田梟悅, 張永紅, 孫亞棟, 王多志, 劉晨江*
(1. 新疆大學(xué) a. 石油化工天然氣精細(xì)化工教育部&自治區(qū)重點(diǎn)實(shí)驗(yàn)室;
b. 化學(xué)化工學(xué)院,新疆 烏魯木齊 830046)
·快遞論文·
離子液體1-乙基-3-丁基磺酸咪唑?qū)妆交撬猁}催化合成氧雜蒽
田梟悅1a, 張永紅1a, 孫亞棟1a, 王多志1b*, 劉晨江1a*
(1. 新疆大學(xué) a. 石油化工天然氣精細(xì)化工教育部&自治區(qū)重點(diǎn)實(shí)驗(yàn)室;
b. 化學(xué)化工學(xué)院,新疆 烏魯木齊 830046)
以1-乙基咪唑?yàn)樵?,合成了布朗斯特酸性離子液體——1-乙基-3-丁基磺酸咪唑?qū)妆交撬猁}(IL1),并將其用于催化芳香醛與5,5-二甲基-1,3-環(huán)己二酮或1,3-環(huán)己二酮在無(wú)溶劑條件下合成了系列氧雜蒽類(lèi)化合物,其結(jié)構(gòu)經(jīng)1H NMR,13C NMR和ESI-MS表征。研究結(jié)果表明:當(dāng)IL1用量為5 mol%,于80 ℃反應(yīng)40 min,收率78%~95%; IL1循環(huán)使用3次,收率86%~89%,催化活性無(wú)明顯變化。
布朗斯特酸性離子液體; 芳香醛; 環(huán)己二酮; 氧雜蒽; 催化; 無(wú)溶劑; 合成
氧雜蒽類(lèi)化合物具有抗癌[1]、消炎[2]、抗病毒[3]和抗菌[4]等多種生物和藥理活性,同時(shí)作為一類(lèi)重要的有機(jī)中間體被用于藥物合成領(lǐng)域[5]。此外,該類(lèi)化合物由于具有優(yōu)異的分光特性被應(yīng)用于激光技術(shù)[6];也可用其制成對(duì)pH敏感的熒光材料而用于生物分子組裝過(guò)程的標(biāo)識(shí)[7]。因此,有關(guān)氧雜蒽化合物的合成研究受到了研究人員的廣泛關(guān)注。
氧雜蒽化合物的合成方法由Nagarajan等[8]于1992年首次報(bào)道。該方法利用鹽酸酸化雙達(dá)米酮而合成目標(biāo)產(chǎn)物。自此,許多催化體系如脯氨酸三氟甲磺酸鹽[9]、三氟甲磺酸鍶[10],P2O5/Al2O3[11], BF3/SiO2[12],氧化鋅[13]、碘[14],NaHSO4[15], CAN/PEG-400體系[16]及Amberlyst-15[17]等均被用于該類(lèi)化合物的合成,然而這些方法存在使用有機(jī)溶劑或反應(yīng)時(shí)間較長(zhǎng)等缺點(diǎn)。
離子液體因其具有極低的蒸汽壓而不會(huì)揮發(fā)出有害氣體,無(wú)溶劑反應(yīng)因不需要使用有機(jī)溶劑作為反應(yīng)介質(zhì),具有污染小、成本低和后處理簡(jiǎn)單等優(yōu)點(diǎn),符合綠色化學(xué)的發(fā)展方向。目前,離子液體已在氫化[18]、傅克[19],D-A[20], Heck[21],氧化脫氫偶聯(lián)[22],Biginelli[23]等反應(yīng)中得到了廣泛應(yīng)用,有關(guān)離子液體在無(wú)溶劑條件下催化合成氧雜蒽的研究也見(jiàn)諸報(bào)道[24-25]。
為了豐富氧雜蒽類(lèi)化合物的綠色合成方法,在本課題組前期成功開(kāi)展氨基磺酸鋰催化合成氧雜蒽化合物的基礎(chǔ)上[26],本文以1-乙基咪唑?yàn)槠鹗荚希謩e與1,4-丁烷磺酸內(nèi)酯或正丁基溴發(fā)生親核加成反應(yīng)制得內(nèi)鹽,再與對(duì)甲苯磺酸、三氟乙酸或硫酸反應(yīng),合成了布朗斯特酸性離子液體——1-乙基-3-丁基磺酸咪唑?qū)妆交撬猁}離子液體(IL1), 1-乙基-3-丁基磺酸咪唑硫酸氫鹽離子液體(IL2), 1-乙基-3-丁基磺酸咪唑三氟乙酸鹽離子液體(IL3)和1-乙基-3-丁基咪唑三氟乙酸鹽(IL4)(Scheme 1),其中IL3為新化合物;研究了無(wú)溶劑條件下IL1催化芳香醛和5,5-二甲基-1,3-環(huán)己二酮(1a)或1,3-環(huán)己二酮(1k)反應(yīng)合成了系列氧雜蒽化合物(3a~3m, Scheme 2),其結(jié)構(gòu)經(jīng)1H NMR,13C NMR和ESI-MS表征。
