá);干預(yù)細(xì)胞PTL后,足細(xì)胞的EMT和遷移得到明顯抑制(P<0.05),nephrin蛋白表達(dá)明顯上升(P<0.05)。 結(jié)論:高糖通過激活NF-κB通路誘導(dǎo)足細(xì)胞發(fā)生EMT及遷移。
高糖 足細(xì)胞 上皮間充質(zhì)轉(zhuǎn)分化 遷移 核因子κB
糖尿病腎病(DN)是糖尿病常見的微血管并發(fā)癥,主要以進(jìn)展性的蛋白尿及逐漸下降的腎小球?yàn)V過率為特征,是導(dǎo)致終末期腎衰竭的主要病因[1-2]。足細(xì)胞是腎小球?yàn)V過屏障的重要組成部分,其損傷的嚴(yán)重程度能預(yù)測(cè)和判斷蛋白尿的發(fā)生與發(fā)展,并可能是早期DN的預(yù)測(cè)指標(biāo)[3-5]。近幾年越來越多研究表明,足細(xì)胞、腎小管上皮細(xì)胞等腎臟固有細(xì)胞發(fā)生上皮細(xì)胞間充質(zhì)轉(zhuǎn)分化(EMT)及隨后遷移能力的增強(qiáng)是導(dǎo)致蛋白尿發(fā)生和腎臟纖維化的重要原因[6-8]。然而,有關(guān)在高糖環(huán)境中足細(xì)胞是否發(fā)生EMT與遷移以及該過程如何調(diào)控的研究甚少。本研究旨在探討高糖環(huán)境中足細(xì)胞是否發(fā)生EMT與遷移及其潛在的調(diào)控機(jī)制。
細(xì)胞株與實(shí)驗(yàn)試劑 永生性小鼠足細(xì)胞(足細(xì)胞)由中山大學(xué)附屬第三醫(yī)院婁探奇教授惠贈(zèng)。DMEM培養(yǎng)液及胎牛血清購(gòu)自美國(guó)Gibco公司,重組小鼠γ干擾素(IFN-γ)購(gòu)自美國(guó)Pepro Tech公司,Transwell小室購(gòu)自美國(guó)康寧公司,抗小鼠纖連蛋白(FN)及抗小鼠E鈣黏蛋白(E-cadherin)均購(gòu)自美國(guó)BD公司,抗小鼠p65、抗小鼠p-p65、抗小鼠IκBα、抗小鼠p-IκBα、抗小鼠p65、抗小鼠p-p65及抗小鼠Tubulin均購(gòu)自美國(guó)Cell Signaling Technology公司,HRP-羊抗兔IgG購(gòu)自美國(guó)EarthOx公司,Trizol試劑、熒光二抗AlexaFluor 488購(gòu)自美國(guó)Invitrogen 公司,反轉(zhuǎn)錄試劑盒(Code No.RR047A)及SYBR? Premix Ex Taq II Real Time PCR試劑盒(Code No.RR820A)購(gòu)自日本Takara公司。
實(shí)驗(yàn)方法
足細(xì)胞培養(yǎng) 足細(xì)胞培養(yǎng)分兩個(gè)階段:(1)增殖階段:于33℃、 5%CO2、50 IU/ml重組小鼠 IFN-γ 的條件下誘導(dǎo)足細(xì)胞增殖;(2)分化階段:于37℃、5%CO2、不含IFN-γ的條件下培養(yǎng)10~14d足細(xì)胞獲得分化表型,即可用于實(shí)驗(yàn)研究。
實(shí)驗(yàn)分組 (1)設(shè)置正常糖濃度組(5 mmol/L葡萄糖)、甘露醇組(5 mmol/L葡萄糖+25 mmol/L甘露醇)、高糖濃度組(30 mmol/L葡萄糖);(2)小白菊內(nèi)酯(PTL)干預(yù)高糖組(高糖組+10 μmol/L PTL)
Transwell實(shí)驗(yàn) 分別將上述各組細(xì)胞以5×104/孔接種于Transwell板小室上室,小室外加入500 μl完全培養(yǎng)基。培養(yǎng)24h后,分別取出小室,用PBS輕輕洗3遍后,4%多聚甲醛固定10 min,DAPI染色10 min后于顯微鏡下計(jì)數(shù)遷移至微孔膜下層的細(xì)胞,每個(gè)樣本記數(shù)10個(gè)視野。
