邱海兵 馮起校
[摘要] 慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)是一種常見病和多發(fā)病,給患者和社會(huì)帶來(lái)巨大的經(jīng)濟(jì)負(fù)擔(dān)。肺功能試驗(yàn)是診斷慢阻肺的金標(biāo)準(zhǔn),慢阻肺急性加重的診斷則主要根據(jù)臨床表現(xiàn),缺乏量化指標(biāo)。血清生物標(biāo)記物是一種定量指標(biāo),有助于慢阻肺急性加重的診斷,可指導(dǎo)治療和預(yù)測(cè)預(yù)后。本文對(duì)最新發(fā)現(xiàn)的血清生物標(biāo)記物作一綜述。
[關(guān)鍵詞] 慢性阻塞性肺疾病;肺功能試驗(yàn);急性加重;標(biāo)記物
[中圖分類號(hào)] R563.5 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-9701(2016)09-0159-04
[Abstract] Chronic obstructive pulmonary disease(COPD) is a common and frequently-occurring disease, which may lay a huge financial burden on the patients and the society. Respiratory function tests is the gold standard for the diagnosis of COPD, but the diagnosis of acute exacerbation of COPD is mainly based on clinical manifestations, thereby lacking quantitative indicators. Serum biomarkers is a quantitative indicator that is effective in the diagnosis, treatment, and prognosis of acute exacerbation of COPD. The most recently discovered serum biomarker is reviewed in this paper.
[Key words] Chronic obstructive pulmonary disease; Respiratory function tests; Acute exacerbation; Biomarker
慢性阻塞性肺疾病(簡(jiǎn)稱慢阻肺)是一種嚴(yán)重危害人類健康的常見病和多發(fā)病,我國(guó)40歲以上人群慢阻肺的發(fā)病率約8.2%[1]。慢阻肺急性加重是指患者呼吸系統(tǒng)癥狀在短時(shí)間內(nèi)惡化的急性事件,通常需要改變治療方案,對(duì)患者的生活質(zhì)量、肺功能和社會(huì)經(jīng)濟(jì)負(fù)擔(dān)等造成負(fù)面影響[2,3]。慢阻肺患者每年約發(fā)生0.5~3.5次急性加重[4],頻發(fā)急性加重的慢阻肺患者其發(fā)作頻率隨著時(shí)間的推移有變得穩(wěn)定的趨勢(shì)[5]。根據(jù)急性加重發(fā)作的時(shí)相可以分為突發(fā)型和漸進(jìn)型急性加重。漸進(jìn)型急性加重患者的臨床癥狀相對(duì)較輕,急性加重癥狀的出現(xiàn)到高峰期約4 d,但其住院時(shí)間明顯長(zhǎng)于突發(fā)型急性加重[6]。目前慢阻肺急性加重的診斷主要根據(jù)臨床表現(xiàn),缺乏實(shí)用的實(shí)驗(yàn)室指標(biāo)[4]。血清生物標(biāo)記物是一種定量指標(biāo),有助于慢阻肺急性加重的診斷、指導(dǎo)治療和預(yù)測(cè)預(yù)后。一些簡(jiǎn)單的試驗(yàn)室指標(biāo)如C-反應(yīng)蛋白已被用于慢阻肺急性加重的診斷和預(yù)測(cè)預(yù)后[7-9]。本文對(duì)最新發(fā)現(xiàn)的慢阻肺生物標(biāo)記物綜述如下。
1 脂聯(lián)素
脂聯(lián)素是一種由脂肪組織合成和分泌的細(xì)胞因子,同時(shí)具有抗炎和促炎活性的作用,與全身的炎癥反應(yīng)以及營(yíng)養(yǎng)狀態(tài)有關(guān)[10]。代謝綜合征是慢阻肺的主要合并癥[11],而脂聯(lián)素在代謝綜合征的發(fā)病機(jī)制中發(fā)揮重要作用。研究顯示,慢阻肺患者血清脂聯(lián)素水平高于健康人群,與體重指數(shù)和1 s用力呼氣容積(forced expiratory volume in one second,F(xiàn)EV1)呈負(fù)相關(guān)[12]。