劉志廣,張豐盤(pán)
河南大學(xué),數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,應(yīng)用數(shù)學(xué)研究所,開(kāi)封 475004
?
有色環(huán)境噪音對(duì)空間異質(zhì)種群動(dòng)態(tài)同步性的影響
劉志廣*,張豐盤(pán)
河南大學(xué),數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,應(yīng)用數(shù)學(xué)研究所,開(kāi)封475004
摘要:隨著種群動(dòng)態(tài)和空間結(jié)構(gòu)研究興趣的增加,激發(fā)了大量的有關(guān)空間同步性的理論和實(shí)驗(yàn)的研究工作??臻g種群的同步波動(dòng)現(xiàn)象在自然界廣泛存在,它的影響和原因引起了很多生態(tài)學(xué)家的興趣。Moran定理是一個(gè)非常重要的解釋。但以往的研究大多假設(shè)環(huán)境變化為空間相關(guān)的白噪音。越來(lái)越多的研究表明很多環(huán)境變化的時(shí)間序列具有正的時(shí)間自相關(guān)性,也就是說(shuō)用紅噪音來(lái)描述更加合理。因此,推廣經(jīng)典的Moran效應(yīng)來(lái)處理空間相關(guān)紅噪音的情形很有必要。利用線(xiàn)性的二階自回歸過(guò)程的種群模型,推導(dǎo)了兩種群空間同步性與種群動(dòng)態(tài)異質(zhì)性和環(huán)境變化的時(shí)間相關(guān)性(即環(huán)境噪音的顏色)之間的關(guān)系。深入分析了種群異質(zhì)性和噪音顏色對(duì)空間同步性的影響。結(jié)果表明種群動(dòng)態(tài)異質(zhì)性不利于空間同步性,但詳細(xì)的關(guān)系比較復(fù)雜。而紅色噪音的同步能力體現(xiàn)在兩方面:一方面,本身的相關(guān)性對(duì)同步性有貢獻(xiàn);另一方面,環(huán)境變化時(shí)間相關(guān)性可以通過(guò)改變種群密度依賴(lài)來(lái)影響同步性,但對(duì)同步性的影響并無(wú)一致性的結(jié)論,依賴(lài)于種群的平均動(dòng)態(tài)等因素。這些結(jié)果對(duì)理解同步性的機(jī)理、利用同步機(jī)理來(lái)制定物種保護(hù)策略和害蟲(chóng)防治都有重要的意義。
關(guān)鍵詞:Moran效應(yīng);異質(zhì)性動(dòng)態(tài);有色噪音;空間同步性;二階自回歸過(guò)程
劉志廣,張豐盤(pán).有色環(huán)境噪音對(duì)空間異質(zhì)種群動(dòng)態(tài)同步性的影響.生態(tài)學(xué)報(bào),2016,36(2): 360-368.
Liu Z G,Zhang F P.Effects of colored environmental noise on the spatial synchrony of heterogeneous population dynamics.Acta Ecologica Sinica,2016,36(2): 360-368.
