孫淑豪 余迪求
(中國(guó)科學(xué)院西雙版納熱帶植物園 熱帶植物資源可持續(xù)利用重點(diǎn)實(shí)驗(yàn)室,昆明 650223)
WRKY轉(zhuǎn)錄因子家族調(diào)控植物逆境脅迫響應(yīng)
孫淑豪 余迪求
(中國(guó)科學(xué)院西雙版納熱帶植物園 熱帶植物資源可持續(xù)利用重點(diǎn)實(shí)驗(yàn)室,昆明 650223)
WRKY轉(zhuǎn)錄因子是一組含有保守的WRKYGQK結(jié)構(gòu)域的蛋白質(zhì)家族,廣泛參與植物的營(yíng)養(yǎng)體生長(zhǎng)、器官發(fā)育、物質(zhì)代謝和對(duì)各種生物、非生物脅迫的響應(yīng)過(guò)程。目前,對(duì)WRKY家族轉(zhuǎn)錄因子的研究主要集中在不同物種中WRKYs對(duì)逆境脅迫響應(yīng)的信號(hào)轉(zhuǎn)導(dǎo)機(jī)制的解釋。以近年來(lái)發(fā)表的關(guān)于WRKYs的研究成果為基礎(chǔ),綜述了WRKY家族成員的不同功能,討論了WRKYs的不同成員在植物正常生長(zhǎng)發(fā)育的重要作用。模式植物之外其他的植物物種中WRKY家族成員的作用報(bào)道相對(duì)較少,且缺少全面的研究和分析;WRKYs參與的很多信號(hào)通路還沒有完全清晰,這些問(wèn)題有待深入研究。
WRKYs;生物脅迫響應(yīng);非生物脅迫響應(yīng);植物激素
DOI:10.13560/j.cnki.biotech.bull.1985.2016.10.009
植物時(shí)刻暴露在各種環(huán)境條件下,惡劣的環(huán)境條件阻礙著植物的生理性生長(zhǎng)過(guò)程,這些惡劣的環(huán)境條件被稱為非生物脅迫/生物逆境,包括干旱、土壤鹽濃度、重金屬、低溫、放射性物質(zhì)和不同類型的氧化還原反應(yīng)病蟲害等[1]。植物體通過(guò)分子、細(xì)胞、形態(tài)建成各個(gè)層次產(chǎn)生對(duì)環(huán)境的適應(yīng)性響應(yīng)[2],這些復(fù)雜的調(diào)控網(wǎng)絡(luò)操縱著細(xì)胞和植物個(gè)體對(duì)環(huán)境的響應(yīng)、對(duì)氣候的適應(yīng)性[3]。病原體的入侵引起植物內(nèi)源信號(hào)分子,如植物激素水楊酸(salicylic acid,SA)和 茉莉酸(jasmonic acid,JA)以及他們的衍生物含量的迅速升高,這對(duì)下游防御基因的表達(dá)有著重要的調(diào)控作用[4]。其中SA觸發(fā)植物體對(duì)于活營(yíng)養(yǎng)體寄生病原體的防御反應(yīng),JA則是參與對(duì)死營(yíng)養(yǎng)體病原菌的抗性[5]。ABA(abscisic acid)和乙烯(ethylene)對(duì)JA調(diào)控起協(xié)同作用,但他們都拮抗SA。生長(zhǎng)素(auxin)、赤霉素(gibberellins)和細(xì)胞分裂素(cytokinins)則是優(yōu)先促進(jìn)植物的生長(zhǎng)過(guò)程,抑制脅迫響應(yīng)基因的表達(dá);但是這個(gè)過(guò)程可以被SA和JA所抑制,以犧牲植物生長(zhǎng)的代價(jià)來(lái)進(jìn)行逆境防御和抵抗[4]。
在過(guò)去的20年中,人們對(duì)WRKY轉(zhuǎn)錄因子(TF)家族參與植物對(duì)生物和非生物逆境響應(yīng)的調(diào)控有了很多研究和認(rèn)識(shí)[6],其在高等植物中是最大的轉(zhuǎn)錄因子家族之一,并且存在于所有綠色植物基因組中[7],也被稱為非生物脅迫響應(yīng)的“中心調(diào)控因子”[8]。關(guān)于WRKY家族轉(zhuǎn)錄因子參與SA、JA逆境脅迫響應(yīng)信號(hào)轉(zhuǎn)導(dǎo)過(guò)程的報(bào)道逐年增多。WRKYs調(diào)節(jié)植物對(duì)多種非生物脅迫響應(yīng),例如鹽脅迫[9]、干旱脅迫[10]、冷脅迫[11]、傷口反應(yīng)[12];且不僅僅局限于模式植物擬南芥,還包括很多其他的物種[13]。WRKY蛋白在產(chǎn)生生物脅迫的病原體防御[14,15]和昆蟲防御[16,17]中起重要作用。本文主要總結(jié)了近年來(lái)報(bào)道的WRKYs參與植物脅迫響應(yīng)的作用,希望對(duì)WRKY家族在植物逆境響應(yīng)中的角色,有一個(gè)全面的認(rèn)識(shí)。
WRKY家族轉(zhuǎn)錄因子具有相同的結(jié)構(gòu)特征,N端都有包含WRKYGQK七肽序列的WRKY結(jié)構(gòu)域,C端則含有C2H2-或C2HC-類型的鋅指結(jié)構(gòu)[15]。根據(jù)這些特點(diǎn),WRKYs可以分成三個(gè)家族:第Ⅰ家族含兩個(gè)WRKY結(jié)構(gòu)域和兩個(gè)C2H2鋅指結(jié)構(gòu),第Ⅱ家族含一個(gè)WRKY結(jié)構(gòu)域和一個(gè)C2H2鋅指結(jié)構(gòu),第Ⅲ家族含一個(gè)WRKY結(jié)構(gòu)域和一個(gè)C2HC鋅指結(jié)構(gòu)。第Ⅱ家族又被分成a,b,c,d 和e五個(gè)小亞族。第Ⅱ家族的WRKY蛋白參與調(diào)控植物的生長(zhǎng)發(fā)育,例如衰老、種子休眠和萌發(fā)等;還參與植物對(duì)干旱、鹽脅迫和冷害響應(yīng)過(guò)程[18]。 WRKYs如果沒有LZ(leucine zipper)基序,則不能形成同源或者異源二聚體[19]。
不同物種中WRKY家族基因數(shù)量也是不同的,黃瓜(Cucumis sativus)中57 個(gè),麻風(fēng)樹(Jatropha curcas)中58個(gè),葡萄藤(Vitis vinifera)中9個(gè),白梨(Pyrus bretschneideri)中103個(gè),谷子(Setaria italica)中105個(gè),蓖麻子(Ricinus communis L.)中58個(gè),擬南芥(Arabidopsis thaliana)中74個(gè),水稻(rice)中102個(gè),楊樹(poplar)中104個(gè),二穗短柄草(Brachypodium distachyon)中86個(gè)成員,182個(gè)成員在大豆中,116和102個(gè)WRKY基因在兩個(gè)不同的棉花種。 油菜(Brassica napus)中有287個(gè)WRKY家族基因,桑樹(Morus notabilis)中有54個(gè)WRKY家族基因,甜木薯(Manihot esculenta)中被鑒定出來(lái)85個(gè)WRKY家族基因[20-29]。
