張弢 董春海
(青島農(nóng)業(yè)大學(xué) 生命科學(xué)學(xué)院,青島 266109)
乙烯信號轉(zhuǎn)導(dǎo)及其在植物逆境響應(yīng)中的作用
張弢 董春海
(青島農(nóng)業(yè)大學(xué) 生命科學(xué)學(xué)院,青島 266109)
乙烯是一種重要的氣態(tài)植物激素,在植物生長發(fā)育及響應(yīng)生物或非生物脅迫過程中起著重要作用。在模式植物擬南芥中,乙烯首先被內(nèi)質(zhì)網(wǎng)膜上乙烯受體所感知,通過一系列下游信號組分進(jìn)行轉(zhuǎn)導(dǎo),最終將信號傳遞到細(xì)胞核內(nèi)轉(zhuǎn)錄因子,誘導(dǎo)相關(guān)目的基因的表達(dá),從而顯示乙烯反應(yīng)。綜述了近幾年有關(guān)乙烯受體、乙烯信號轉(zhuǎn)導(dǎo)組分及其調(diào)控因子的最新研究進(jìn)展,同時(shí)對乙烯信號轉(zhuǎn)導(dǎo)在植物逆境響應(yīng)中的作用進(jìn)行了探討。
乙烯;乙烯受體;乙烯信號轉(zhuǎn)導(dǎo);逆境響應(yīng)
DOI:10.13560/j.cnki.biotech.bull.1985.2016.10.007
乙烯是一種結(jié)構(gòu)簡單的小分子化合物,作為一種重要的氣態(tài)植物激素,參與調(diào)節(jié)植物生長發(fā)育的多個(gè)過程;此外,乙烯也在植物響應(yīng)生物和非生物脅迫過程中起重要的調(diào)控作用。典型的乙烯反應(yīng)是黑暗條件下幼苗生長呈特別的“三重反應(yīng)”,在擬南芥中表現(xiàn)為下胚軸變粗變短,主根生長受到抑制,并且頂端彎鉤加劇。依據(jù)“三重反應(yīng)”表型,在模式植物擬南芥中鑒定了一系列乙烯反應(yīng)的突變體。通過對突變體進(jìn)行分子遺傳學(xué)研究,在擬南芥中建立了從內(nèi)質(zhì)網(wǎng)膜上對乙烯信號感知到細(xì)胞核內(nèi)轉(zhuǎn)錄調(diào)控的一條線性乙烯信號轉(zhuǎn)導(dǎo)模型[1,2]。擬南芥乙烯受體家族由5個(gè)成員構(gòu)成,ETR1、ERS1、ETR2、 ERS2和EIN4,正常情況下,乙烯受體處于激活狀態(tài),與一個(gè)Raf類的Ser/Thr蛋白激酶CTR1結(jié)合并定位在內(nèi)質(zhì)網(wǎng)膜上,當(dāng)乙烯結(jié)合到受體上時(shí)會改變其構(gòu)象,使其進(jìn)入無活性或關(guān)閉狀態(tài),處于關(guān)閉狀態(tài)的受體無法與CTR1結(jié)合;失活后的受體-CTR1復(fù)合體不再磷酸化下游組分EIN2,此時(shí)EIN2因不被降解而激活,使得乙烯信號得以向下游傳遞[3,4]。EIN2定位于細(xì)胞的內(nèi)質(zhì)網(wǎng)膜,EIN2的C端可以發(fā)生剪切并進(jìn)入細(xì)胞核激活乙烯的下游信號分子。位于EIN2下游的是EIN3/EILs轉(zhuǎn)錄因子,激活的乙烯信號會阻斷F-box蛋白成員EBF1和EBF2介導(dǎo)的EIN3降解;EIN3/EIL1作為乙烯信號傳遞中的初級轉(zhuǎn)錄因子激活ERFs、EBF2、PORA和PORB等下游基因表達(dá),完成乙烯應(yīng)答反應(yīng)[5-8]。本文主要以模式植物擬南芥為例,對乙烯受體、乙烯信號轉(zhuǎn)導(dǎo)途徑的關(guān)鍵組分及其分子調(diào)控的最新研究進(jìn)展進(jìn)行綜述;同時(shí)對乙烯信號轉(zhuǎn)導(dǎo)在植物響應(yīng)逆境脅迫反應(yīng)中的作用進(jìn)行探討。
乙烯信號的感知開始于乙烯分子與其受體的相互識別和結(jié)合,乙烯與其受體的高度親和需要銅離子(Cu+)作為輔助因子。在模式植物擬南芥中共發(fā)現(xiàn)5個(gè)乙烯受體蛋白,包括ETR1、ERS1、ETR2、ERS2和EIN4;乙烯受體定位于內(nèi)質(zhì)網(wǎng)膜上,以負(fù)反饋形式控制乙烯信號的輸出。根據(jù)乙烯受體蛋白氨基酸序列的相似性,5個(gè)受體成員又進(jìn)一步分為了兩個(gè)亞族,亞族1包括ETR1和ERS1,亞族2包括ETR2、ERS2和EIN4。乙烯受體蛋白結(jié)構(gòu)比較保守,與細(xì)菌和真菌中存在的雙組分蛋白激酶結(jié)構(gòu)類似,N末端為結(jié)合乙烯的疏水性跨膜域;中部有1個(gè)保守的GAF域;C末端有一個(gè)與下游信號組分蛋白互作相關(guān)的組氨酸激酶信號輸出域[1-3]。