Scheme 1
1.1 儀器與試劑
Buchi B-540型熔點(diǎn)儀(溫度未校正);Varian Inova-400型核磁共振儀(DMSO-d6為溶劑,TMS為內(nèi)標(biāo));Bruker Equinox 55型紅外光譜儀(KBr壓片);Agilent HP 1100型高效液相色譜質(zhì)譜聯(lián)用儀(ESI源)。
所用試劑均為化學(xué)純或分析純。
1.2 合成
(1) IL1~I(xiàn)L4的合成(以IL1為例)
在反應(yīng)瓶中依次加入1-乙基咪唑 5.00 g(52 mmol) 和1,4-丁烷磺酸內(nèi)酯7.07 g(52 mmol),攪拌下于80 ℃反應(yīng)24 h。冷卻至室溫,用乙醚洗滌,真空干燥得1-乙基-3-丁基磺酸咪唑內(nèi)鹽。
在反應(yīng)瓶中加入1-乙基-3-丁基磺酸咪唑內(nèi)鹽4.87 g(21 mmol) 和對(duì)甲苯磺酸3.61 g(21 mmol),攪拌下于110 ℃反應(yīng)72 h。用乙醚洗滌,減壓蒸除乙醚,真空干燥得IL1。
用類(lèi)似的方法合成IL2, IL3和IL4(兩步反應(yīng)分別為:于50 ℃反應(yīng)12 h;于90 ℃反應(yīng)72 h)。
IL1[27]:亮黃色液體,收率87%;1H NMR(D2O)δ: 1.34(t,J=7.2 Hz, 3H, CH3), 1.59~1.61(m, 2H, CH2), 1.85~1.86(m, 2H, CH2), 2.24(s, 3H, CH3), 2.79(m, 2H, CH2), 4.03~4.06(m, 4H, CH2), 7.21~7.54(m, 6H, ArH), 8.62(s, 1H, ArH); ESI-MSm/z: 234.1{[M+H]+}, 171.0[M-]。
Scheme 2
IL2[27]: 亮黃色液體,收率81%;1H NMR(D2O)δ: 1.29(t,J=7.6 Hz, 3H, CH3), 1.49~1.57(m, 2H, CH2), 1.78~1.85(m, 2H, CH2), 2.73(q,J=7.6 Hz, 2H, CH2), 3.99~4.05(m, 4H, CH2), 7.30(s, 2H, ArH), 8.58(s, 1H, ArH); ESI-MSm/z: 234.1{[M+H]+}, 97.0[M-]。
IL3: 亮黃色液體,收率85%;1H NMR(D2O)δ: 1.43(t,J=7.6 Hz, 3H, CH3), 1.64~1.72(m, 2H, CH2), 1.92~2.00(m, 2H, CH2), 2.87(m, 2H, CH2), 4.13~4.20(m, 4H, CH2), 7.43~7.45(m, 2H, ArH), 8.73(s, 1H, ArH);13C NMR(D2O)δ: 163.20(q,JC-F=35.7 Hz), 135.58, 122.92, 122.81, 116.83(q,JC-F=290.0 Hz), 50.74, 49.61, 45.52, 28.76, 21.63, 15.04; IRv: 3 447, 3 145, 3 103, 2 974, 2 878, 2 417, 1 767, 1 566, 1 457, 1 416, 1 331, 1 169, 1 038, 788, 704, 646, 602, 524 cm-1; ESI-MSm/z: 234.1{[M+H]+}, 113.0[M-]。
IL4[28]: 棕黃色離子液體,收率85%;1H NMR(D2O)δ: 0.77(t,J=7.2 Hz, 3H, CH3), 1.14~1.20(m, 2H, CH2), 1.36(t,J=7.2 Hz, 3H, CH3), 1.67~1.75(m, 2H, CH2), 4.05~4.13(m, 4H, CH2), 7.36~7.39(m, 2H, ArH),8.68(s, 1H, ArH);13C NMR(D2O)δ: 162.71(q,JC-F=35.6 Hz), 135.41, 123.00, 122.85, 116.71(q,JC-F=289.2 Hz), 50.00, 45.52, 31.95, 19.47, 15.24, 13.37; ESI-MSm/z: 154.2{[M+H]+}, 113.0[M-]。
