王靜
(蘭州文理學(xué)院師范學(xué)院,甘肅蘭州730000)
一類非線性變號二階邊值問題正解的存在性
王靜
(蘭州文理學(xué)院師范學(xué)院,甘肅蘭州730000)
考慮一類非線性變號二階三點(diǎn)邊值問題運(yùn)用錐上的Guo-Krasnoselskii’s不動(dòng)點(diǎn)定理研究一類非線性變號二階三點(diǎn)邊值問題至少存在兩個(gè)正解
非線性;邊值問題;正解
微分方程邊值問題在應(yīng)用數(shù)學(xué)與物理領(lǐng)域中都有十分廣泛的應(yīng)用,在化學(xué)和工程領(lǐng)域中應(yīng)用更為普遍。近年來,二階邊值問題研究取得了一些非常好的結(jié)果,如文獻(xiàn)[1]1417-1427,[2]458-466,[3]443-452,[4]2628-2638,[5]2756-2766,[6]344-350,[7]1-10,[8]32-35。在文獻(xiàn)[2]中,Li和Su運(yùn)用不動(dòng)點(diǎn)指數(shù)定理研究了一類變號二階三點(diǎn)邊值問題
在此文中,筆者討論一類非線性變號三點(diǎn)邊值問題
兩個(gè)正解的存在性,其中
為便于討論,做記號如下:
證明過程需要Guo-Krasnosel’skii不動(dòng)點(diǎn)定理[9]。
定理1設(shè)E是Banach空間,錐K?E,Ω1和Ω2是E中有界開集,0∈Ω1,Ω1?Ω2,A:K∩(Ω2Ω1)→K全連續(xù),若A滿足:
則A在K∩(Ω2Ω1)中必存在不動(dòng)點(diǎn)。
定理2.設(shè)(A1)-(A3)成立。若下面條件成立,
則邊值問題(1)至少存在u1u2兩個(gè)正解,且有
引理1.若y∈C[0,1]則二階邊值問題
有唯一解
其中,格林函數(shù)G(t,s)是:
引理2.格林函數(shù)G(t,s)滿足下列性質(zhì):
其中△如(2)所示。
可知P是E中的錐。
引理3.假設(shè)u∈P,那么u(t)有下列性質(zhì):其中
證明:(ⅰ)由u∈P,在[0,η]上u是凹函數(shù),在[η,1]上u是凸函數(shù),由于u(0)=αu'(0),u(1)=βu(η),則有
對于t∈[η,1],有
對于,得
證明:對,可得
由f是非減函數(shù),則對,有
引理5.設(shè)(A1),(A2),(A3)成立.則算子是全連續(xù)的。
證明:很容易證得,再由于是非減函數(shù),據(jù)引理3中的(ⅰ)和引理4可知
從而
據(jù)
可由Arzela-Ascoli定理證明T是全連續(xù)算子。
因此
分類討論:
Case1,若f(u)是有界函數(shù),那么?N>0,使f(u)≤N設(shè)并且可知
Case2,若f(u)是無界函數(shù)。設(shè)u≤θ2,可知f(u)≤f(θ2)。并且對于u∈P,有可知。從而可得。假設(shè),綜上可知
而θ1<θ2<θ3,由(2)、(3)、(4)式及定理1可知,T存在兩個(gè)不動(dòng)點(diǎn)
結(jié)論:邊值問題(1)有兩個(gè)正解u1,u2且
[1]ATICIFM,CABADAA.Existenceanduniqueness results for discrete second-order periodic boundary valueproblems[J].Computers&Mathematicswith Applications,2003,45.
[2]LI C Y,SU Y J.Existence of sign-changing solution for three-point boundary value problems[J].Chin Quart J of Math,2012,27.
[3]BAI D L,F(xiàn)ENG H Y.Eigenvalue for a singular second order three-point boundary value problem[J].Appl Math Comp,2012,38
[4]KONGLJ.Secondordersingularboundaryvalue problemswithintegralboundaryconditions[J]. Nonlinear Analysis,2010,72.
[5]LIUB,LIUL,WUY.Positivesolutionsforsingular second order three-point boundary value problems[J]. Nonlinear Analysis,2007,66.
[6]SUN B,YANG A,GE W.Successive iteration and positive solutionsforsomesecond-orderthreepoint p-laplacian boundary value problems[J].Mathematical and Computer Modelling,2009,50.
[7]XI S,JIA M,JI H.Multiple nonnegative solutions for second-orderboundaryvalueproblemswith sign-changingnonlinearities[J].Electron.J. Differential Equations,2009,66.
[8]YAO Q.An existence theorem of positive solution f or a superlinear semipositone second-order three-poin tBVP[J].Mathematical Study,2002,35.
[9]GUOD,LAKSHMIKANTHAMV.NonlinearProblemsin Abstract Cones[M].New York:Academic Press,1988.
責(zé)任編輯:李凡生
The Existence of Positive Solutions to Nonlinear Second Order Boundary Value Problem with Change of Sign
WANG Jing
(Normal School,Lanzhou University of Arts and Science,Lanzhou,730000)
This paper studies the following nonlinear second order three-point boundary value problemexistence of at least two positive solutions is studied by using the Guo-Krasnoselskii's fixed-point theorem in cones.
nonlinear,change of sign,boundary value problem,positive solution
O175
A
1674-8891(2016)03-0001-03
2015-12-30
甘肅省教育廳科研項(xiàng)目(編號:1015B-02);蘭州文理學(xué)院科研項(xiàng)目(編號:2015GSP07)
王靜(1981-),女,山東萊州人,蘭州文理學(xué)院副教授,主要從事微分方程的研究。
廣西民族師范學(xué)院學(xué)報(bào)2016年3期