2.1WRKY轉(zhuǎn)錄因子響應(yīng)生物逆境脅迫
AtWRKY50和AtWRKY51促進(jìn)SA的生物合成[30]。AtWRKY17和AtWRKY33在JA處理過(guò)后被誘導(dǎo)表達(dá)[31]。過(guò)表達(dá)AtWRKY28和AtWRKY46經(jīng)由SA信號(hào)通路可以誘導(dǎo)ICS1和PBS3[32]。此外,從長(zhǎng)春花中分離到的12個(gè)WRKY基因都可以響應(yīng)JA信號(hào)[33],丹參(Salvia miltiorrhiza)中的49個(gè)WRKY基因可以顯著被JA上調(diào)或者下調(diào)表達(dá)[34]。從楊樹(Populus trichocarpa)中分離的WRKY第III家族成員PtrWRKY89可以被SA快速誘導(dǎo)[35]。PtrWRKY89的過(guò)表達(dá)轉(zhuǎn)基因株系中檢測(cè)到PR基因持續(xù)表達(dá),且該株系對(duì)P. syringae和B. cinerea更敏感。PtrWRKY89參與SA與JA的協(xié)同信號(hào)轉(zhuǎn)導(dǎo)過(guò)程[36]。在煙草中,WRKY 3/4基因可以被TMV、SA和SA類似物所快速誘導(dǎo),且表達(dá)量足夠啟動(dòng)PR蛋白合成,增強(qiáng)抵抗力[37]。我們的研究結(jié)果證實(shí)AtWRKY8通過(guò)直接調(diào)控ABI4、ACS6和ERF104的表達(dá)參與植物對(duì)TMV的防御響應(yīng)過(guò)程中,并且介導(dǎo)了TMV和擬南芥之間ABA和乙烯的信號(hào)交叉?zhèn)鬟f[38]。香蕉VQ基因通過(guò)抑制冷害響應(yīng)轉(zhuǎn)錄因子MaWRKY26參與到JA生物合成基因的調(diào)節(jié)[39]。人參中WRKY轉(zhuǎn)錄因子對(duì)于脅迫的響應(yīng)有6個(gè)PgWRKY基因(PgWRKY2、PgWRKY3、PgWRKY4、PgWRKY5、PgWRKY6、PgWRKY7)參與。SA處理后3個(gè)WRKY基因(PgWRKY3、PgWRKY5、PgWRKY9)明顯表達(dá)量下調(diào)。ABA處理后5個(gè)PgWRKYs(PgWRKY2、PgWRKY4、PgWRKY5、PgWRKY8、PgWRKY9)一直明顯的上調(diào)表達(dá)[40]。
在水稻中,OsWRKY71[41]、OsWRKY31[42]、Os-WRKY45-1、OsWRKY45-2[43]都被報(bào)道在細(xì)菌病原菌侵染過(guò)程中被誘導(dǎo)。相似的,在擬南芥中,AtWRKY8[44]、AtWRKY33[45]、AtWRKY25[46]、AtWRKY11和AtWRKY17[31]在細(xì)菌病原體侵染時(shí)候基因下調(diào)表達(dá)。WRKY參與菜豆對(duì)于SCN大豆胞囊線蟲病(Soybean Cyst Nematode)的侵染脅迫響應(yīng)[47]。CmWRKY15通過(guò)調(diào)控ABA信號(hào)途徑可以促進(jìn)細(xì)極鏈格孢(Alternaria tenuissima)對(duì)于植物體的感染作用[48]。但是,CmWRKY48過(guò)表達(dá)的轉(zhuǎn)基因菊花卻可以抑制蚜蟲的群體數(shù)量[49]。
油菜在響應(yīng)核盤菌侵染24 h內(nèi)快速誘導(dǎo)的關(guān)鍵病原體響應(yīng)基因,包括葡聚糖酶、幾丁質(zhì)酶、過(guò)氧化物酶和WRKY轉(zhuǎn)錄因子等,這些都是參與宿主早期病原體響應(yīng)的基因。其中,WRKY 11在24 hpi被誘導(dǎo)(3倍)但是在48 hpi被抑制(-2倍)[50];WRKY33之前被報(bào)道過(guò)正調(diào)控植物對(duì)于營(yíng)養(yǎng)體壞死型真菌的抗性[51];而且在甘藍(lán)型油菜中過(guò)表達(dá)WRKY33導(dǎo)致抗性響應(yīng)基因的持續(xù)表達(dá),包括PR1、PDF1.2,增加了植株的抵抗力[52]。WRKY11、18、53則表現(xiàn)出了負(fù)調(diào)控或者是對(duì)病原菌侵染的延遲響應(yīng)。在之前的報(bào)道中BnWRKY11在侵染早期6 hpi的時(shí)候,表達(dá)水平同時(shí)被JA和ET 所抑制[53]。
在擬南芥中過(guò)表達(dá)AtWRKY28和AtWRKY75都能增強(qiáng)植株對(duì)病菌的抗性反應(yīng)[54]。實(shí)驗(yàn)結(jié)果證明,13個(gè) BnWRKYs都明顯地被S. sclerotiorum誘導(dǎo);包括WRKY6、 8、11、15、28、33、 40、69 和75,在所有煙草株系中都能夠檢測(cè)到表達(dá)量的變化;其中6個(gè)被大幅上調(diào),分別是BnaA08g12420D(WRKY11)、BnaC04g35770D(WRKY15)、BnaC06g-19560D(WRKY40)、BnaC06g40170D(WRKY40)、BnaA08g180-40D(WRKY65)和BnaA09g55250D(WRKY69),同時(shí)5個(gè)WRKYs被下調(diào)[55]。
WRKY40和銅離子轉(zhuǎn)運(yùn)蛋白是調(diào)節(jié)棉花對(duì)于橘黃粉虱侵襲防御的中心調(diào)控基因[56]。OsWRKY53可以被咀嚼食草動(dòng)物高粱條螟(SSB)啃食所誘導(dǎo),負(fù)調(diào)控轉(zhuǎn)錄調(diào)節(jié)子OsMPK3/OsMPK6導(dǎo)致JA、JA-Ile和乙烯水平下降從而誘發(fā)水稻對(duì)SSB的抗性。褐飛虱(BPH)侵襲的8 h之內(nèi)OsWRKY53轉(zhuǎn)錄水平上調(diào),在水稻對(duì)于啃食性昆蟲BPH的抵抗起到重要作用。實(shí)驗(yàn)發(fā)現(xiàn),BPH可以導(dǎo)致水稻中H2O2的顯著減少,而在oe-wrky植物體中BPH誘導(dǎo)的H2O2含量明顯低于WT;說(shuō)明OsWRKY53通過(guò)調(diào)節(jié)H2O2的水平來(lái)正調(diào)控水稻對(duì)啃食性昆蟲的防御方應(yīng)[57]。
2.2WRKY轉(zhuǎn)錄因子調(diào)控非生物脅迫響應(yīng)