(2) IL1催化合成3a~3m
在圓底燒瓶中加入芳香醛1 mmol, 1a或1k 2 mmol和0.05 mmol IL1,攪拌下于80 ℃反應(yīng)40 min。冷卻至室溫,加入適量碎冰水,用刮刀將固體搗碎,抽濾,濾餅用適量蒸餾水洗滌,用乙醇重結(jié)晶得3a~3m。
3a: m.p.204~206 ℃(204~206 ℃[15]);1H NMRδ: 0.99(s, 6H, CH3), 1.10(s, 6H, CH3), 2.14~2.46(m, 8H, CH2), 4.75(s, 1H, CH), 7.10~7.30(m, 5H, ArH)。
3b: m.p.248~249 ℃(240~242 ℃[15]);1H NMRδ: 0.99(s, 6H, CH3), 1.10(s, 6H, CH3), 2.14~2.45(m, 8H, CH2), 3.73(s, 3H, CH3), 4.70(s, 1H, CH), 6.74~7.26(m, 4H, ArH)。
3c: m.p.224~226 ℃(222~224 ℃[15]);1H NMRδ: 1.02(s, 6H, CH3), 1.10(s, 6H, CH3), 2.13~2.45(m, 8H, CH2), 5.00(s, 1H, CH), 7.04~7.44(m, 4H, ArH)。
3d: m.p.189~190 ℃(186~187 ℃[25]);1H NMRδ: 1.01(s, 6H, CH3), 1.11(s, 6H, CH3), 2.16~2.48(m, 8H, CH2),4.73(s, 1H, CH), 7.09~7.26(m, 4H, ArH)。
3e: m.p.227 ℃(224 ℃[29]);1H NMRδ: 0.99(s, 6H, CH3), 1.11(s, 6H, CH3), 2.14~2.53(m, 8H, CH2), 4.83(s, 1H, CH), 7.46~8.11(m, 4H, ArH)。
3f: m.p.202~203 ℃(200 ℃[29]);1H NMRδ: 0.99(s, 6H, CH3), 1.12(s, 6H, CH3), 2.23~2.62(m, 8H, CH2), 4.67(s, 1H, CH), 7.00~7.26(m, 4H, ArH)。
3g: m.p.247~249 ℃(248~250 ℃[15]);1H NMRδ: 1.00(s, 6H, CH3), 1.10(s, 6H, CH3), 2.15~2.4(m, 8H, CH2), 4.68(s, 1H, CH), 6.59~7.26(m, 4H, ArH)。
3h: m.p.188~190 ℃(185~186 ℃[30]);1H NMRδ: 0.95(s, 6H, CH3), 1.09(s, 6H, CH3), 2.10~2.48(m, 8H, CH2), 3.77(s, 3H, CH3), 4.86(s, 1H, CH), 6.74~7.42(m, 4H, ArH)。
3i: m.p.209~210 ℃(209~211 ℃[31]);1H NMRδ: 1.00(s, 6H, CH3), 1.10(s, 6H, CH3), 2.15~2.46(m, 8H, CH2), 2.28(s, 3H, CH3), 4.71(s, 1H), 6.90~7.14(m, 4H, ArH)。
3j: m.p.223~224 ℃(226~229 ℃[32]);1H NMRδ: 1.03(s, 6H, CH3), 1.10(s, 6H, CH3), 2.13~2.45(m, 8H, CH2), 5.02(s, 1H, CH), 6.95~7.46(m, 4H, ArH)。
3k: m.p.203~205 ℃(204~206 ℃[15]);1H NMRδ: 1.98~2.06(m, 4H, CH2), 2.26~2.41(m, 4H, CH2), 2.51~2.68(m, 4H, CH2), 3.73(s, 3H, CH3), 4.76(s, 1H, CH), 6.74~7.22(m, 4H, ArH)。