在不同空間棲息地種群波動(dòng)成一致性,稱(chēng)之為空間同步性。研究報(bào)道在各種各樣物種的種群動(dòng)態(tài)中觀(guān)察到了這種現(xiàn)象,如哺乳動(dòng)物[1]、鳥(niǎo)類(lèi)[2]、魚(yú)類(lèi)[3]、昆蟲(chóng)[4]、樹(shù)類(lèi)[5]、原生生物[6]和病毒[7]。揭示集合種群同步性的機(jī)理尤為重要,而且已經(jīng)成為集合種群生態(tài)學(xué)的中心課題。因?yàn)檫@不僅可以幫助理解這些同步現(xiàn)象,而且空間同步性增加了集合種群的全局滅絕風(fēng)險(xiǎn)[8]。自然保護(hù)區(qū)的設(shè)置和瀕危物種有效保護(hù)的很多方面都與種群動(dòng)態(tài)的同步性水平掛鉤,生物控制[9]和害蟲(chóng)防治[7]也都與種群動(dòng)態(tài)的同步性有關(guān)。
在生態(tài)文獻(xiàn)中,對(duì)空間同步性的解釋主要有3種[10]: Moran效應(yīng)、擴(kuò)散和游蕩的捕食者。在這里主要討論分析第一種。早在1953年,Moran首先提出了如果兩個(gè)種群有相同的線(xiàn)性依賴(lài)結(jié)構(gòu),則種群的空間相關(guān)性(即同步性)等于環(huán)境噪音的空間相關(guān)性,并且認(rèn)為空間相關(guān)的環(huán)境噪音是導(dǎo)致種群同步性波動(dòng)的原因[11]。然而,這一工作直到1992年才引起了生態(tài)學(xué)家的重視,并被稱(chēng)作“Moran定理”,而把不嚴(yán)格滿(mǎn)足定理?xiàng)l件的其他情形下環(huán)境波動(dòng)的同步作用稱(chēng)為“Moran效應(yīng)”[12]。此后,有大量的理論和實(shí)驗(yàn)工作來(lái)驗(yàn)證“Moran效應(yīng)”的效用,并且用它來(lái)解釋在各種各樣的生物系統(tǒng)中觀(guān)察到的同步性現(xiàn)象。
“Moran定理”定理要求有4個(gè)條件:(1)線(xiàn)性密度依賴(lài)結(jié)構(gòu),(2)種群間有相同的密度依賴(lài)結(jié)構(gòu),(3)沒(méi)有擴(kuò)散和其他結(jié)構(gòu)化耦合,(4)相關(guān)的白色環(huán)境噪音。最近的理論研究大多以“Moran定理”為基礎(chǔ),討論更加符合現(xiàn)實(shí)情況的情形,如非線(xiàn)性的密度依賴(lài)[13-14]、加入擴(kuò)散到線(xiàn)性動(dòng)態(tài)[15]或二者兼而有之[16],還有異質(zhì)性的種群結(jié)構(gòu)[17]等等,主要探索這些因素如何影響空間同步性和環(huán)境噪音間的關(guān)系。越來(lái)越多的研究發(fā)現(xiàn)很多氣候或環(huán)境變量被認(rèn)為具有或多或少的正的時(shí)間自相關(guān)性[18]。這種性質(zhì)可以用自回歸噪音的一階自回歸系數(shù)來(lái)描述[19]。最近的研究表明環(huán)境變化的時(shí)間相關(guān)性(即環(huán)境噪音的顏色)對(duì)種群的同步性也有著重要的影響[20-21]。有色環(huán)境噪音的同步作用為同步性的研究提供了新的契機(jī)。前期的工作[21]涉及異質(zhì)性的種群結(jié)構(gòu)和有色的環(huán)境噪音對(duì)空間同步性的影響,但利用的是相對(duì)簡(jiǎn)單一階自回歸模型AR1。二階自回歸過(guò)程AR2經(jīng)常用來(lái)模擬種群密度(經(jīng)過(guò)對(duì)數(shù)變化)的時(shí)間動(dòng)態(tài)。因?yàn)樗梢援a(chǎn)生更加實(shí)際的包括周期波動(dòng)在內(nèi)的種群動(dòng)態(tài)波動(dòng)曲線(xiàn)[12]。值得注意的是,Moran在闡述Moran定理的時(shí)候也是采用的這個(gè)模型。故將以往的研究推廣到二階自回歸過(guò)程的情形更具實(shí)際意義。
假設(shè)兩個(gè)種群可以用二階自回歸過(guò)程AR2來(lái)描述:
式中,Xt,Yt表示種群X和Y在第t代數(shù)量的log值,φi(或ψi)表示種群X(或Y)的第i階密度依賴(lài)強(qiáng)度(記成AR(i)系數(shù)),當(dāng)其趨于零時(shí),密度依賴(lài)調(diào)控強(qiáng)度增加[12]。ξt和ζt分別表示在t時(shí)刻空間相關(guān)的有色環(huán)境噪音,并設(shè)它們是非密度依賴(lài)的,均值為0和方差為常數(shù)。環(huán)境噪音時(shí)間序列可以用一階自回歸過(guò)程AR1來(lái)描述[19]:
式中,α(0≤α<1)是自回歸參數(shù),反應(yīng)環(huán)境變化時(shí)間序列的時(shí)間自相關(guān)性,即環(huán)境噪音的顏色。當(dāng)α= 0,時(shí)間序列是白色噪音;當(dāng)0<α<1,時(shí)間序列是紅色噪音,α值增加表示顏色變紅。εt和ωt是均值為0方差為σ的標(biāo)準(zhǔn)白噪音過(guò)程。易知Corr(ξt,ζt)= Corr(εt,ωt)。
對(duì)系統(tǒng)(1)兩邊運(yùn)用算子(1-αB)(其中B是后退時(shí)間算子: But+1= ut)有:
系統(tǒng)(3)是一個(gè)三階自回歸過(guò)程,假設(shè)它是平穩(wěn)的。利用Yule-Walker方程(附錄A),經(jīng)過(guò)計(jì)算可以得到X和Y之間的相關(guān)性公式(附錄B):
式中,稱(chēng)DC為空間同步性的統(tǒng)計(jì)部分,則種群的空間同步性等于統(tǒng)計(jì)部分和環(huán)境噪音的空間相關(guān)性的乘積。容易知道,如果φ1=ψ1,φ1=ψ1,α= 0,則有Corr(X,Y)= Corr(ξ,ζ),也就是Moran定理。而當(dāng)φ1=ψ1,φ1= ψ1,0<α<1,則Corr(X,Y)= Corr(ξ,ζ)。也就是說(shuō),具有相同結(jié)構(gòu)的兩種群,在有色噪音的情況下,Moran定理依然成立。但當(dāng)兩個(gè)種群的密度依賴(lài)結(jié)構(gòu)不相同時(shí),即具有異質(zhì)性的種群動(dòng)態(tài)時(shí),空間同步性不再僅依賴(lài)于環(huán)境噪音的相關(guān)性,同時(shí)還依賴(lài)于兩種群的動(dòng)態(tài)參數(shù)和環(huán)境噪音的顏色值。下面分析DC如何依賴(lài)于種群動(dòng)態(tài)參數(shù)φ1,φ2,ψ1,ψ2和噪音顏色參數(shù)α。因此,在參數(shù)空間構(gòu)造3個(gè)新的組合參數(shù):(1)兩種群間的歐式距離D,D2=(φ1-ψ1)2+(φ2-ψ2)2;(2)重心B(兩種群的平均動(dòng)態(tài)),B =[(φ1+ψ1)/2,(φ2+ψ2)/2];(3)連接兩種群間的直線(xiàn)與AR(1)軸的夾角A,cos(A)=(ψ1-φ1)/D。
固定α= 0.2,D = 0.275。如果種群只在AR(1)參數(shù)上不同(A = 0),DC呈現(xiàn)出離心的模式(圖1a):在參數(shù)空間中,隨著兩種群的重心接近定義AR2過(guò)程平穩(wěn)性的三角形的邊緣,兩個(gè)種群不穩(wěn)定性的乘積增加[17],但空間同步性降低。如果種群只在AR(2)參數(shù)上不同(A =π),具有相似的模式。當(dāng)種群在AR(1)和AR(2)參數(shù)都不同時(shí),觀(guān)察到一個(gè)不同的模式。DC的最高值不再位于(0,0)附近,而是向左轉(zhuǎn)移(0<A<π/2,圖1b)或者向右轉(zhuǎn)移(π/2<A<π,圖1c)。這些結(jié)果與Hugueny得到的結(jié)果類(lèi)似[17],而他采用的是相關(guān)的白噪音。也就說(shuō),環(huán)境噪音時(shí)間相關(guān)性較小時(shí),A和B對(duì)同步性影響的規(guī)律基本不變。但是當(dāng)α值較大時(shí),這些模式也要發(fā)生變化,觀(guān)察不到清晰的模式(這里沒(méi)有作圖)。