干旱是所有非生物脅迫類型中對(duì)植物體傷害最大的,缺水使植株生長(zhǎng)緩慢且矮小。WRKY家族轉(zhuǎn)錄因子在植物對(duì)干旱的耐受起到至關(guān)重要的作用[58]。CmWRKY10通過(guò)ABA途徑來(lái)調(diào)控菊花的干旱耐受性;在其高表達(dá)植株中DREB1A、DREB2A、CuZnSOD、NCED3A、 NCED3B等基因轉(zhuǎn)錄活躍,說(shuō)明該株系的干旱耐受機(jī)制與ABA 信號(hào)途徑有關(guān)聯(lián)。另外,在高表達(dá)株系中ROS的積累明顯低于野生型,過(guò)氧化物酶、超氧歧化酶、過(guò)氧化氫酶的酶活性則是高于野生型,這些高酶活都對(duì)提高缺水耐受性有幫助[59]。CmWRKY1是從菊花重克隆出來(lái)的WRKYⅡb亞家族的轉(zhuǎn)錄因子,它和擬南芥AtWRKY6高度同源,外施ABA下調(diào)內(nèi)源CmWRKY1,但是濕潤(rùn)條件可以明顯的誘導(dǎo)CmWRKY1的表達(dá)[60]。CmWRKY1通過(guò)調(diào)節(jié)ABA相關(guān)基因表達(dá)增強(qiáng)杭菊的脫水耐受性。AtWRKY6調(diào)控有正調(diào)控和負(fù)調(diào)控兩種調(diào)控方式,而CmWRKY1經(jīng)過(guò)證實(shí)同樣如此[61]。相反,過(guò)表達(dá)CmWRKY17則增加了菊花對(duì)于鹽脅迫的敏感性[62]。
AtWRKY46可以明顯地被干旱、H2O2、鹽脅迫等所誘導(dǎo),它的突變體相比野生型來(lái)說(shuō)對(duì)滲透脅迫更敏感[63]。TaWRKY44 在煙草中表達(dá)可以提高其對(duì)干旱、鹽脅迫、滲透脅迫的抗性[64]。研究結(jié)果顯示,OsWRKY11[65]、HvWRKY38[66]、TaWRKY2和TaWRKY19[67]都能提高植物對(duì)于干旱脅迫的抵抗能力。被HSP101調(diào)控的OsWRKY11可以增強(qiáng)水稻對(duì)高溫和干旱的耐受性[65]。相似的,在大豆中過(guò)表達(dá)GmWRKY54使得植物體對(duì)干旱的耐受性有明顯的提高[68]。WRKY基因還參與到大豆干旱和洪澇脅迫的響應(yīng)過(guò)程中[69]。
從羊草(Leymus chinensis)中分離的LcWRKY5,在擬南芥中過(guò)表達(dá)LcWRKY5可以強(qiáng)烈地增強(qiáng)植物體的耐受性[70]。從短柄草(Brachypodium distachyon)中克隆到的BdWRKY36有增強(qiáng)干旱期間植株的適應(yīng)性的功能。此外,過(guò)表達(dá)BdWRKY36蛋白的轉(zhuǎn)基因煙草對(duì)干旱的抵抗力顯著提高,這種增強(qiáng)作用是通過(guò)減少活性氧ROS的積累,激活抗性相關(guān)基因NtLEA5、ABA生物合成相關(guān)基因NtNCED1和調(diào)節(jié)基因NtDREB3等途徑來(lái)實(shí)現(xiàn)的[71]。與AtWRKY60同源的BhWRKR1,可以被缺水和ABA短暫而快速的誘導(dǎo)表達(dá)。BhWRKY1與BhGolS1互作,依賴ABA途徑來(lái)增加轉(zhuǎn)基因煙草對(duì)于水分缺失的耐受性[72]。大豆遭受水分脅迫時(shí),GmWRKY17和GmWRKY67的轉(zhuǎn)錄激活作用增強(qiáng)。GmWRKY161在葉片中可被快速短暫誘導(dǎo)表達(dá),在誘導(dǎo)3 h后達(dá)到峰值71倍。GmWRKY112在葉片中短暫上調(diào),在處理2 h后達(dá)到最大值21倍。GmWRKY17和GmWRKY67轉(zhuǎn)入大豆根系中,干旱處理后分別有12.7倍和4.8倍的表達(dá)量。之前的研究已經(jīng)表明GmWRKY53和GmWRKY112啟動(dòng)子正響應(yīng)外施用鹽和PEG[73]。煙草的轉(zhuǎn)錄因子NtWRKY69能夠直接被水分脅迫所誘導(dǎo)[74]。WRKY70還參與落花生的低溫脅迫響應(yīng)[75]。互花米草珧冷脅迫響應(yīng)中,WRKY起始了PR蛋白和AFP蛋白(anti-freezing protein)的表達(dá)[76]。WRKY44在煙草對(duì)多種非生物脅迫的耐受性起到重要作用[77]。
最近的一個(gè)研究顯示,來(lái)自于棉花(G. hirsutum L.)的GhWRKY68,在煙草中過(guò)表達(dá)該蛋白,可以通過(guò)ABA信號(hào)途徑來(lái)提高轉(zhuǎn)基因植物體對(duì)干旱和鹽脅迫的敏感性[78]。人參用NaCl處理時(shí)除了PgWRKY5之外所有的PgWRKYs轉(zhuǎn)錄水平都明顯的上調(diào)或者下調(diào)表達(dá)[79]。遏藍(lán)菜(Thlaspi caerulescens)的WRKY53[80]和擬南芥中AtMYB4[81]有可能參與到植物對(duì)于重金屬鎘(Cd)的脅迫響應(yīng)過(guò)程中。怪柳(Tamarix hispida)的ThWRKY7可以特異性的結(jié)合到ThVHAc1啟動(dòng)子的W-box上并且具有轉(zhuǎn)錄激活活性,而且在Cd處理?xiàng)l件下ThWRKY7與ThVHAc1具有相同的表達(dá)模式,表明ThWRKY7能夠提高植物對(duì)Cd的耐受性[82]。低氧濃度誘導(dǎo)屬于AUX/IAA、WRKY、HB、鋅指家族的轉(zhuǎn)錄因子的高表達(dá),屬于WRKYs第Ⅰ家族的WRKY23和WRKY33在0.4 kPa時(shí)被誘導(dǎo)[83],他們可能與VQ蛋白協(xié)同作用[84]。在馬櫻丹(V. lantana)中WRKY蛋白對(duì)于O3脅迫在轉(zhuǎn)錄水平的響應(yīng),誘導(dǎo)一個(gè)參與O3脅迫感受/信號(hào)轉(zhuǎn)導(dǎo)途徑的基因表達(dá)并且參與氧化還原反應(yīng)[85]。WRKY基因可能參與兩個(gè)楊樹雜交克隆受到O3間斷式脅迫條件下的氧化還原反應(yīng)調(diào)控[86]。同樣的在Col-0擬南芥WRKY轉(zhuǎn)錄因子可以被O3(350 ppb,2 h)處理高度誘導(dǎo),該現(xiàn)象也能在番茄被B. cinerea侵染和被P. syringae感染[87]、O3處理過(guò)后觀察到[88]。WRKY蛋白還參與毛竹(Phyllostachys edulis)對(duì)強(qiáng)光照的響應(yīng)調(diào)控中[89]。