3l: m.p.237~239 ℃(248~250 ℃[15]);1H NMRδ: 1.92~2.05(m, 12H, CH2), 2.30~2.34(m, 4H, CH2), 2.55~2.64(m,4H, CH2), 5.01(s, 1H, CH), 7.04~7.48(m, 4H, ArH)。
3m: m.p.245~248 ℃(250~252 ℃[30]);1H NMRδ: 1.95~2.06(m, 12H, CH2), 2.31~2.35(m, 4H, CH2), 2.55~2.67(m,4H, CH2), 5.40(s, 1H, CH3), 7.23~7.65(m, 4H, ArH)。
2.1 最佳反應(yīng)條件的篩選
以1a和2a為模板底物,考察了IL1~I(xiàn)L4及其用量、反應(yīng)溫度和反應(yīng)時(shí)間等因素對(duì)反應(yīng)的影響,結(jié)果見(jiàn)表1。由表1可以看出,當(dāng)四種離子液體用量均為5 mol%時(shí),收率分別為88%, 85%, 84%和87%(No.1~4),其中IL1為催化劑時(shí),收率最高。因此以IL1為催化劑,進(jìn)一步考察催化劑用量對(duì)反應(yīng)的影響(No.1, 5~7)。結(jié)果表明:IL1用量為5 mol%時(shí)催化效果最好,減少或者增加其用量均會(huì)導(dǎo)致收率降低;反應(yīng)時(shí)間對(duì)反應(yīng)的影響結(jié)果表明:最佳反應(yīng)時(shí)間為40 min,收率89%(No.8);最后,考察了不同反應(yīng)溫度(80 ℃, 100 ℃和120 ℃)對(duì)收率的影響(No.8, No.10~11)。研究發(fā)現(xiàn)溫度的變化對(duì)收率影響不大,從節(jié)能角度考慮,最佳反應(yīng)溫度為80 ℃。
表1 不同反應(yīng)條件對(duì)收率的影響*
*反應(yīng)條件: 1a 2 mmol, 無(wú)溶劑;a分離產(chǎn)率。
綜上所述,最佳反應(yīng)條件為:5 mol% IL1為催化劑,反應(yīng)溫度為80 ℃,反應(yīng)時(shí)間為40 min。
2.2 反應(yīng)普適性
在最佳反應(yīng)條件下,選取不同芳香醛分別和5,5-二甲基-1,3-環(huán)己二酮或1,3-環(huán)己二酮反應(yīng),考察IL1催化不同底物的普適性效果,結(jié)果見(jiàn)Scheme 1。由Scheme 1可見(jiàn),芳香醛的取代基無(wú)論是吸電子基還是給電子基,或取代基無(wú)論在甲?;泥徫?、間位和對(duì)位,反應(yīng)均能順利進(jìn)行,以78%~95%的收率獲得目標(biāo)化合物,表明該催化劑對(duì)于不同的底物均具有較好的催化性能。
2.3 離子液體的循環(huán)使用
為了研究IL1的循環(huán)使用效果,選取1a和2a的反應(yīng)為研究對(duì)象,在反應(yīng)后的混合物加入碎冰,待融化后抽濾。濾液減壓蒸除溶劑,干燥回收離子液體,直接用于下次催化循環(huán)使用,結(jié)果見(jiàn)表2。由表2可見(jiàn),IL1循環(huán)使用3次,收率無(wú)明顯變化,說(shuō)明IL1具有很好的循環(huán)使用效果。
表2 IL1的循環(huán)使用效果*
*反應(yīng)條件: 1a 2 mmol, 5 mol% IL1,于80 ℃反應(yīng)40 min。
合成了一種布朗斯特酸性離子液體——1-乙基-3-丁基磺酸咪唑?qū)妆交撬猁},并將其用于催化芳香醛與5,5-二甲基-1,3-環(huán)己二酮或1,3-環(huán)己二酮在無(wú)溶劑條件下高收率地合成了系列氧雜蒽類(lèi)化合物。該方法具有操作簡(jiǎn)便、收率高、對(duì)環(huán)境友好等優(yōu)點(diǎn),為該類(lèi)化合物的合成提供參考。
[1] Silva D L, Terra B S, Lage M R,etal. Xanthenones: calixarenes-catalyzed syntheses, anticancer activity and QSAR studies [J].Org Biomol Chem,2015,13:3280-3287.