Kento等[13]對(duì)3253例年齡大于40歲以上的健康人群連續(xù)監(jiān)測(cè)血清脂聯(lián)素水平和肺功能參數(shù)2年,其中872例患者于5年后重新檢測(cè)上述指標(biāo),結(jié)果顯示血清脂聯(lián)素水平不僅和FEV1呈負(fù)相關(guān),同時(shí)和FEV1每年下降的速度顯著相關(guān),提示脂聯(lián)素水平是一個(gè)可以預(yù)測(cè)普通人群FEV1下降速度的指標(biāo)。肺氣腫是慢阻肺重要的病理生理改變之一,也是其中的一個(gè)常見表型。血清脂聯(lián)素水平和CT掃描顯示的肺氣腫嚴(yán)重程度正相關(guān)[14]。Sirpa等[15]證實(shí)血清脂聯(lián)素水平與氣道阻力和功能殘氣量呈正相關(guān)。同時(shí)脂聯(lián)素基線水平高的慢阻肺患者表現(xiàn)出對(duì)氟替卡松有較好的治療效果,脂聯(lián)素水平和圣喬治評(píng)分呈負(fù)相關(guān),提示血清脂聯(lián)素可預(yù)測(cè)激素治療改善慢阻肺癥狀的有效性。一項(xiàng)研究結(jié)果表明,高脂聯(lián)素水平的慢阻肺患者的全因死亡率較高[16]。相反,LHS研究顯示慢阻肺患者的脂聯(lián)素水平和住院時(shí)間、心血管疾病的致死率負(fù)相關(guān)和呼吸系統(tǒng)疾病的致死率正相關(guān),但和全因死亡率不存在相關(guān)性[17]。上述研究結(jié)果顯示血清脂聯(lián)素水平不僅和遠(yuǎn)端的氣道阻塞和肺氣腫有關(guān),同時(shí)具有良好的預(yù)測(cè)價(jià)值,但其具體在慢阻肺發(fā)生的相關(guān)機(jī)制尚待進(jìn)一步研究。
2 尿酸
血尿酸是一項(xiàng)常規(guī)實(shí)驗(yàn)室指標(biāo),是體內(nèi)核酸中嘌呤代謝的終末產(chǎn)物。血尿酸水平增高與多種呼吸疾病有關(guān),特別是合并低氧血癥和全身性炎癥反應(yīng)[18,19]。在慢阻肺的發(fā)病機(jī)制中,吸煙誘發(fā)體內(nèi)的氧化應(yīng)激和肺部炎癥反應(yīng),導(dǎo)致肺組織的損傷和肺功能下降[20]。一項(xiàng)研究結(jié)果表明,普通健康人群的血尿酸水平和反應(yīng)氣流受限的肺功能參數(shù)存在顯著的相關(guān)性[21]。一個(gè)小的橫斷面研究結(jié)果顯示,血尿酸肌酐比值和肺功能參數(shù)呈負(fù)相關(guān),與呼吸困難評(píng)分量表的評(píng)分呈正相關(guān)[22]。Bartziokas等[23]在對(duì)314例住院慢阻肺急性加重患者的研究中發(fā)現(xiàn),血尿酸增高與更嚴(yán)重的氣流受限和頻發(fā)加重相關(guān)。Cox回歸顯示,血尿酸水平≥6.9 mg/dL時(shí)是預(yù)測(cè)慢阻肺急性加重患者30 d內(nèi)死亡風(fēng)險(xiǎn)的獨(dú)立因素,但不是1年內(nèi)死亡風(fēng)險(xiǎn)的獨(dú)立預(yù)測(cè)因素。高血尿酸水平患者的住院時(shí)間相對(duì)延長(zhǎng),無(wú)創(chuàng)通氣和入住ICU的風(fēng)險(xiǎn)更高。高尿酸水平的患者1年內(nèi)反復(fù)入院的風(fēng)險(xiǎn)更高。血尿酸是臨床實(shí)驗(yàn)室常規(guī)指標(biāo),成本較低,可重復(fù)檢測(cè),有助于識(shí)別高風(fēng)險(xiǎn)的慢阻肺患者。其潛在的臨床應(yīng)用價(jià)值巨大,但需更多的臨床試驗(yàn)證實(shí)其有效性。
3 纖維蛋白原
纖維蛋白原是一種重要的血漿糖蛋白,主要由肝臟合成并在凝血酶的作用下轉(zhuǎn)為纖維蛋白。正常人的纖維蛋白原是(1.5~3.5)g/L,在急性期可快速升高。血漿纖維蛋白原水平可預(yù)測(cè)慢阻肺患者急性加重的發(fā)生次數(shù),穩(wěn)定期慢阻肺患者的纖維蛋白原水平較高,其發(fā)生急性加重的頻率越高[24],但血漿纖維蛋白原水平不能預(yù)測(cè)FEV1的下降速度[25]。一項(xiàng)研究顯示,纖維蛋白原水平和慢阻肺的分級(jí)相關(guān),3級(jí)和4級(jí)慢阻肺患者的血漿纖維蛋白原水平>393.0 mg/dL的比例更高。當(dāng)纖維蛋白原水平>393.0 mg/dL時(shí),慢阻肺患者的死亡率和慢阻肺導(dǎo)致的住院事件的風(fēng)險(xiǎn)更高[26]。需要注意的是,P38絲裂原活化蛋白激酶抑制劑和急性加重期口服糖皮質(zhì)激素可抑制血漿纖維蛋白原的表達(dá)水平[27,28]。纖維蛋白原在慢阻肺發(fā)病的相關(guān)機(jī)制尚不清楚,需進(jìn)一步研究。
4 生成分化因子-15(growth differentiation factor-15,GDF-15)