圖1 兩個(gè)二階自回歸種群動(dòng)態(tài)的空間同步性的統(tǒng)計(jì)部分(DC)值的等高線(xiàn)圖形Fig.1 Level plot of the demographic component of spatial synchrony(DC)between populations governed by second order autoregressive dynamics一階和二階自回歸系數(shù)所構(gòu)成的參數(shù)平面上(AR(1)—AR(2))的點(diǎn)表示兩種群的平均動(dòng)態(tài),其它參數(shù)值固定,D=0.275
圖2 空間同步性的統(tǒng)計(jì)部分(DC)值的等高線(xiàn)圖,以環(huán)境噪音顏α和兩種群動(dòng)態(tài)參數(shù)的歐式距離D為函數(shù)Fig.2 Contour of the demographic component of spatial synchrony,as a function of the environmental noise color and the Euclidean distance between populations in parameter plane
下面讓重心B和夾角A固定,從而研究DC與環(huán)境噪音顏色α和歐式距離D的關(guān)系。圖2和3表明隨著D的增加,同步性減小。圖2a表明如果兩個(gè)種群僅在一階自回歸系數(shù)上有差別(A = 0),隨著環(huán)境噪音顏色系數(shù)的增加,同步性下降。但是如果兩個(gè)種群僅在二階自回歸系數(shù)上有差別(A =π/2),隨著噪音顏色的增加,同步性增加(圖2b,e)。當(dāng)種群在AR(1)和AR(2)參數(shù)都不同時(shí),當(dāng)0<A<π/2,觀(guān)察到的模式與A = 0時(shí)類(lèi)似(圖2c,f)。當(dāng)π/2<A<π,觀(guān)察到的模式與A =π/2時(shí)類(lèi)似。而當(dāng)重心的位置發(fā)生改變時(shí),環(huán)境噪音的顏色對(duì)同步性的影響規(guī)律也相應(yīng)的發(fā)生了變化(圖3)。總之,環(huán)境噪音顏色對(duì)同步性的影響沒(méi)有一致性的結(jié)論,它依賴(lài)于兩種群參數(shù)間的夾角A和重心B的值。
圖3 在參數(shù)平面上具有不同的平均種群動(dòng)態(tài)Fig.3 Different average location of populations in parameter plane
通常認(rèn)為遷移在局域尺度上起作用,而Moran效應(yīng)在更大的空間尺度上起作用[22]。根據(jù)Moran定理,空間同步性是環(huán)境相關(guān)性的一個(gè)反映。因此,支持Moran效應(yīng)的一種令人信服的方法是觀(guān)察到的同步性隨地理距離的消散方式應(yīng)與環(huán)境因子相關(guān)性隨地理距離的變化方式相似。例如,Koenig報(bào)道了北美松雀種群的同步性和距離間的關(guān)系與降水與距離間的關(guān)系匹配良好[23-24]。但大多種群同步性隨距離的下降速度比環(huán)境相關(guān)性隨距離的下降速度要快的多,例如Peltonen等對(duì)森林昆蟲(chóng)的研究[25]。這與Moran定理不一致。這種不一致的原因可能是對(duì)實(shí)際驅(qū)動(dòng)環(huán)境因子的錯(cuò)誤識(shí)別,或不完全符合Moran定理的條件。當(dāng)相同的密度依賴(lài)結(jié)構(gòu)不能滿(mǎn)足時(shí),如在估計(jì)一個(gè)大的地理區(qū)域或者包含不同類(lèi)型棲息地區(qū)域的種群動(dòng)態(tài)同步性時(shí),考慮異質(zhì)性就非常重要。種群動(dòng)態(tài)的地理變化是普遍存在,如加拿大的舞毒蛾[25]和猞猁[26]、英國(guó)的松尺蠖蛾[27]、歐洲和日本的田鼠[28-29]。其對(duì)同步性的影響,已經(jīng)進(jìn)行了一些實(shí)驗(yàn)、模擬和理論分析的工作。受Hugueny工作[17]的啟發(fā),本文分析了具有異質(zhì)性種群動(dòng)態(tài)和受有色環(huán)境噪音影響的AR2種群的同步性,得到了一個(gè)分析解。這種方法更加的靈活、有力。結(jié)果表明同步性可以分成統(tǒng)計(jì)部分和環(huán)境空間相關(guān)性的乘積。