[2] Hafez H N, Hegab M I, Ahmed-Farag I S,etal. A facile regioselective synthesis of novelspiro-thioxanthene andspiro-xanthene-9′,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inammatory agents[J].Bioorg Med Chem Lett,2008,18:4538-4543.
[3] Qin C, Lin X, Lu X,etal. Sesquiterpenoids and xanthones derivatives produced by sponge-derived fungusStachybotrysp.HH1 ZSDS1F1-2[J].J Antibiot,2015,68:121-125.
[4] Evangelinou O, Hatzidimitriou A G, Velali E,etal. Mixed-ligand copper(I) halide complexes bearing 4,5-bis(diphenylphosphano)-9,9-dimethyl-xanthene andN-methylbenzothiazole-2-thion:Synthesis,structures,luminescence and antibacterial activity mediated by DNA and membrane damage[J].Polyhedron,2014,72:122-129.
[5] Khurana J M, Lumb A, Chaudhary A,etal. Efficient and green syntheses of 12-aryl-2,3,4,12-tetrahydrobenzo[b]xanthene-1,6,11-triones in water and task-specific ionic liquid [J].Synth Commun,2013,43:2147-2154.
[6] Ahmad M, King T A, Ko D-K,etal. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases [J].J Phys D:Appl Phys,2008,35:1473-1476.
[7] Kushida Y, Nagano T, Hanaoka K. Silicon-substituted xanthene dyes and their applications in bioimaging[J].Analyst,2015,140:685-695.
[8] Nagarajan K, Shenoy S J. Chemistry of dimedone: structures of aldehyde-dimedone adducts[J].Indian J Chem,1992,31:73-87.
[9] Li J, Lu L, Su W. A new strategy for the synthesis of benzoxanthenes catalyzed by proline triate in water[J].Tetrahedron Lett,2010,51:2434-2437.
[10] Li J, Tang W, Lu L,etal. Strontium triflate catalyzed one-pot condensation ofβ-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds[J].Tetrahedron Lett,2008,49:7117-7120.
[11] Zarei A, Hajipour A R, Khazdooz L. The one-pot synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes catalyzed by P2O5/Al2O3under microwave irradiation[J].Dyes and Pigments,2010,85:133-138.
[12] Mirjalili B B F, Bamoniri A, Akbari A. BF3·SiO2:An efficient alternative for the synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes[J].Tetrahedron Lett,2008,49:6454-6456.
[13] Ghomi S J, Ghasemzadeh M A. Zinc oxide nanoparticles:A highly efficient and readily recyclable catalyst for the synthesis of xanthenes[J].Chin Chem Lett,2012,23:1225-1229.
[14] Sun X J, Zhou J F, Zhi S J. Efficient one-pot synthesis of tetrahydrobenzo[c]xanthene-1,11-dione derivatives under microwave irradiation[J].Synth Commun,2012,42:1987-1994.
[15] 馬晶軍,李靜慈,唐然肖,等. 離子液體中NaHSO4催化芳香醛與1,3-環(huán)己二酮的縮合反應(yīng) [J].有機(jī)化學(xué),2007,27(5):640-642.
[16] 曹瑞偉,陳朝輝,吳春雷,等. CAN/PEG-400 體系催化氧雜蒽二酮類(lèi)衍生物 [J].合成化學(xué),2012,20(4):511-514.
[17] Piscopo C G, Bühler S, Sartori G,etal. Supported sulfonic acids:Reusable catalysts for more sustainable oxidative coupling of xanthene-like compounds with nucleophiles[J].Catal Sci Technol,2012,2:2449-2452.
[18] Wu Z F, Jiang, H Y. Effcient palladium and ruthenium nanocatalysts stabilized by phosphine functionalized ionic liquid for selective hydrogenation[J].RSC Adv,2015,5:34622-34629.
[19] Fekri L Z, Nikpassand M. Ultrasound-promoted Friedel-Crafts acylation of arenes and cyclic anhydrides catalyzed by ionic liquid of [bmim]Br/AlCl3[J].Russ J Gen Chem,2014,84:1825-1829.
[20] Do T D, Schmitzer A R. Intramolecular diels alder reactions in highly organized imidazolium salt-based ionic liquid crystals[J].RSC Adv,2015,5:635-639.
[21] Wang F R, Tang S S, Yu Y H,etal. Preparation of palladium nanoparticle catalyst in ionic liquidand its catalytic properties for Heck-Mizoroki reaction[J].Chineses J Catal,2014,35:1921-1926.