Western Blot 上述各組的足細(xì)胞培養(yǎng)24h后,預(yù)冷的PBS輕輕潤(rùn)洗細(xì)胞3遍后,加細(xì)胞裂解液RIPA,冰上裂解10 min后刮取細(xì)胞蛋白于1.5 ml EP管中12 000 轉(zhuǎn)/min離心20 min,收集上清,定量,蛋白變性后上樣,進(jìn)行SDS-PAGE電泳90 min后濕轉(zhuǎn)至PVDF膜。5%脫脂奶粉封閉1h,分別加一抗FN、E-cadherin、p65、p-p65、IκBα、p-IκBα、Tubulin(稀釋濃度均為1∶ 1 000)過夜。次日孵二抗HRP-羊抗兔IgG(1∶ 10 000)室溫1h后用ECL化學(xué)發(fā)光劑在化學(xué)發(fā)光成像儀上發(fā)光并攝像。圖像結(jié)果采用Quantity One 4.6.2分析軟件進(jìn)行灰度值檢測(cè)分析。
實(shí)時(shí)熒光定量PCR 檢測(cè)mRNA 的表達(dá),上 述各組的足細(xì)胞培養(yǎng)24h 后,用Trizol 提取細(xì)胞總 RNA 進(jìn)行反轉(zhuǎn)錄及qPCR 檢測(cè),反應(yīng)條件為94℃預(yù) 變性2 min,94℃變性15s,60℃退火延伸30s,擴(kuò)增 40 個(gè)循環(huán)。引物: FN: 5’-TACGGAGAGACAGGAGGAAATA- 3’( 正向引物) ,5’-GACTACACCATCACCCTGTATG- 3’( 反向引物) ; E-cadherin: 5’-ACCTCTGTGATGGAGGTC- 3’( 正向引物) ,5’-CCACATTCGTCACTGCTA- 3’( 正向引物) ; GAPDH: 5’-AACAGCAACTCCCACTCTTC -3’( 正向引物) ,5’-AATACGGCTACAGCAACAGG- 3’( 反向引物) 。通過2-△△ct法進(jìn)行統(tǒng)計(jì)分析(表示實(shí)驗(yàn)組的目的基因的表達(dá)相對(duì)于對(duì)照組的變化倍數(shù))。
免疫熒光 足細(xì)胞爬片于已高壓消毒的蓋玻片上后于六孔板中按照上述實(shí)驗(yàn)分組(1)進(jìn)行干預(yù)細(xì)胞24h后,預(yù)冷PBS輕輕洗細(xì)胞3遍,4%多聚甲醛固定10 min,PBS洗去固定液后5% BSA室溫封閉30 min,37℃孵一抗p65(1∶ 400)2h,PBS清洗一抗后37℃孵二抗AlexaFluor 488(1∶ 1 000),PBS清洗二抗后室溫孵育DAPI 10 min,熒光顯微鏡下拍攝觀察。
統(tǒng)計(jì)學(xué)分析 采用SPSS 20.0進(jìn)行統(tǒng)計(jì)分析,所有實(shí)驗(yàn)數(shù)據(jù)均用均數(shù)±標(biāo)準(zhǔn)差表示,實(shí)驗(yàn)均重復(fù)3遍。多個(gè)樣本均數(shù)比較采用One-way ANOVA,兩兩比較采用LSD,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
高糖誘導(dǎo)足細(xì)胞遷移 由Transwell結(jié)果顯示,與正常組對(duì)比,高糖刺激足細(xì)胞 24h后,足細(xì)胞遷移能力明顯增強(qiáng),而甘露醇組足細(xì)胞遷移不明顯,與正常組組相近,提示高糖誘導(dǎo)足細(xì)胞發(fā)生遷移不受滲透壓影響(圖1A)。圖1B顯著高糖環(huán)境中發(fā)生遷移的足細(xì)胞數(shù)目為(89±14.0)個(gè),明顯高于正常組(9.3±4.0)個(gè)與甘露醇組(9.3±1.5)個(gè)。