GDF-15是一種應(yīng)激反應(yīng)蛋白,生理情況下在前列腺和胎盤中高表達(dá),其他組織微弱表達(dá)。在病理狀態(tài)下,如低氧血癥、炎癥反應(yīng)、心力衰竭和組織損傷等,GDF-15的表達(dá)水平顯著上升。近來(lái)有研究提示GDF-15可能是一個(gè)有預(yù)測(cè)價(jià)值的慢阻肺炎性指標(biāo)。該研究顯示慢阻肺急性加重期患者的血清GDF-15水平高于穩(wěn)定期患者和健康人群。急性加重期和穩(wěn)定期患者的GDF-15和C-反應(yīng)蛋白水平均呈正相關(guān),受試工作者曲線顯示GDF-15診斷慢阻肺急性加重期的效能高于C-反應(yīng)蛋白[29]。一項(xiàng)前瞻性研究顯示慢阻肺急性加重期患者的血液和誘導(dǎo)痰中GDF-15水平升高,同時(shí)存在外周血CD4+和CD8+細(xì)胞下降[30],這提示慢阻肺不僅存在全身性炎癥反應(yīng),免疫反應(yīng)還參與其中。GDF-15在慢阻肺的臨床應(yīng)用價(jià)值需進(jìn)一步地研究。
5 Clara細(xì)胞蛋白16(clara cell protein 16,CC16)
CC16是一種16-kD大小的同型二聚體蛋白,由支氣管黏膜的非纖毛上皮細(xì)胞分泌[31],具有抑制免疫反應(yīng)和抗氧化作用[32]。吸煙和肺損傷可以導(dǎo)致CC16的表達(dá)水平下降,是反映支氣管黏膜非纖毛上皮細(xì)胞功能障礙的一個(gè)血清標(biāo)記物[33]。研究顯示吸煙人群中慢阻肺患者的血清CC16表達(dá)水平較非慢阻肺患者顯著下降。在既往吸煙的慢阻肺患者中CC16表達(dá)水平與疾病嚴(yán)重程度的相關(guān)性很低[34]。Phye等對(duì)4724例中重度氣流受限患者的研究發(fā)現(xiàn),低水平的血清CC16與9年內(nèi)慢阻肺患者的FEV1下降速度有關(guān),提示CC16可用于預(yù)測(cè)慢阻肺疾病進(jìn)展[35]。
6 嗜酸性粒細(xì)胞
慢阻肺患者誘導(dǎo)痰的嗜酸性粒細(xì)胞比例增高具有重要的臨床價(jià)值,常根據(jù)誘導(dǎo)痰的細(xì)胞分類來(lái)診斷不同的慢阻肺表型[36]。當(dāng)嗜酸性粒細(xì)胞比值大于3%時(shí),提示糖皮質(zhì)激素治療效果良好[37]。誘導(dǎo)痰中嗜酸性粒細(xì)胞比例高的重度慢阻肺患者長(zhǎng)期吸入表面激素或口服糖皮質(zhì)激素可降低急性加重發(fā)作的頻率,提高生活質(zhì)量[38]。目前誘導(dǎo)痰技術(shù)相當(dāng)成熟,但也存在相對(duì)禁忌證,如患者基礎(chǔ)肺功能差(FEV1小于1 L)或存在呼吸道感染時(shí)不適合行誘導(dǎo)痰檢查。最近一項(xiàng)研究顯示,當(dāng)血液中嗜酸性粒細(xì)胞升高時(shí)予口服激素治療獲益明顯[39],提示外周血嗜酸性粒細(xì)胞同樣可以指導(dǎo)激素的使用,而且不存在禁忌證,但其應(yīng)用價(jià)值需進(jìn)一步的臨床研究來(lái)證實(shí)和推廣。
7 小結(jié)
綜上所述,血清生物標(biāo)記物可以在一定程度上反映患者的病情,有助于慢阻肺急性加重的診斷,指導(dǎo)治療和預(yù)測(cè)預(yù)后。有關(guān)慢阻肺的生物標(biāo)記物的研究雖然很多,但真正臨床上有應(yīng)用價(jià)值的甚少。慢阻肺的本質(zhì)是慢性氣道炎癥反應(yīng)性疾病,特征是存在不可逆的氣流受限和肺氣腫。許多生物標(biāo)記物只是炎癥反應(yīng)過(guò)程中的炎癥介質(zhì),輔助診斷慢阻肺急性加重的特異性低,而且不能很好地解釋其在慢阻肺發(fā)病過(guò)程中的機(jī)制,特別是如何導(dǎo)致不可逆的氣流受限和肺氣腫尚不清楚。隨著研究的深入,未來(lái)會(huì)有更多的生物標(biāo)記物用于診斷、指導(dǎo)治療和預(yù)測(cè)預(yù)后。
[參考文獻(xiàn)]
[1] Zhong N,Wang C,Yao W,et al. Prevalence of chronic obstructive pulmonary disease in China,A large,population-based survey[J]. Am J Respir Crti Care Med,2007,176(8):753-760.
[2] Rodriguez-Roisin R. Toward a consensus definition for COPD exacerbations[J]. Chest,2000,117(5 Suppl 2):398S-401S.
[3] Celli BR,Barnes PJ. Exacerbations of chronic obstructive pulmonary disease[J]. Eur Respir J,2007,29(6):1224-1238.
[4] 慢性阻塞性肺疾病急性加重(AECOPD)診治專家組. 慢性阻塞性肺疾病急性加重診治中國(guó)專家共識(shí)(草案)[J]. 中國(guó)呼吸與危重監(jiān)護(hù)雜志,2013,11(6):541-551.