[22] Basle O, Borduas N, Dubois P,etal. Aerobic and electrochemical oxidative cross-dehydrogenative-coupling(CDC) reaction in an imidazolium-based ionic liquid[J].Chem Eur J,2010,16:8162-8166.
[23] Zhang Y H, Wang B, Zhang X M,etal. An efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Br?nsted acidic ionic liquid under solvent-free conditions[J].Molecules,2015,20:3811-3820.
[24] Fang D,Liu Z L. Synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes catalyzed by acyclic acidic ionic liquids[J].J Heterocyclic Chem,2010,47:509-512.
[25] Hamid R S, Kobra A. Br?nsted acidic ionic liquids catalyzed one-pot synthesis of benzoxanthene leuco-dye derivatives[J].Res Chem Intermed,2015,41:409-417.
[26] 王昭申,劉晨江. 無(wú)溶劑條件下氨基磺酸鋰催化合成氧雜蒽化合物 [J].高等學(xué)?;瘜W(xué)學(xué)報(bào),2012,33(3):507-510.
[27] Tao F R, Song H L, Chou L J. Hydrolysis of cellulose in SO3H-functionalized ionic liquids [J].Bioresour Technol,2011,102:9000-9006.
[28] Bonhote P, Dias A P, Papageorgiou N, etal. Hydrophobic highly conductive ambient-temperature molten salts[J].Inorg Chem,1996,35:1168-1178.
[29] Sagar A D, Chamle S N, Yadav M V. Microwave assisted rapid synthesis of 1,8-dioxo-Octahydroxanthenes using lignin sulphonic acid [J].J Chem Pharm Res,2013,5(7):156-160.
[30] Shirini F, Moghadam P N, Moayedi S,etal. Introduction ofO-sulfonated poly(4-vinylpyrrolidonium) chloride as a polymeric and reusable catalyst for the synthesis of xanthene derivatives[J].RSC Adv,2014,4:38581-38588.
[31] Zare A, Mokelesi M, Hasaninejad A,etal. Solvent-free synthesis of 1,8-dioxooctahydroxanthenes and 14-aryl-14H-dibenzo[a,j]xanthenes using saccharin sulfonic acid as an efficient and green catalyst[J].E-J Chem,2012,9(4):1854-1863.
[32] Ilangovan A, Malayappasamy S, Muralidharan S,etal. A highly efficient green synthesis of 1,8-dioxo- octahydroxanthenes[J].Chem Cent J,2011,5:81-86.
Synthesis of Xanthenes Catalyzed by Ionic Liquid 1-Ethyl-3-(4-sulfobutyl)-1H-imidazol-3-iump-Toluenesulfonate
TIAN Xiao-yue1a, ZHANG Yong-hong1a, SUN Ya-dong1a,WANG Duo-zhi1b*, LIU Chen-jiang1a*
(a. The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region;b. College of Chemistry and Chemical Engineering, 1. Xinjiang University, Urumqi 830046, China)
Br?nsted acidic ionic liquid, 1-ethyl-3-(4-sulfobutyl)-1H-imidazol-3-iump-toluenesulfonate(IL1), was prepared using 1-ethylimidazole as raw material. A series of xanthenes were synthesized by condensation reaction of aromatic aldehydes with 5,5-dimethyl-1,3-cyclohexanedione or 1,3-cyclohexanedione catalyzed by IL1 under solvent-free conditions. The structures were characterized by1H NMR,13C NMR and ESI-MS. The results indicated that 5 mol% IL1 as catalyst, reaction at 80 ℃ for 40 min, the yields were 78%~95%. The catalytic activity of IL1 keep stable with the yields of 86%~89% after recycling of three times.
Br?nsted acidic ionic liquid; aromatic aldehyde; cyclohexanedione; xanthene; catalysis; solvent-free; synthesis
2015-04-15;
2016-01-18
國(guó)家自然科學(xué)基金資助項(xiàng)目(21162025, 21262035)
田梟悅(1989-),男,漢族,湖北襄陽(yáng)人,碩士研究生,主要從事有機(jī)合成研究。 E-mail: 852472476@qq.com
王多志,副教授, E-mail: wangdz@xju.edu.cn; 劉晨江,教授, Tel. 0991-8582901, E-mail: pxylcj@126.com
O626.3
A
10.15952/j.cnki.cjsc.1005-1511.2016.04.15153