WRKY蛋白已經(jīng)被證明參與植物的生長(zhǎng)發(fā)育過(guò)程的調(diào)節(jié),例如毛狀體形態(tài)發(fā)生[90],開花[91],種子發(fā)育[92]、休眠和萌發(fā)[93],衰老[94]。擬南芥WRKY13通過(guò)直接結(jié)合于NST2的啟動(dòng)子上正調(diào)控莖中木質(zhì)素的生物合成[95]。在木髓部細(xì)胞中AtWRKY12直接抑制NST2的表達(dá)來(lái)負(fù)調(diào)控次級(jí)細(xì)胞壁(SCW)的形成,次級(jí)細(xì)胞壁相關(guān)的NAC結(jié)構(gòu)域蛋白SND1/NST3和它的功能同源基因NST1和 NST2、維管特異性VND6和VND7是一個(gè)關(guān)鍵的調(diào)控節(jié)點(diǎn),對(duì)于下游SCW生物合成基因SND3、MYB46、MYB83、MYB103等次級(jí)轉(zhuǎn)錄因子的轉(zhuǎn)錄具有開關(guān)作用[96,97]。PtrWRKY19與AtWRKY12具有高度同源性,都負(fù)調(diào)控木質(zhì)部髓細(xì)胞的SCW發(fā)育[98]。WRKY還參與苜蓿(Medicago truncatula)的次級(jí)細(xì)胞壁形成以及表皮轉(zhuǎn)移細(xì)胞發(fā)育[99]的調(diào)控,調(diào)節(jié)小麥的抽穗期[100]。GsWRKY20正調(diào)控開花反應(yīng),通過(guò)調(diào)控開花相關(guān)基因和花分生組織基因的表達(dá)來(lái)促進(jìn)植物開花過(guò)程[101]。同樣,芒草(Miscanthus)的MlWRKY12轉(zhuǎn)錄因子也被報(bào)道控制開花[102]。WRKY還參與到了大豆葉片脫落的器官極性和細(xì)胞命運(yùn)的轉(zhuǎn)錄調(diào)控中[103]。
我們研究發(fā)現(xiàn),AtWRKY25很有可能對(duì)ABA調(diào)控種子萌發(fā)和萌發(fā)后生長(zhǎng)有拮抗作用[104]。WRKY40通過(guò)直接抑制ABA敏感基因例如ABI5的轉(zhuǎn)錄,作為ABA響應(yīng)途徑的中心轉(zhuǎn)錄抑制子來(lái)起作用[106]。AtWRKY41通過(guò)直接調(diào)控ABI3在成熟種子中的表達(dá)來(lái)控制早期的種子休眠和熱抑制[107],CaWRKY6可以激活CaWRKY40,使其作為一個(gè)正調(diào)控因子調(diào)節(jié)Ralstonia solanacearum抗性和對(duì)熱的耐受性[108]。WRKY參與到水稻葉片早衰和種子休眠中,通過(guò)對(duì)WRKY的上調(diào)表達(dá)來(lái)激活信號(hào)轉(zhuǎn)導(dǎo)[109]。在在P.trichocarpa中約有100個(gè)WRKY基因,他們中的大部分都可以被JA、SA、冷脅迫、干旱脅迫、鹽脅迫或者傷口脅迫所誘導(dǎo)[110]。
AtWRKY6、AtWRKY22、AtWRKY53參與到植物衰老過(guò)程調(diào)控中[111-113]。WRKY53被報(bào)道加快了葉片的衰老過(guò)程[114]。AtWRKY54、AtWRKY57和AtWRKY70 同樣在葉片衰老中起調(diào)控作用[115]。我們的研究結(jié)果顯示AtWRKY57在JA誘導(dǎo)的衰老過(guò)程中,作為一個(gè)關(guān)節(jié)點(diǎn)來(lái)調(diào)控生長(zhǎng)素和JA的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程[116]。在水稻中過(guò)表達(dá)OsWRKY42導(dǎo)致葉片早衰[117]。之前報(bào)道過(guò)SA和H2O2可以刺激WRKY基因的表達(dá),包括(WRKY-6、-42、-53、-71、-72、-77、-79和 -97)在葉片衰老中起到重要作用,并且這些WRKY轉(zhuǎn)錄因子在ospls1中的表達(dá)量明顯高于野生型[118,119]。在小麥基因組中,共有116個(gè)WRKY基因,其中30個(gè)確定為衰老相關(guān)WRKY基因,TaWRKY7、16、24、36、39、68、71、74、89、96、114、115和116 很可能是調(diào)節(jié)衰老的SAGs。在擬南芥中異位過(guò)表達(dá)TaWRKY7,在黑暗處理?xiàng)l件下觀察到葉片衰老過(guò)程的明顯加快;它還可以被ABA誘導(dǎo),同時(shí)阻止了葉片的水分流失提高植株對(duì)干旱的忍耐性[120]。AtWRKY6可以直接結(jié)合到W-box上從而調(diào)控衰老誘導(dǎo)的類受體激酶基因的轉(zhuǎn)錄活性,atwrky6突變體和過(guò)表達(dá)AtWRKY6轉(zhuǎn)基因植株分別表現(xiàn)出早衰和延遲衰老的表型[121]。此外,在鐵缺失的條件下WRKY46轉(zhuǎn)錄因子通過(guò)調(diào)節(jié)液泡Fe轉(zhuǎn)運(yùn)基因的表達(dá),來(lái)調(diào)控Fe元素在植物體內(nèi)從根到莖葉的轉(zhuǎn)運(yùn)[122]。
WRKYs轉(zhuǎn)錄因子例如GaWRKY1、AaWRKY1、WRKY3、WRKY6和WRKY33都參與控制多種生物合成過(guò)程的調(diào)節(jié)中,包括棉子酚、青蒿素和植物抗毒素的生物合成調(diào)控[123-125]。在紫杉醇的生物合成過(guò)程中,從紅豆杉(Taxus chinensis)中分離的MeJA響應(yīng)轉(zhuǎn)錄因子TcWRKYA1,在體外可以特異性地與兩個(gè)DBAT基因啟動(dòng)子上W-box元件結(jié)合,而DBAT編碼紫杉醇生物合成過(guò)程中的關(guān)鍵酶[126]。CjWRKY1屬于IIc亞家族且響應(yīng)JA信號(hào),在生物堿異喹啉的生物合成過(guò)程中,過(guò)表達(dá)CjWRKY1能夠增強(qiáng)多種黃連素生物合成基因的轉(zhuǎn)錄激活[127]。雌性蛇麻草(Humulus lupulus L.)中的HlWRKY1調(diào)控蛇麻素生物合成的最后步驟,通過(guò)激活黃腐酚和苦酸生物合成的關(guān)鍵基因,例如查耳酮合酶H1,己酰苯合酶,異戊烯轉(zhuǎn)移酶1、1L和2,O-甲基轉(zhuǎn)移酶的轉(zhuǎn)錄來(lái)完成調(diào)控過(guò)程[128]。
4.1可變剪接
在病原體防御反應(yīng)中,水稻W(wǎng)RKY62和 WRKY76轉(zhuǎn)錄因子的基因存在可變剪接。短的可變剪接OsWRKY62.2和OsWRKY76.2亞型可以彼此互作,也可以和全長(zhǎng)的蛋白互作。OsWRKY62.2在植物中轉(zhuǎn)錄抑制作用減弱,OsWRKY62.2和OsWRKY76.2的剪接使得其對(duì)W-box的結(jié)合能力有所下降[129]。
4.2磷酸化