圖1 熒光顯微鏡下遷移的足細(xì)胞 DAPI核染色圖像(IF,×200)及遷移細(xì)胞計(jì)數(shù)NG:正常糖濃度組;MA:甘露醇組;HG:高糖濃度組;*:與NG組比較,P<0.05
高糖誘導(dǎo)足細(xì)胞發(fā)生EMT 與正常組比較,高糖組足細(xì)胞特征性蛋白nephrin的蛋白表達(dá)明顯降低,而甘露醇組則無顯著性變化,提示高糖對(duì)足細(xì)胞具有損傷作用(圖2A、B)。與正常組相比,高糖組足細(xì)胞的間質(zhì)細(xì)胞標(biāo)志物FN明顯升高,而上皮細(xì)胞標(biāo)志物E-cadherin顯著降低,甘露醇組則無明顯變化,表明高糖誘導(dǎo)足細(xì)胞發(fā)生EMT而非滲透壓(圖2A、B)。qPCR結(jié)果顯示在mRNA水平上,與正常組比較,高糖組FN的mRNA明顯升高而E-cadherin的mRNA則明顯下降(圖2C),表明高糖不僅從蛋白水平而且從mRNA水平影響足細(xì)胞的EMT。
高糖激活NF-κB通路 免疫熒光結(jié)果顯示,與正常組比較,在足細(xì)胞中高糖明顯誘導(dǎo)p65蛋白由胞質(zhì)進(jìn)入胞核,而甘露醇組p65蛋白仍處于胞質(zhì)中(圖3A)。Western Blot結(jié)果顯示,與正常組比較,高糖組p-IκBα明顯上調(diào)而IκBα明顯減少,p65蛋白水平無明顯變化而p65的磷酸化水平p-p65則明顯升高,上述蛋白在甘露醇組無顯著變化(圖3B、C)。以上結(jié)果表明在高糖刺激的足細(xì)胞中,NF-κB通路處于激活狀態(tài)。
圖2 高糖刺激足細(xì)胞后nephrin及EMT相關(guān)蛋白表達(dá)EMT:上皮細(xì)胞間充質(zhì)轉(zhuǎn)分化;FN:纖連蛋白;E-cadherin:E鈣黏蛋白;NG:正常糖濃度組;MA:甘露醇組;HG:高糖濃度組;Tubulin:內(nèi)參微管蛋白;*:與NG組比較,P<0.05
圖3 熒光顯微鏡下p65入核情況(IF,×400)及相關(guān)蛋白表達(dá)NG:正常糖濃度組;MA:甘露醇組;HG:高糖濃度組;*:與NG組比較,P<0.05
NF-κB介導(dǎo)高糖誘導(dǎo)的足細(xì)胞發(fā)生EMT及遷移 NF-κB特異性抑制劑PTL與高糖共同孵育足細(xì)胞 24h后觀察到,高糖引起的足細(xì)胞遷移明顯得到抑制(圖4A、B)。同樣地,Western Blot結(jié)果顯示,PTL可明顯下調(diào)高糖誘導(dǎo)足細(xì)胞FN的高表達(dá)并上調(diào)nephrin及E-cadherin的蛋白表達(dá)(圖4C、D)。qPCR結(jié)果顯示,在mRNA水平,高糖顯著誘導(dǎo)FN的mRNA高表達(dá),PTL能夠明顯抑制其表達(dá),同樣高糖可下調(diào)E-cadherin的mRNA表達(dá),而PTL可上調(diào)其mRNA表達(dá)(圖4E)。以上結(jié)果表明NF-κB通路的活化介導(dǎo)高糖誘導(dǎo)的足細(xì)胞發(fā)生EMT及遷移。
圖4 熒光顯微鏡下遷移的足細(xì)胞 DAPI核染色圖像(IF,×200)及EMT相關(guān)蛋白表達(dá)FN:纖連蛋白;E-cadherin:E鈣黏蛋白;NG:正常糖濃度組;MA:甘露醇組;HG:高糖濃度組;PLT:小白菊內(nèi)酯;EMT:上皮間充質(zhì)轉(zhuǎn)分化;*:與正常組NG比較,P<0.05,#:與高糖組HG比較,P<0.05