當(dāng)兩種群具有相同的密度依賴(lài)時(shí),統(tǒng)計(jì)部分等于環(huán)境的空間相關(guān)性,即Moran定理在紅噪音的時(shí)候依然成立。而種群具有不同的密度依賴(lài)結(jié)構(gòu)時(shí)(即AR系數(shù)不同),統(tǒng)計(jì)部分小于1,甚至可以是0。也就是說(shuō)即使環(huán)境的空間相關(guān)性很高,也有可能具有非常小的種群同步性。當(dāng)然,空間同步性的統(tǒng)計(jì)部分與密度依賴(lài)參數(shù)間并無(wú)清晰且簡(jiǎn)單的關(guān)系。甚至在較弱的密度依賴(lài)的種群間也能觀(guān)察到強(qiáng)的空間同步性。
空間同步性的統(tǒng)計(jì)部分同時(shí)也受環(huán)境噪音顏色的影響。已有一些研究注意到了環(huán)境噪音顏色對(duì)同步性的影響[20-21,30]。結(jié)果表明有色噪音對(duì)同步性的影響依賴(lài)于它進(jìn)入種群模型的方式、擴(kuò)散方式和非線(xiàn)性密度依賴(lài)的程度。Vasseur[20]和Liu等[21]分別采用不同的空間相關(guān)有色噪音的構(gòu)造方法(1/f和AR1),利用線(xiàn)性一階自回歸過(guò)程的種群模型,得到了紅噪音加強(qiáng)異質(zhì)種群同步性的結(jié)果。與之比較,本研究發(fā)現(xiàn),即使對(duì)線(xiàn)性模型,紅噪音既有加強(qiáng)又有減弱異質(zhì)種群同步性的作用。環(huán)境噪音的顏色對(duì)異質(zhì)種群同步性具有非常重要的影響,這一點(diǎn)毋庸置疑。但是噪音顏色對(duì)異質(zhì)種群同步性有什么作用并沒(méi)有一致的結(jié)論。
本文的結(jié)果對(duì)可以用線(xiàn)性自回歸過(guò)程描述的種群動(dòng)態(tài)成立。如果種群動(dòng)態(tài)具有非線(xiàn)性的密度依賴(lài)結(jié)構(gòu),尤其出現(xiàn)混沌動(dòng)態(tài)時(shí),將出現(xiàn)更加復(fù)雜的空間模式。然而,即使自然種群動(dòng)態(tài)為非線(xiàn)性的,簡(jiǎn)單的線(xiàn)性模型可以近似很多種群的動(dòng)態(tài),尤其當(dāng)種群大小的變化系數(shù)很小的時(shí)候[22,31]。Engen和S?ther[32]推導(dǎo)了種群動(dòng)態(tài)參數(shù)存在差異的一類(lèi)非線(xiàn)性一階模型的空間同步性的表達(dá)式。但對(duì)線(xiàn)性模型,參數(shù)值的空間異質(zhì)性導(dǎo)致同步性的降低。假設(shè)空間種群沒(méi)有遷移且可用線(xiàn)性自相關(guān)平穩(wěn)過(guò)程來(lái)描述,當(dāng)已知環(huán)境自相關(guān)系數(shù)和種群密度依賴(lài)參數(shù)時(shí),空間同步性的統(tǒng)計(jì)部分可計(jì)算出來(lái)的。當(dāng)然這是一種理想情況,自然種群很少能符合這些假設(shè)。但是強(qiáng)調(diào)種群異質(zhì)性減弱空間同步性和環(huán)境變化的時(shí)間自相關(guān)對(duì)同步性影響的時(shí)候,這個(gè)方法還是非常有用的。
Ylikarjula利用單物種模型研究了不同遷移方式和斑塊數(shù)目對(duì)同步性的影響[33]。利用兩斑塊得到的結(jié)果推廣到多斑塊的情形時(shí)可能不一樣。因?yàn)椴煌邏K間可能有些相互的抵消。遷移是另一個(gè)非常重要的同步因子。有些情況下遷移因素是容易排除的,如蘇格蘭群島的索艾羊種群[13],島嶼之間被海洋隔斷,遷移不可能發(fā)生。但大多數(shù)情況下,遷移是不可以忽略的因素。因此遷移和有色噪音都存在的空間種群同步性問(wèn)題的研究也同樣重要。此時(shí)二者對(duì)所產(chǎn)生同步性的貢獻(xiàn)及二者間的相互作用也是眾多學(xué)者關(guān)心的問(wèn)題[15]。
參考文獻(xiàn)(References):
[1]Elton C,Nicholson M.The ten year cycle in numbers of the lynx in Canada.Journal of Animal Ecology,1942,11(2): 215-244.