量光譜測(cè)定顯示,體外WRKY46能夠被MPK3磷酸化S168和S250位點(diǎn)。磷酸化位點(diǎn)的突變減慢了PAMP誘導(dǎo)的WRKY46降解的過(guò)程。在原生質(zhì)體中過(guò)表達(dá)WRKY46可以增加PAMP響應(yīng)提高植物基礎(chǔ)抗性[130]。WRKY8 和WRKY48作為植物對(duì)丁香假單胞菌(P. syringae)基礎(chǔ)防御的負(fù)調(diào)控因子又作為ETI的正調(diào)控因子,他們的生物突變體表現(xiàn)出抗性減弱和防御基因表達(dá)量的減少[131]。WRKY8、WRKY28和WRKY48的WRKY結(jié)構(gòu)域可以直接被CPKs磷酸化,增強(qiáng)HR反應(yīng)中WRKY46對(duì)細(xì)胞程序性死亡相關(guān)的標(biāo)記基因啟動(dòng)子區(qū)W-box元件的結(jié)合能力[132]。WRKY53可以直接被MAPK信號(hào)途徑的MEKK1蛋白磷酸化從而參與到植物的基礎(chǔ)防御反應(yīng)的信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中[133],WRKY53的磷酸化狀態(tài)可以加強(qiáng)靶基因的啟動(dòng)和轉(zhuǎn)錄能力[134]。在響應(yīng)B. cinerea 侵染的過(guò)程中,WRKY33可以被兩個(gè)明顯受病原菌誘導(dǎo)的MAPKs所磷酸化,啟動(dòng)植物抗菌劑-植保素的生物合成[135]。在本生煙中MAPK介導(dǎo)NbWRKY8的磷酸化,NbWRKY8與AtWRKY33同源,參與PTI和ETI可以激活NADPH氧化酶的表達(dá)[136]。OsWRKY70可以被MAPK3和MAPK6磷酸化參與GA的生物合成,并且對(duì)植物生長(zhǎng)和發(fā)育的動(dòng)態(tài)平衡起重要作用。目前的報(bào)道顯示,在不同物種間MAPK是作為通用磷酸酶來(lái)磷酸化WRKY家族的蛋白質(zhì),并且最終作用到他們的靶基因上[137]。
WRKYs 參與到植物生命周期的多個(gè)方面,在植物正常的生命活動(dòng)中有著重要的不可或缺的作用。通過(guò)調(diào)控植物細(xì)胞壁的合成、開花時(shí)間、種子儲(chǔ)藏物質(zhì)代謝、種子萌發(fā)和休眠和植物衰老等過(guò)程參與植物的生長(zhǎng)發(fā)育的各個(gè)階段。WRKYs和SA、JA等植物激素之間存在復(fù)雜的信號(hào)轉(zhuǎn)導(dǎo)調(diào)控網(wǎng)絡(luò),并且在植物受到環(huán)境中的各種脅迫因素,例如干旱、鹽、缺氧、低溫、強(qiáng)光照等非生物脅迫的威脅和病原體、昆蟲、食草性或雜食性動(dòng)物的入侵等生物脅迫的影響時(shí),WRKY家族的轉(zhuǎn)錄調(diào)控蛋白通過(guò)激活或者抑制相關(guān)脅迫響應(yīng)基因的轉(zhuǎn)錄激活,來(lái)增加植物對(duì)于環(huán)境的適應(yīng)性和耐受性。WRKYs轉(zhuǎn)錄因子家族廣泛存在于綠色植物中,已經(jīng)有關(guān)于不同物種中WRKYs相關(guān)作用的報(bào)道,但是大部分的調(diào)控網(wǎng)絡(luò)還不清晰,仍然還有很多內(nèi)容需要進(jìn)一步的研究證實(shí)和完善。
[1]Aditya B, Aryadeep R. WRKY Proteins:Signaling and regulation of expression during abiotic stress responses[J]. Scientific World Journal Volume, 2015:807560.
[2]Gray SB, Brady SM. Plant developmental responses to climate change[J]. Dev Biol, 2016:S0012-1606(16)30264-0.
[3]Oracz K, Karpinski S. Phytohormones signaling pathways and ROS involvement in seed germination[J]. Plant Sci, 2016, 7:864.
[4]Pieterse CM, Van der Does D, Zamioudis C, et al. Hormonal modulation of plant immunity[J]. Annu Rev Cell Dev Biol, 2012,28:489-521.
[5]Schluttenhofer C, Pattanaik S, Patra B, et al. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling[J]. BMC Genomics, 2014, 15:502.
[6] Schuttenhofer C, Yuan L. Regulation of specialized metabolism by WRKY transcription factors[J]. Plant Physiology, 2015, 167(2):295-306.
[7]Ulker B, Somssich IE. WRKY transcription factors:from DNA binding towards biological function[J]. Current Opinion in Plant Biology, 2004, 7(5):491-498.
[8]Tripathi P, Rabara RC, et al. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants[J]. Planta, 2014, 239:255-266.
[9]Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Rep, 2009,28(1):21-30.
[10]Ren X, Chen Z, Liu Y, et al. ABO3, a WRKY transcription factor,mediates plant responses to abscisic acid and drought tolerance in Arabidopsis[J]. Plant J, 2010, 63(3):417-29.
[11]Zou C, Jiang W, Yu D. Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis[J]. J Exp Bot, 2010, 61(14):3901-3914.
[12]Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis[J]. Mol Plant Microbe Interact,2010, 23(5):558-565.