足細(xì)胞損傷是促成DN發(fā)生發(fā)展的重要原因。然而,足細(xì)胞發(fā)生什么樣的損傷會(huì)導(dǎo)致疾病的發(fā)生與發(fā)展至今眾說紛紜,涉及到足細(xì)胞的肥大、萎縮、自噬、去分化、凋亡等。近幾年越來越多的研究表明,足細(xì)胞受到外界刺激時(shí)可能會(huì)經(jīng)歷一種表型的轉(zhuǎn)化EMT,即失去本身上皮細(xì)胞的特征蛋白(nephrin、E-cadherin及ZO-1等),而獲得間質(zhì)細(xì)胞的特征蛋白[如肌間線蛋白(desmin)、成纖維細(xì)胞特異蛋白1(fibroblast-specific protein-1)、Ⅰ型膠原(type Ⅰ collagen)及纖維連接蛋白(fibronectin)等][6-7]。這種轉(zhuǎn)化會(huì)讓足細(xì)胞遷移能力增強(qiáng),易從腎小球基膜上剝脫,導(dǎo)致濾過屏障的破壞進(jìn)而大量蛋白漏出。然而,足細(xì)胞發(fā)生EMT進(jìn)而遷移的潛在機(jī)制至今尚不清楚。本研究發(fā)現(xiàn),NF-κB通路介導(dǎo)著高糖誘導(dǎo)的足細(xì)胞發(fā)生EMT及遷移。我們的結(jié)果顯示,在高糖刺激下,足細(xì)胞遷移能力增強(qiáng), FN表達(dá)上調(diào)而E-cadherin表達(dá)下調(diào),同時(shí)NF-κB通路處于激活狀態(tài);干預(yù)NF-κB特異性抑制藥物PTL后,足細(xì)胞遷移與EMT明顯得到抑制。這個(gè)研究為足細(xì)胞遷移與EMT的機(jī)制研究提供新的觀點(diǎn),揭示了NF-κB可能是防治DN的一個(gè)有效干預(yù)靶點(diǎn)。
NF-κB是一種轉(zhuǎn)錄因子蛋白家族,在哺乳動(dòng)物中包括5個(gè)亞基:Rel(cRel)、p65(RelA,NF-κB3)、RelB、p50(NF-κB1,前體為p105)、p52(NF-κB2,前體為p100),起轉(zhuǎn)錄激活作用的只有p65、cRel和RelB[9]。由上述亞基中的兩個(gè)形成的同源和(或)異源二聚體與靶基因上特定的序列(NF-κB位點(diǎn))結(jié)合調(diào)節(jié)基因轉(zhuǎn)錄,其中最常見的NF-κB二聚體是p65/p50, p65主要結(jié)合DNA,而p50起輔助作用[10]。一般情況下,NF-κB在胞質(zhì)中與IκB結(jié)合在一起處于穩(wěn)定狀態(tài),外界損傷刺激作用于細(xì)胞表面受體后激活I(lǐng)KK復(fù)合體(NEMO、IKKα、IKKβ),將IκB磷酸化或(和)泛素化水解后釋放出p65/p50并移位至胞核中,與靶基因的NF-κB結(jié)合位點(diǎn)即啟動(dòng)子或增強(qiáng)子結(jié)合,誘導(dǎo)基因轉(zhuǎn)錄,促進(jìn)細(xì)胞因子、炎癥因子的產(chǎn)生及細(xì)胞增殖與分化等。NF-κB通路的調(diào)節(jié)紊亂促成了許多免疫炎癥性疾病的發(fā)生,包括糖尿病[11-13]。NF-κB基因的多態(tài)性影響1型與2型糖尿病的易感性及微血管、動(dòng)脈粥樣病變并發(fā)癥患者的預(yù)后[14-16]。高血糖、高血脂、氧化應(yīng)激及炎癥反應(yīng)等亦可通過激活NF-κB通路促成糖尿病并發(fā)癥的發(fā)生[17]。目前,部分細(xì)胞實(shí)驗(yàn)與動(dòng)物實(shí)驗(yàn)已表明,DN中高糖通過激活NF-κB通路誘導(dǎo)腎臟或者腎臟固有細(xì)胞(系膜細(xì)胞、足細(xì)胞、內(nèi)皮細(xì)胞)氧化應(yīng)激與炎癥反應(yīng),其調(diào)控機(jī)制主要是IKK、IκBα的磷酸化、IκBα的泛素化等[18-21]。