[5] Hurst JR,Vestbo J,Anzueto A,et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease[J]. N Engl J Med,2010,363(12):1128-1138.
[6] Aaron SD,Donaldson GC,Whitmore GA,et al. Time course and pattern of COPD exacerbation onset[J]. Thorax,2012, 67(3),238-243.
[7] Dhal M,Vestbo J,Lange P,et al. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonaly disease[J]. Am J Respir Crit Care Med,2007,175(3):250-255.
[8] Ruiz-Gonzalez A,Lacasta D,Ibarz M,et al. C-reactive protein and other predictors of poor outcome in patients hospitalized with exacerbations of chronic obstructive pulmonary disease[J]. Respirology,2008,13(7):1028-1033.
[9] Perera WR,Hurst JR,Wilkinson TM,et al. Inflammatory changes,rccovery and recurrence at COPD exacerbation[J].Eur Respir J,2007,29(3):527-534.
[10] Ouchi N,Parker JL,Lugus JJ,et al. Adipokines in inflammation and metabolic disease[J]. Nat Rev Immunol,2011, 11(2):85-97.
[11] Lam KB,Jordan RE,Jiang CQ,et al. Airflow obstruction and metabolic syndrome:The guangzhou biobank cohort study[J]. Eur Respir J,2010,35(2):317-323.
[12] Chan KH,Yeung SC,Yao TJ,et al. Elevated plasma adiponectin levels in patients with chronic obstructive pulmonary disease[J]. Int J Tuberc Lung Dis,2010,14(9):1193-1200.
[13] Kento Sato,Yoko Shibata,Shuichi Abe,et al. Association between plasma adiponectin levels and decline in forced expiratory volume in 1s in a general japanese population:The Takahata study[J]. Int J Med Sci,2014,11(8):758-764.
[14] Carolan BJ,Kim YI,Williams AA,et al. The association of adiponectin with computed tomography phenotypes in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2013,188(5):561-566.
[15] Sirpa LK,Lauri L,Katriina V,et al. Adiponectin is associated with dynamic hyperinflation and a favourable response to inhaled glucocorticoids in patients with COPD[J].Respiratory Medicine,2014,108(1):122-128.
[16] Waschki B,Kirsten A,Holz O,et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD:A prospective cohort study[J]. Chest,2011, 140(2):331-342.
[17] Yoon HI,Li Y,Man SF,et al. The complex relationship of serum adiponectin to COPD outcomes COPD and adiponectin[J]. Chest,2012,142(4):893-899.