[13]Rinerson CI, Rabara RC, Tripathi P, et al. The evolution of WRKY transcription factors[J]. BMC Plant Biology, 2015, 15:66.
[14]Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling[J]. Curr Opin Plant Biol, 2007, 10(4):366-371.
[15]Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcription factors[J]. Trends In Plant Sci, 2010, 15(5):247-258.
[16]Grunewald W, Karimi M, Wieczorek K, et al. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes[J]. Plant Physiol, 2008, 148(1):358-368.
[17]Skibbe M, Qu N, Galis I, et al. Induced plant defenses in the natural environment:Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. Plant Cell, 2008, 20(7):1984-2000.
[18]Rushton DL, Tripathi P, Rabara RC, et al. WRKY transcription factors:key components in abscisic acid signaling[J]. Plant Biotechnology Journal, 2012, 10:2-11.
[19]Narusaka M, Toyoda K, Shiraishi T, et al. Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1[J]. Sci Rep, 2016, 6:18702.
[20]Ling J, Jiang W, Zhang Y, et al. Genome-wide analysis of WRKY gene family in Cucumis sativus[J]. BMC Genomics, 2011, 12:471.
[21]Xiong W, Xu X, Zhang L, et al. Genome-wide analysis of the WRKY gene family in physic nut(Jatropha curcas L. )[J]. Gene, 2013, 524(2):124-132.
[22]Guo C, Guo R, Xu X, et al. Evolution and expression analysis of the grape(Vitis vinifera L. )WRKY gene family[J]. J Exp Bot,2014, 65(6):1513-1528.
[23]Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5):199-206.
[24]Huang X, Li K, Xu X, et al. Genome-wide analysis of WRKY transcription factors in white pear(Pyrus bretschneideri)revealsevolution and patterns under drought stress[J]. BMC Genomics,2015, 16(1):1104.
[25] He H, Dong Q, Shao Y, et al. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa[J]. Plant Cell Rep, 2012, 31(7):1199-1217.
[26] Muthamilarasan M, Bonthala VS, Khandelwal R, et al. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling[J]. Front Plant Sci, 2015, 6:910.
[27]Ross CA, Liu Y, Shen QJ. The WRKY gene family in rice(Oryza sativa)[J]. J Integr Plant Biol, 2007, 49:827-842.
[28]Zou Z, Yang L, Wang D, et al. Gene structures, evolution and transcriptional profiling of the WRKY gene family in Castor Bean(Ricinus communis L. )[J]. PLoS One, 2016, 11(2):e0148243.
[29]Ulker B, Somssich IE. WRKY transcription factors:from DNA binding towards biological function[J]. Curr Opin Plant Biol,2004, 7(5):491-498.
[30]Gao QM, Venugopal S, Navarre D, Kachroo A. Low oleic acidderived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins[J]. Plant Physiol,2011, 155(1):464-476.
[31]Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana[J]. Plant Cell, 2006, 18(11):3289-3302.
[32]Verk MC, Bol JF, Linthorst HJ. WRKY transcription factors involved in activation of SA biosynthesis genes[J]. BMC Plant Biol, 2011, 11:89.
[33]Schluttenhofer C, Pattanaik S, Patra B, et al. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling[J]. BMC Genomics, 2014, 15:502.
[34]Gong L, Zhang H, Gan X. Transcriptome profiling of the potato(Solanum tuberosum L. )Plant under drought stress and waterstimulus conditions[J]. PLoS One, 2015, 10(5):e0128041.
[35]Jiang Y, Guo L, Liu R, et al. Overexpression of poplar PtrWRKY89 in transgenic Arabidopsis leads to a reduction of disease resistance by regulating defense related genes in salicylate- and jasmonate dependent signaling[J]. PLoS One, 2016, 11(3):e0149137.
[36]Jiang YZ, Duan YJ, Yin J, et al. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses[J]. J Exp Bot, 2014, 65(22):6629-6644.
[37]Chen C, Chen Z. Isolation and characterization of two pathogenand salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Mol Biol, 2000, 42(2):387-396.
[38]Chen LG, Zhang LP, Li DB, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2013, 110:E1963-1971.
[39]Ye YJ, Xiao YY, Han YC, et al. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes[J]. Sci Rep,2016, 6:23632.
[40]Xiu H, Nuruzzaman M, Guo X, et al. Molecular cloning and expression analysis of eight PgWRKY genes in Panax ginseng responsive to salt and hormones[J]. Int J Mol Sci, 2016, 17(3):319.
[41]Liu X, Bai X, Wang X, Chu C. OsWRKY71, a rice transcription factor, is involved in rice defense response[J]. Plant Physiol,2007, 164:969-979.
[42]Zhang J, Peng Y, Guo Z. Constitutive expression of pathogeninducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants[J]. Cell Res,2008, 18(4):508-521.
[43]Tao Z, Kou Y, Liu H, et al. OsWRKY45 alleles play different roles in abscisic acid signaling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Exp Bot, 2011, 62(14):4863-4874.
[44]Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis[J]. Mol Plant Micro, 2011, 23:558-565.
[45]Zheng Z, Qamar SA, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. Plant J, 2006, 48(4):592-605.
[46]Zheng Z, Mosher SL, Fan B, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringe[J]. BMC Plant Biol, 2007, 7:2.
[47]Jain S, Chittem K, Brueggeman R, et al. Comparative transcriptome analysis of resistant and susceptible common bean genotypes in response to soybean cyst nematode infection[J]. PLoS One,2016, 11(7):.
[48]Fan Q, Song A, Xin J, et al. CmWRKY15 facilitates Alternaria tenuissima infection of chrysanthemum[J]. PLoS One, 2015,10:e0143349.
[49]Li P, Song A, Gao C, et al. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance[J]. Plant Physiology and Biochemistry, 2015, 95:26-34.
[50]Joshi RK, Megha S, Rahman MH, et al. A global study of transcriptome dynamics in canola(Brassica napus L. )responsive to Sclerotinia sclerotiorum infection using RNA-Seq[J]. Gene,2016, 590(1):57-67.
[51]Yang B, Jiang Y, Rahman MH, et al. Identification and expression analysis of WRKY transcription factor genes in canola(Brassica napus L. )in response to fungal pathogens and hormone treatments[J]. BMC Plant Biol, 2009, 9:68.
[52]Wang Z, Fang H, Chen Y, et al. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum[J]. Mol Plant Pathol, 2014, 15(7):677-689.
[53]Wang Z, Mao H, Dong C, et al. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape[J]. Mol Plant Microbe In, 2009, 22(3):235-244.
[54]Chen XT, Liu T, Lin G, et al. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum[J]. Plant Cell Rep, 2013, 32(10):1589-1599.
[55]Jiang YZ, Duan YJ, Yin J, et al. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response tobiotic and abiotic stresses[J]. Exp Bot, 2014, 65(22):6629-6644.
[56]Li J, Zhu J, Hull JJ, et al. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci(whitefly)[J]. Plant Biotechnol, 2016, 14(10):1956-1975.