[2]Moran P A P.The statistical analysis of game-bird record.Journal of Animal Ecology,1952,21(1): 154-158.
[3]Ranta E,Kaitala V,Lindstr?m J,Lindén H.Synchrony in population dynamics.Proceedings of the Royal Society of London Series B: Biological Sciences,1995,262(1364): 113-118.
[4]Den Boer P J.On the survival of populations in a heterogeneous and variable environment.Oecologia,1981,50(1): 39-53.
[5]Koenig W D,Knops J M H.Scale of mast-seeding and tree-ring growth.Nature,1998,396(6708): 225-226.
[6]Holyoak M,Lawler S P.Persistence of an extinction-prone predator-prey interaction through metapopulation dynamics.Ecology,1996,77(6): 1867-1879.
[7]Bolker B M,Grenfell B T.Impact of vaccination on the spatial correlation and persistence of measles dynamics.Proceedings of the National Academy of Sciences of the United States of America,1996,93(22): 12648-12653.
[8]Heino M,Kaitala V,Ranta E,Lindstr?m J.Synchronous dynamics and rates of extinction in spatially structured populations.Proceedings of the Royal Society B: Biological Sciences,1997,264(1381): 481-486.
[9]Cavalieri L F,Kocak H.Chaos: a potential problem in the biological control of insect pests.Mathematical Biosciences,1995,127(1): 1-17.
[10]Liebhold A,Koenig W D,Bj?rnstad O N.Spatial synchrony in population dynamics.Annual Review of Ecology,Evolution and Systematics,2004,35: 467-490.
[11]Moran P A P.The statistical analysis of the Canadian lynx cycle.II.Synchronization and meteorology.Australian Journal of Zoology,1953,1(2): 291-298.
[12]Royama T.Analytical Population Dynamics.Netherlands: Springer,1992.
[13]Grenfell B T,Wilson K,F(xiàn)inkenst?dt B F,Coulson T N,Murray S,Albon S D,Pemberton J M,Clutton-Brock T H,Crawley M J.Noise and determinism in synchronized sheep dynamics.Nature,1998,394(6694): 674-677.
[14]Royama T.Moran effect on nonlinear population processes.Ecological Monographs,2005,75(2): 277-293.