[18] Ruggiero C,Cherubini A,Ble A,et al. Uric acid and inflammatory markers[J]. Eur Heart J,2006,27(10):1174-1181.
[19] Saito H,Nishimura M,Shibuya E,et al. Tissue hypoxia in sleep apnea syndrome assessed by uric acid andadenosine[J]. Chest,2002,122(5):1686-1694.
[20] Vestbo J,Hurd SS,Agusti AG,et al. Global strategy for the diagnosis,management and prevention of chronic obstructive pulmonary disease,GOLD executive summary[J].Am J Respir Crit Care Med,2013,187(4):347-365.
[21] Aida Y,Shibata Y,Osaka D,et al. The relationship between serum uric acid and spirometric values in participants in a health check:The Takahata study[J]. Int J Med Sci,2011,8(6): 470-478.
[22] Garcia-Pachon E,Padilla-Navas I,Shum C. Serum uric acid to creatinine ratio in patients with chronic obstructive pulmonary disease[J]. Lung,2007,185(1):21-24.
[23] Bartziokas K,Papaioannou AI,Loukides S,et al. Serum uric acid as a predictor of mortality and future exacerbations of COPD[J]. Eur Respir J,2014,43(1):43-53.
[24] Dnaldson GC,Seemungal TA,Patel IS,et al. Airway and systemic inflammation and decline in lung function in patients with COPD[J]. Chest,2005,128(4):1995-2004.
[25] Duvoix A,Dickens J,Haq I,et al. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease[J].Thorax,2013,68(7):670-676.
[26] Deepa Valvi,David M,Mannino,et al. Fibrinogen,chronic obstructive pulmonary disease(COPD) and outcomes in two United States cohorts[J]. International Journal of Chronic Obstructive Pulmonary Disease,2012,7(2):173-182.
[27] Lomas DA,Lipson DA,Miller BE,et al. An oral inhibitor of p38 MAP kinase reduces plasma fibrinogen in patients with chronic obstructive pulmonary disease[J]. J Clin Pharmacol,2011,52(3):416-424.
[28] Kunter E,Ilvan A,Ozmen N,et al. Effect of corticosteroids on hemostasis and pulmonary arterial pressure during chronic obstructive pulmonary disease exacerbation[J]. Respiration,2008,75(2):145-154.
[29] Mutlu LC,Altintas N,Aydin M,et al. Growth differentiation factor-15 is a novel biomarker predicting acute exacerbation of chronic obstructive pulmonary disease[J]. Inflammation,2015,38(5):1-9.
[30] Freeman CM,Martinez CH,Todt JC,et al. Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+ & CD8+ T cells and increased growth & differentiation factor-15(GDF-15) in peripheral blood[J]. Respiratory Research,2015,16(1):1-14.
[31] Yoneda K. Ultrastructural localization of phospholipases in the Clara cell of therat bronchiole[J]. Am J Pathol,1979,93(3):745-752.
[32] Lakind JS,Holgate ST,Ownby DR,et al. A critical review of the use of Clara cell secretory protein (CC16) as a biomarker of acute or chronic pulmonary effects[J]. Biomarkers,2007,12(5):445-467.
[33] Broeckaert F,Bernard A. Clara cell secretory protein(CC16):Characteristics and perspectives as lung peripheral biomarker[J]. Clin Exp Allergy,2000,30(4):469-475.
[34] Lomas DA,Silverman EK,Edwards LD,et al. Evaluation of serum CC-16 as a biomarker for COPD in the ECLIPSE cohort[J]. Thorax,2008,63(12):1058-1063.
[35] Phye Yun,C Andrew,JL Wright,et al. Club cell protein 16 and disease progression in chronic obstructive pulmonary disease[J]. American Journal of Respiratory & Critical Care Medicine,2013,188(12):1413-1419.
[36] Peng G,Jie Z,Xiaoyan H,et al. Sputum inflammatory cell-based classification of patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Plos One,2013,8(5):e57678.
[37] Brightling CE,Monteiro W,Ward R,et al. Sputum eo-sinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease:A randomised controlled trial[J]. Lancet,2000,356(9240):1480-1485.
[38] Siva R,Green RH,Brightling CE,et al. Eosinophilic airway inflammation and exacerbations of COPD:A randomized controlled trial[J]. Eur Respir J,2007,29(5):906-913.
[39] Bafadhel M,McKenna S,Terry S,et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease:A randomized placebo-controlled trial[J]. Am J Respir Crit Care Med,2012,186(1):48-55.
(收稿日期:2016-01-12)