[57]Hu L, Ye M, Li R, Lou Y. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice[J]. Plant Signal Behav, 2016, 11(4):e1169357.
[58]Satapathy L, Singh D, Ranjan P, et al. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling[J]. Molecular Genetics Genomics, 2014, 289:1289-1306.
[59] Jaffar MA, Song A, Faheem M, et al. Involvement of CmWRKY10 in drought tolerance of Chrysanthemum through the ABA-signaling pathway[J]. Int J Mol Sci, 2016, 17(5):E693.
[60]Song A, Li P, Jiang J, et al. Phylogenetic and transcription analysis of chrysanthemum WRKY transcription factors[J]. International Journal Molecular Science, 2014, 15:14442-14455.
[61]Fan Q, Song A, Jiang J, et al. CmWRKY1 enhances the dehydration tolerance of Chrysanthemum through the regulation of ABA-associated genes[J]. PLoS One, 2016, 11(3):e0150572.
[62] Li P, Song A, Gao C, et al. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants[J]. Plant Cell Reports, 2015,34:1365-1378.
[63] Ding ZJ, Yan JY, Xu XY, et al. Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis[J]. Plant J, 2014(1):13-27.
[64]Han Y, Zhang X, Wang W, et al. Correction:the suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana[J]. PLoS One, 2015,10(4):e0124854.
[65]Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Rep, 2009,28(1):21-30.
[66] Xiong X, James VA, Zhang H, Altpeter F. Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tolerance in turf and forage grass(Paspalumnotatum Flugge)[J]. Mol Breed, 2010, 25(3):419-432.
[67]Niu CF, Wei W, Zhou QY, et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants[J]. Plant Cell Environ, 2012, 35(6):1156-1170.
[68] Zhou QY, Tian AG, Zou HF, et al. Soybean WRKY-type transcription actor genes, GmWRKY13, GmWRKY21, and GmWRKY54,confer differential tolerance to abiotic tresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6:486-503.
[69]Chen W, Yao Q, Patil GB, et al. Identification and comparativeanalysis of differential gene expression in soybean leaf tissue under drought and flooding stress revealed by RNA-Seq[J]. Front Plant Sci, 2016, 7:1044.
[70]Ma T, Li M, Zhao A, et al. LcWRKY5:an unknown function gene from sheep grass improves drought tolerance in transgenic Arabidopsis[J]. Plant Cell Reports, 2014, 33:1507-1518.
[71]Sun J, Hu W, Zhou R, et al. The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants[J]. Plant Cell Reports, 2015, 34:23-35.
[72]Wang Z, Zhu Y, Wang L, et al. A WRKY transcription factor participates in dehydrationtolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase(BhGolS1)promoter[J]. Planta, 2009, 230:1155-1166.
[73]Tripathi P, Rabara RC, Reese RN, et al. A toolbox of genes,proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes[J]. BMC Genomics, 2016, 17:102.
[74] Rabara RC, Tripathi P, Reese RN, et al. Tobacco drought stress responses reveal new targets for Solanaceae crop improvement[J]. BMC Genomics, 2015, 16:484.
[75] Bonthala VS, Mayes K, Moreton J, et al. Identification of gene modules associated with low temperatures response in bambara groundnut by network-based analysis[J]. PLoS One, 2016, 11(2):e0148771.
[76]Nah G, Lee M, Kim DS, et al. Transcriptome Analysis of Spartina pectinate in Response to Freezing Stress[J]. PLoS One, 2016,11(3):e0152294.
[77] Wang X, Zeng J, Li Y, et al. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances[J]. Front Plant Sci, 2015, 6:615.
[78] Jia H, Wang C, Wang F, et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10:e0120646.
[79] Xiu H, Nuruzzaman M, Guo Xet A. Molecular cloning and expression analysis of eight PgWRKY genes in Panax ginseng responsive to salt and hormones[J]. Int J Mol Sci, 2016, 17(3):319.
[80] Wei W, Zhang Y, Han L, et al. A novel WRKY transcriptional factor from THLASPI CAERULESCENS negatively regulates the osmotic stress tolerance of transgenic tobacco[J]. Plant Cell Rep, 2008, 27:795-803.
[81]Hemm MR, Herrmann KM, Chapple C. AtMYB4:a transcription factor general in the battle against UV[J]. Trends Plant Sci,2001, 6(4):135-136.
[82] Gao C, Wang Y, Jiang B, et al. A novel vacuolar membrane H+-ATPase c subunit gene(ThVHAc1)from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae[J]. Mol Biol Rep, 2011, 38(2):957-963.
[83] Rushton PJ, Somssich IE,Ringler P, et al. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15:247-258.
[84] Cheng Y, Zhou Y, Yang Y, et al. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors[J]. PlantPhysiol, 2012,159(2):810-825.
[85]Tosti N, Pasqualini S, Borgogni A, et al. Gene expression profiles of O3-treated Arabidopsis plants[J]. Plant Cell Environ, 2006(9):1686-702.
[86]Rizzo M, Bernardi R, Salvini M, et al. Identification of differentially expressed genes induced by ozone stress in sensitive and tolerant poplar hybrids[J]. J Plant Physiol, 2007, 164(7):945-949.
[87]Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection[J]. Plant Physiol, 2012, 159(1):266-285.
[88]Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana[J]. Plant Cell, 2006(11):3289-302.
[89]Zhao H, Lou Y, Sun H. Transcriptome and comparative gene expression analysis of Phyllostachys edulis in response to high light[J]. BMC Plant Biology, 2016, 16:34.
[90]Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. Plant Cell, 2002, 14(6):1359-1375.
[91] Luo X, Sun X, Liu B, et al. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis[J]. PLoS One, 2013, 8(8):e73295.
[92] Luo M, Dennis ES, Berger F, et al. MINISEED3(MINI3), a WRKY family gene, and HAIKU2(IKU2), a leucine-rich repeat(LRR)KINASE gene, are regulators of seed size in Arabidopsis[J].Proc Natl Acad Sci USA, 2005, 102(48):17531-17536.
[93] Zhang ZL, Xie Z, Zou X. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells[J]. Plant Physiol, 2004, 134(4):1500-1513.
[94] Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Dev, 2002, 16(9):1139-1149.
[95] Li W, Tian Z, Yu D. WRKY13 acts in stem development in Arabidopsis thaliana[J]. Plant Sci, 2015, 236:205-213.
[96] Wang H, Avci U, Nakashima J, et al. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants[J]. Proc Natl Acad Sci USA, 2010, 107(51):22338-22343.
[97] Yu Y, Hu R, Wang H, et al. MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering[J]. Plant Sci, 2013, 212:1-9.
[98] Li Y, Xin Z, FanY, et al. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa[J]. Scientific RepoRts, 2016, 6:18643.
[99] Arun-Chinnappa KS, McCurdy DW. Identification of candidate transcriptional regulators of epidermal transfer cell development in Vicia faba Cotyledons[J]. Front Plant Sci, 2016, 7:717.