[15]Kendall B E,Bj?rnstad O N,Bascompte J,Bascompte J,Keitt T H,F(xiàn)agan W F.Dispersal,environmental correlation,and spatial synchrony in population dynamics.American Naturalist,2000,155(5): 628-636.
[16]Hanski I,Woiwod I P.Spatial synchrony in the dynamics of moth and aphid populations.Journal of Animal Ecology,1993,62(4): 656-668.
[17]Hugueny B.Spatial synchrony in population fluctuations: extending the Moran theorem to cope with spatially heterogeneous dynamics.Oikos,2006,115(1): 3-14.
[18]Vasseur D A,Yodzis P.The color of environmental noise.Ecology,2004,85(4): 1146-1152.
[19]Ripa J,Lundberg P.Noise colour and the risk of population extinction.Proceedings of the Royal Society B: Biological Sciences,1996,263: 1751-1753.
[20]Vasseur D A.Environmental colour intensifies the Moran effect when population dynamics are spatially heterogeneous.Oikos,2007,116(10): 1726-1736.
[21]Liu Z G,Gao M,Li Z Z,Zhu G F.Synchrony of spatial populations: heterogeneous population dynamics and reddened environmental noise.Population Ecology,2009,51(1): 221-226.
[22]Lande R,Engen S,S?ther B E.Spatial scale of population synchrony: environmental correlation versus dispersal and density regulation.American Naturalist,1999,154(3): 271-281.
[23]Koenig W D.Spatial autocorrelation and local disappearances in wintering north American birds.Ecology,2001,82(9): 2636-2644.
[24]Koenig W D.Global patterns of environmental synchrony and the Moran effect.Ecography,2002,25(3): 283-288.
[25]Peltonen M,Liebhold A M,Bj?rnstad O N,Williams D W.Spatial synchrony in forest insect outbreaks: roles of regional stochasticity and dispersal.Ecology,2002,83(11): 3120-3129.
[26]Stenseth N C,Chan K S,Tong H,Boonstra R,Boutin S,Krebs C J,Post E,Donoghue M O,Yoccoz N G,F(xiàn)orchhammer M C,Hurrell J W.Common dynamics structure of Canada lynx populations within three climatic regions.Science,1999,285(5430): 1071-1073.
[27]Broekhuizen N,Evans H P,Hassell M P.Site characteristics and the population dynamics of the pine looper moth.Journal of Animal Ecology,1993,62(3): 511-518.
[28]Turchin P.Complex Population Dynamics: a Theoretical Empirical Synthesis.Princeton NJ: Princeton University Press,2003.
[29]Saitoh T,Stenseth N C,Bj?rnstad O N.The population dynamics of the vole Clethrionomys rufocanus: modeling geographic gradients in populations dynamics.Researches on Population Ecology,1998,40: 85-95.
[30]Heino M.Noise colour,synchrony and extinctions in spatially structured populations.Oikos,1998,83(2): 368-375.
[31]Ives A R,Dennis B,Cottingham K L,Carpenter S R.Estimating community stability and ecological interactions from time-series data.Ecological Monograph,2003,73(2): 301-330.
[32]Engen S,S?ther B E.Generalizations of the Moran effect explaining spatial synchrony in population fluctuations.American Naturalist,2005,166(5): 603-612.
[33]Ylikarjula J,Alaja S,Laakso J,Tesar D.Effects of patch number dispersal patterns on population dynamics and synchrony.Journal of Theoretical Biology,2000,207(3): 377-387.