我們課題組前期實(shí)驗(yàn)亦發(fā)現(xiàn)高糖可通過降解IκBα激活NF-κB促進(jìn)系膜細(xì)胞增生及白細(xì)胞介素6、轉(zhuǎn)化生長(zhǎng)因子β1等炎癥因子的產(chǎn)生,晚期氧化蛋白產(chǎn)物可通過IKK/NF-κB依賴機(jī)制誘導(dǎo)足細(xì)胞單核細(xì)胞趨化蛋白1的表達(dá)[22-23]。近年來研究發(fā)現(xiàn),NF-κB通路不僅參與炎癥及氧化應(yīng)激反應(yīng),其在腫瘤細(xì)胞的EMT及遷移中亦發(fā)揮關(guān)鍵作用。Kumar等[24]發(fā)現(xiàn)誘導(dǎo)非小細(xì)胞性肺癌細(xì)胞系EMT時(shí)NF-κB通路處于持續(xù)激活狀態(tài),抑制NF-κB后EMT主要轉(zhuǎn)錄因子表達(dá)受限,細(xì)胞的侵襲與遷移亦得到抑制。Paranjape等[25]報(bào)道NF-κB通路是Bmi1調(diào)節(jié)Nanog表達(dá)促成乳腺癌細(xì)胞EMT的關(guān)鍵通路。在腎臟相關(guān)細(xì)胞中,Berzal等[26]發(fā)現(xiàn)抑制NF-κB通路可明顯減少腫瘤壞死因子相關(guān)的細(xì)胞凋亡誘導(dǎo)劑(TWEAK)誘導(dǎo)的腎小管上皮細(xì)胞連接蛋白的丟失及發(fā)生EMT,體內(nèi)UUO模型小鼠實(shí)驗(yàn)亦證明p65的激活與EMT密切相關(guān)[27]。Ghiggeri等[28]發(fā)現(xiàn)Nephrin的缺失可能是導(dǎo)致人足細(xì)胞細(xì)胞間連接受損進(jìn)而發(fā)生EMT的重要原因,β-catenin/NF-κB通路可能是其潛在的調(diào)節(jié)機(jī)制。然而,目前有關(guān)NF-κB參與高糖誘導(dǎo)足細(xì)胞發(fā)生EMT及遷移的具體機(jī)制尚未完全清楚。本課題組在此次研究中發(fā)現(xiàn)高糖刺激足細(xì)胞發(fā)生EMT與遷移,阻斷NF-κB通路后,EMT與遷移可被明顯抑制。由此推測(cè),在高糖環(huán)境中IκBα被磷酸化與降解而釋放出NF-κB/p65入核與靶基因結(jié)合調(diào)控FN和E-cadherin的表達(dá),從而誘導(dǎo)EMT,足細(xì)胞發(fā)生EMT后會(huì)變得更具活動(dòng)性,易發(fā)生遷移而脫離腎小球基膜,最終導(dǎo)致濾過屏障的破壞、大量蛋白尿的產(chǎn)生。
總而言之,本研究通過高糖刺激足細(xì)胞發(fā)現(xiàn)高糖誘發(fā)足細(xì)胞EMT與遷移,激活NF-κB信號(hào)通路啟動(dòng)EMT相關(guān)基因轉(zhuǎn)錄,使足細(xì)胞失去上皮細(xì)胞的特征,發(fā)生遷移,進(jìn)而導(dǎo)致濾過屏障結(jié)構(gòu)的破壞。這一結(jié)果有望為理解足細(xì)胞在DN的發(fā)生發(fā)展中的關(guān)鍵作用及其分子機(jī)制提供新的研究依據(jù)和啟示。
1 Ritz E,Rychlík I,Locatelli F,et al.End-stage renal failure in type 2 diabetes:A medical catastrophe of worldwide dimensions.Am J Kidney Dis,1999,34(5):795-808.