[100] Kiseleva, Shcherban AB, Leonova IN, et al. Identification of new heading date determinants in wheat 5B chromosome[J]. BMC Plant Biol, 2016, 16(1):8.
[100] Luo X, Sun X, Liu B, et al. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis[J]. PLoS One, 2013, 8:e73295.
[102] Yu Y, Hu R, Wang H, et al. MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering[J]. Plant Sci, 2013, 212:1-9.
[103] Kim J, Yang J, Yang R, et al. Transcriptome analysis of soybean leaf abscission identifies transcriptional regulators of organ polarity and cell fate[J]. Plant Sci, 2016, 7:125.
[104] Jiang Y, Deyholos MK. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology, 2009, 69:91-105.
[105] Shang Y, Yan L, Liu ZQ, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010, 22:1909-1935.
[106] Chen H, Lai Z, Shi J, et al. Roles of Arabidopsis WRKY18,WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biol, 2010,10:281.
[107] Ding ZJ, Yan JY, Li GX, et al. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA[J]. Plant J, 2014, 79:810-823.
[108] Cai H, Yang S, Yan Y, et al. CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper[J]. J Exp Bot, 2015, 66:3163-3174.
[109] Yang X, Gong P, Li K, et al. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice[J]. J Exp Bot, 2016, 67(9):2761-2776.
[110] He HS, Dong Q, Shao Y, et al. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa[J]. Plant Cell Rep, 2012, 31:1199-1217.
[111] Robatzek S, Somssich E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Dev, 2002,16(9):1139-1149.
[112] Zhou X, Jiang Y, Yu D. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis[J]. Mol Cells,2011, 31(4):303-313.
[113] Miao Y, Laun T, Smykowski A, et al. Arabidopsis MEKK1 can take a short cut:I t can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter[J]. Plant Mol Biol, 2007, 65(1-2):63-76.
[114] Miao H, Qin Y, da Silva JA, et al. Identification of differentially expressed genes in pistils from self-incompatible Citrus reticulata by suppression subtractive hybridization[J]. Mol Biol Rep,2013, 40(1):159-169.
[115] Ulker B, Shahid Mukhtar M, Somssich IE. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways[J]. Planta, 2007,226(1):125-137.
[116] Jiang YJ, Liang G, Yang SZ, et al. Arabidopsis WRKY57 functions as a node of convergence for Jasmonic acid- and Auxin-mediatedsignaling in Jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26:230-245.
[117] Han M, Kim CY, Lee J, et al. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice[J]. Mol Cells, 2014, 37(7):532-539.
[118] Bakshi M, Oelmüller R. WRKY transcription factors:Jack of many trades in plants[J]. Plant Signal Behav, 2014, 9(2):e27700.
[119] Nuruzzaman M, Sharoni AM, Satoh K, et al. Comparative transcriptome profiles of the WRKY gene family under control,hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation[J]. J Plant Physiol, 2014, 171(1):2-13.
[120] Zhang H, Zhao M, Song Q, et al. Identification and function analyses of senescence-associated WRKYs in wheat[J]. Biochem Biophys Res Commun, 2016, 474(4):761-767.
[121] Robatzek S, Somssich IE. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes Dev, 2002,16:e1139-1149.
[122] Yan JY, Li CX, Sun L, et al. A WRKY transcription factor regulates Fe translocation under Fe deficiency in Arabidopsis[J]. Plant Physiol, 2016, 171(3):2017-2027.
[123] Xu YH, Wang JW, Wang S, et al. Characterization of GaWRKY1,a cotton transcription factor that regulates the sesquiterpene synthase gene(+)-delta-cadinene synthase-A[J]. Plant Physiol, 2004, 135(1):507-515.
[124] Skibbe M, Qu N, Galis I, et al. Induced plant defenses in the natural environment:Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. Plant Cell, 2008, 20:1984-2000.
[125] Qiu JL, Fiil BK, Petersen K, et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus[J]. EMBO J, 2008, 27:2214-2221.
[126] Song S, Qi T, Fan M, et al. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development[J]. PLoS Genet, 2013, 9(7):e1003653.
[127] Kato N, Dubouzet E, Kokabu Y. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica[J]. Plant Cell Physiol, 2007,48(1):8-18.
[128] Jaroslav M, Tomá? K, Josef P, et al. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop(Humulus lupulus L. )[J]. Plant Mol Biol, 2016, 92(3):263-277.
[129] Liu J, Chen X, Liang X, et al. Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense[J]. Plant Physiol, 2016, 171(2):1427-1442.
[130] Sheikh AH, Eschen-Lippold L, Pecher P, et al. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana[J]. Plant Sci, 2016, 7:61.
[131] Xing DH, Lai ZB, Zheng ZY, et al. Stress-and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense[J]. Mol Plant, 2008, 1(3):459-470.
[132] Gao X, Chen X, Lin W, et al. Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases[J]. PLoS Pathog, 2013:e1003127.
[133] Zhang Z, Wu Y, Gao M, et al. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2[J]. Cell Host Microbe, 2012, 11:253-263.
[134] Miao Y, Laun TM, Smykowski A, et al. Arabidopsis MEKK1 can take a short cut:it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter[J]. Plant Mol Biol, 2007, 65:63-76.
[135] Mao G, Meng X, Liu Y, et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. Plant Cell, 2011:1639-1653.
[136] Adachi H, Nakano T, Miyagawa N, et al. WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana[J]. Plant Cell,2015, 27:2645-2663.
[137] Li R, Zhang J, Li J, et al. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores[J]. Elife, 2015, 4:e04805.
(責(zé)任編輯 馬鑫)
WRKY Transcription Factors in Regulation of Stress Response in Plant
SUN Shu-hao YU Di-qiu
(Key Laboratory of Tropical Plant Resources and Sustainable Use,Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences,Kunming 650223)
WRKY transcription factor families are characterized by a highly conserved WRKYGQK domain and involved in plant development,metabolism,answering to comprehensive biotic or abiotic stress. Recently,the research of WRKY transcription factors concentrate on stress response signaling network in different species. It reviewed progress of WRKYs members,and indicated that WRKY transcription factors play a heavy role in plant growth and regulating stress response. At the same time,there is less reported of WRKYs function in plant species besides model plant Arabidopsis thaliana and most of them focus on systematic research and analysis. In addition,numerous networks of WRKY transcription factors are still unclear.
WRKYs;biotic stress response;abiotic stress response;phytohormone
2016-08-30
國(guó)家自然科學(xué)基金項(xiàng)目(U1202264),云南省創(chuàng)新研究團(tuán)隊(duì)(2014HC017)
孫淑豪,女,碩士,研究方向:植物逆境信號(hào)轉(zhuǎn)導(dǎo);E-mail:sunshuhao@xtbg.ac.cn
余迪求,男,博士,研究方向:植物逆境生理;E-mail:ydq@xtbg.ac.cn