附錄A
兩個(gè)AR(3)過(guò)程的空間同步性
考慮兩個(gè)用AR(3)過(guò)程來(lái)描述的種群:
如果系統(tǒng)是3階平穩(wěn)多變量時(shí)間序列,它應(yīng)該滿(mǎn)足Yule-Walker方程:
由A2有;
由A1有:
由A6,A7有:
其中,
由A8有:
因而容易計(jì)算得:
另外,容易計(jì)算AR(3)過(guò)程的方差,具體細(xì)節(jié)略去。
最后,
其中,
附錄B
有色噪音影響的兩個(gè)AR(2)過(guò)程的空間同步性
對(duì)于有色噪音ξt+1=αξt+1+βεt(其中εt獨(dú)立同分布)。運(yùn)用算子(1-αB)(其中B是向后時(shí)間算子,即But+1= ut)到方程1,且利用關(guān)系式(1-αB)ξt+1=εt,則有:
而B(niǎo)1,B2是AR(3)過(guò)程,根據(jù)附錄A和Corr(ξt,ζt)= Corr(εt,ωt),有:
其中,
Effects of colored environmental noise on the spatial synchrony of heterogeneous population dynamics
LIU Zhiguang*,ZHANG Fengpan
Institute of Applied Mathematics,School of Mathematics and Information Sciences,Henan University,Kaifeng 475004,China
Abstract:Spatial synchrony of oscillating populations has been observed in various ecological systems,and identifying its causes has attracted the interest of ecologists.The synchrony of a spatial population has been shown to be detrimental to its persistence because all local populations may go extinct simultaneously.Previous studies have shown that three main hypotheses can explain this phenomenon.First,it may be due to synchronous environmental forcing—the so-called Moran effect or Moran theorem.Second,migration or dispersal of individuals is liable to cause population synchrony,and third,nomadic predators have been proposed as a synchronizing mechanism.In this paper,we focus on the first explanation.
Moran's theorem suggests that if two(or more)populations sharing a common linear density-dependence in the renewal process are disturbed with correlated noise,they will become synchronized with a correlation that matches the noise correlation.Four conditions are needed for the Moran theorem to be applicable: linear density-dependence structure,identical density dependence structure,no dynamical coupling,and spatially correlated white environmental noise.However,there is mounting evidence that population dynamics may differ geographically within a given species.Moreover,various climatic variables in nature are known to demonstrate positive temporal autocorrelation.These violate the assumptions that the dynamics of the populations are identical and environmental noise is white.Therefore,the classical Moran theoremneeds to be extended to cope with these situations.
In this paper,we make the assumption that population dynamics can be described by linear and stationary autoregressive processes,and that they are affected by spatially correlated colored environmental noise.The noise color refers to the temporal correlation in the time series data of the environmental noise and is expressed as the degree of(firstorder)autocorrelation for autoregressive noise.The level of synchrony can be measured as the correlation between two populations.We show that(1)the observed spatial synchrony between two populations can be split into two multiplicative components: the demographic component that depends on the values of the autoregressive coefficients and the environmental noise color,and the correlation of the environmental noise.The Moran theorem still holds in spatial synchrony accounted for by the correlated red noise between homogeneous populations described by linear processes.(2)Spatial variability in population dynamics may substantially contribute to the spatial variability of population synchrony.However,it is complex.No obvious connection is found between the values of the autoregressive coefficients and the demographic component of spatial synchrony.(3)The synchronizing potential of correlated red noise has two characteristics: the correlation between red noises can contribute to the spatial synchrony,and the coefficient of noise color can contribute to the spatial synchrony by affecting the density dependent structure of population dynamics.However,we cannot obtain a discernible pattern between the demographic component of spatial synchrony and the environmental noise color.Environmental noise color intensifies or diminishes the Moran effect when population dynamics are spatially heterogeneous,and this effect depends strongly on the values of the three new combined parameters that we consider in this paper.These results should improve our understanding of the mechanism underlying population synchrony.They should also help develop conservation management plans and improve the control of pest species.
Key Words:moran effect; heterogeneous dynamics; colored noise; spatial synchrony; second-order autoregressive process
*通訊作者
Corresponding author.E-mail: liuzhiguang@ henu.edu.cn
收稿日期:2013-06-07;網(wǎng)絡(luò)出版日期: 2015-06-10
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31200312);河南省教育廳基金項(xiàng)目(2011A180003)
DOI:10.5846/stxb201306071388