2 Ritz E,Orth SR.Nephropathy in patients with type 2 diabetes mellitus.N Engl J Med,1999,341(15):1127-1133.
3 Meyer TW,Bennett PH,Nelson RG.Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria.Diabetologia,1999,42(11):1341-1344.
4 Anil Kumar P,Welsh GI,Saleem MA,et al.Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus.Front Endocrinol (Lausanne),2014,5:151.
5 李琴.足細(xì)胞骨架結(jié)構(gòu)的調(diào)節(jié)機(jī)制與蛋白尿.腎臟病與透析腎移植雜志,2011,20(2):149-153.
6 Kang YS,Li Y,Dai C,et al.Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria.Kidney Int,2010,78(4):363-373.
7 Ghiggeri GM,Gigante M,Di Donato A.Constitutional Nephrin Deficiency in Conditionally Immortalized Human Podocytes Induced Epithelial-Mesenchymal Transition,Supported by beta-Catenin/NF-kappa B Activation:A Consequence of Cell Junction Impairment? Int J Nephrol,2013,2013:457490.
8 彭翔.足細(xì)胞向間充質(zhì)細(xì)胞轉(zhuǎn)分化的研究.腎臟病與透析腎移植雜志,2010,19(6):545-551.
9 Wan F,Lenardo MJ.Specification of DNA binding activity of NF-kappaB proteins.Cold Spring Harb Perspect Biol,2009,1(4):a000067.
10 Panzer U,Steinmetz OM,Turner JE,et al.Resolution of renal inflammation:a new role for NF-kappaB1 (p50) in inflammatory kidney diseases.Am J Physiol Renal Physiol,2009,297(2):F429-439.
11 Hayden MS,Ghosh S.NF-kappaB in immunobiology.Cell Res,2011,21(2):223-244.
12 H?cker H,Karin M.Regulation and function of IKK and IKK-related kinases.Sci STKE,2006,2006(357):re13.
13 Hinz M,Scheidereit C.The IkappaB kinase complex in NF-kappaB regulation and beyond.EMBO Rep,2014,15(1):46-61.
14 Schmid H,Boucherot A,Yasuda Y,et al.Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy.Diabetes,2006,55(11):2993-3003.
15 Hegazy DM,O′Reilly DA,Yang BM,et al.NFkappaB polymorphisms and susceptibility to type 1 diabetes.Genes Immun,2001,2(6):304-308.
16 Romzova M,Hohenadel D,Kolostova K,et al.NFkappaB and its inhibitor IkappaB in relation to type 2 diabetes and its microvascular and atherosclerotic complications.Hum Immunol,2006,67(9):706-713.
17 Baker RG,Hayden MS,Ghosh S.NF-κB,inflammation,and metabolic disease.Cell Metab,2011,13(1):11-22.
18 Kolati SR,Kasala ER,Bodduluru LN,et al.BAY 11-7082 ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated oxidative stress and renal inflammation via NF-kappaB pathway.Environ Toxicol Pharmacol,2015,39(2):690-699.
19 Huang H,Xin H,Liu X,et al.Novel anti-diabetic effect of SCM-198 via inhibiting the hepatic NF-kappaB pathway in db/db mice.Biosci Rep,2012,32(2):185-195.
20 Gao C,Huang W,Kanasaki K,et al.The role of ubiquitination and sumoylation in diabetic nephropathy.Biomed Res Int,2014,2014:160692.
21 Xie X,Peng J,Chang X,et al.Activation of RhoA/ROCK regulates NF-kappaB signaling pathway in experimental diabetic nephropathy.Mol Cell Endocrinol,2013,369(1-2):86-97.
22 Zhao Y,Chen SJ,Wang JC,et al.Sesquiterpene lactones inhibit advanced oxidation protein product-induced MCP-1 expression in podocytes via an IKK/NF-kappaB-dependent mechanism.Oxid Med Cell Longev,2015,2015:934058.
23 Jia QQ,Wang JC,Long J,et al.Sesquiterpene lactones and their derivatives inhibit high glucose-induced NF-kappaB activation and MCP-1 and TGF-beta1 expression in rat mesangial cells.Molecules,2013,18(10):13061-13077.
24 Kumar M,Allison DF,Baranova NN,et al.NF-kappaB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells.PLoS One,2013,8(7):e68597.
25 Paranjape AN,Balaji SA,Mandal T,et al.Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog.BMC Cancer,2014,14:785.
26 Berzal S,González-Guerrero C,Rayego-Mateos S,et al.TNF-related weak inducer of apoptosis (TWEAK) regulates junctional proteins in tubular epithelial cells via canonical NF-kappaB pathway and ERK activation.J Cell Physiol,2015,230(7):1580-1593.
27 Kim J,Yoon SP,Toews ML,et al.Pharmacological inhibition of soluble epoxide hydrolase prevents renal interstitial fibrogenesis in obstructive nephropathy.Am J physiol Renal Physiol,2015,308(2):F131-F139.
28 Ghiggeri GM,Gigante M,Di Donato A.Constitutional Nephrin Deficiency in Conditionally Immortalized Human Podocytes Induced Epithelial-Mesenchymal Transition,Supported by β-Catenin/NF-kappa B Activation:A Consequence of Cell Junction Impairment?Int J Nephrol,2013,2013:457490.
(本文編輯 青 松 加 則)
High glucose induces podocyte epithelial-mesenchymal transition and cell migration through NF-κB pathway
CHENXiaowen,DUXiaoyan,LIUWenting,CHENWenjing,LIHongyu,PENGFenfen,CHENYihua,LONGHaibo
DivisionofNephrology,ZhujiangHospital,SouthernMedicalUniversity,Guangzhou,Guangdong,510280,China
LONGHaibo(E-mail:longhb1966@163.com)
Objective:To explore the possible molecular mechanism of epithelial-mesenchymal transition (EMT) and cell migration in high glucose (HG)-induced podocytes. Methodology:Immortalized conditional mouse podocytes (MPC5) worked as the research object. Podocytes were divided into HG group (stimulated with 30 mmol/L glucose for 24 hrs), the normal glucose group (5 mmol/L glucose) and the mannitol group were set as control groups. Cell migration was examined by Transwell. The expression of protein was detected by Western blot. The mRNA level of protein was determined by qPCR. The nuclear translocation of NF-κB was observed by immunofluorescence. Results:Compared with the control groups, the cell migration was significantly enhanced (P<0.05), and the specific protein of podocytes’ Nephrin was significantly down-regulated (P<0.05). FN was significantly up-regulated (P<0.05) while E-cadherin was markedly down-regulated (P<0.05) after stimulated by HG for 24 hrs. Meanwhile, HG increased p-IκBα (P<0.05) and decreased IκBα (P<0.05) greatly, then promoted the nuclear translocation of NF-κB and up-regulated phosphorylation level of p65. Moreover, after treatment with the specific inhibitor Parthenolide (PTL), EMT and migration in podocytes were significantly inhibited and the protein level of Nephrin was up-regulated (P<0.05). Conclusion:HG induces EMT and cell migration in podocytes through NF-κB pathway.
high glucose podocyte epithelial-mesenchymal transition cell migration NF-κB
10.3969/cndt.j.issn.1006-298X.2016.02.008
廣東省科技計(jì)劃項(xiàng)目(2013B021800149,2015A020211012);廣州市科技計(jì)劃項(xiàng)目(201510010137)
南方醫(yī)科大學(xué)珠江醫(yī)院腎內(nèi)科(廣州,510280)
龍海波(E-mail:longhb1966@163.com)
2015-12-08
? 2016年版權(quán)歸《腎臟病與透析腎移植雜志》編輯部所有