研究發(fā)現(xiàn),進(jìn)化上保守的RTE1(REVERSIONTO-ETHYLENE SENSITIVITY1)能夠與乙烯受體互作并且負(fù)調(diào)控乙烯反應(yīng)[9,10]。RTE1在真核生物中普遍存在,已從不同物種中克隆了RTE1同源基因,例如番茄的SlGR和SlGR1等[11,12]。遺傳分析表明,擬南芥RTE1特異性地作用于乙烯受體ETR1,對其它的乙烯受體沒有顯著影響[13]。為了深入了解RTE1的分子調(diào)控作用,Chang等[14]通過Split-Ub篩選得到了RTE1的互作蛋白細(xì)胞色素b5和一個(gè)脂類轉(zhuǎn)運(yùn)蛋白分子LTP1[15],初步分析表明細(xì)胞色素b5和LTP1參與乙烯受體ETR1信號轉(zhuǎn)導(dǎo)的分子調(diào)控。
CTR1是乙烯受體下游的另一個(gè)負(fù)調(diào)控因子。CTR1的N端可以與內(nèi)質(zhì)網(wǎng)上的乙烯受體相結(jié)合。利用Co-IP分析在體內(nèi)與CTR1結(jié)合蛋白發(fā)現(xiàn),可以從內(nèi)質(zhì)網(wǎng)組分中純化得到ETR1蛋白,直接證明CTR1存在于內(nèi)質(zhì)網(wǎng)并與ETR1形成復(fù)合物[16]。CTR1的C端具有類似于哺乳動物Raf的絲氨酸/蘇氨酸蛋白激酶的結(jié)構(gòu),體外磷酸化實(shí)驗(yàn)表明CTR1具有絲氨酸/蘇氨酸蛋白激酶活性,活性特征類似于Raf1,但是CTR1與Raf相比,缺少鋅指結(jié)構(gòu)和結(jié)合Ras蛋白的結(jié)構(gòu)域,說明CTR1與MAPKKK還存在一定的不同。
EIN2是位于CTR1下游的乙烯信號轉(zhuǎn)導(dǎo)組分,EIN2的功能缺失突變體對乙烯完全不敏感,是乙烯信號轉(zhuǎn)導(dǎo)中的正調(diào)控組分。EIN2基因編碼一個(gè)定位于內(nèi)質(zhì)網(wǎng)膜的跨膜蛋白。研究結(jié)果表明,EIN2的N端作為一個(gè)跨膜結(jié)構(gòu)接受上游的信號,而C端參與了乙烯的信號轉(zhuǎn)導(dǎo)并將信號向下轉(zhuǎn)導(dǎo),即EIN2激活下游乙烯信號的“剪切、穿梭”模型。當(dāng)細(xì)胞內(nèi)乙烯濃度較高時(shí),EIN2被激活且其C端(CEND)被蛋白酶剪切而脫離內(nèi)質(zhì)網(wǎng)進(jìn)入細(xì)胞核并以某種方式激活EIN3/EIL1和乙烯反應(yīng)[4,5,17]。Li等[18]發(fā)現(xiàn)細(xì)胞質(zhì)中的EIN2識別并結(jié)合EBF1/2 mRNA的3'-UTR,并通過招募EIN5等相關(guān)調(diào)節(jié)因子形成點(diǎn)狀結(jié)構(gòu)P-body,進(jìn)而抑制EBF1/2 mRNA的翻譯,導(dǎo)致EBF1/2蛋白含量急劇減少,使得EIN3/EIL1在細(xì)胞核內(nèi)大量積累,從而激活下游乙烯反應(yīng)。
EIN3編碼一個(gè)細(xì)胞核內(nèi)的轉(zhuǎn)錄因子蛋白,在乙烯信號轉(zhuǎn)導(dǎo)途徑中位于EIN2下游[19]。擬南芥中有5個(gè)EIN3的類似蛋白EILs(EIN3-like proteins),分別為EIL1-EIL5,對擬南芥EIN3/EILs家族6個(gè)成員的研究發(fā)現(xiàn),其中EIL1與EIN3的相似度最高,正調(diào)控?cái)M南芥乙烯反應(yīng)。EIN3/EIL1s作為轉(zhuǎn)錄因子直接結(jié)合下游的ERF基因啟動子上的特定DNA序列,來誘導(dǎo)ERF基因的轉(zhuǎn)錄。屬于泛素連接酶類的SCF復(fù)合體中的兩種F-box蛋白EBF1/EBF2位于EIN3/EILs上游,可以在細(xì)胞核內(nèi)直接與之發(fā)生互作。EBF1和EBF2調(diào)控 EIN3/EIL1 蛋白的積累和穩(wěn)定性,間接對乙烯反應(yīng)起負(fù)調(diào)控作用[22]。同時(shí)EIN3/EIL1可作為連接乙烯信號和茉莉酸信號調(diào)控植物發(fā)育和逆境脅迫[20,21]。
4.1在鹽脅迫響應(yīng)中的作用
鹽脅迫是影響植物生長最主要的逆境因素之一,乙烯作為一種逆境脅迫響應(yīng)激素在植物抗鹽過程中起著重要的作用。一定水平的乙烯合成速率有利于增強(qiáng)植物體的鹽脅迫抗性,例如,乙烯合成前體ACC處理可以顯著增加野生型擬南芥幼苗在高鹽環(huán)境下的抗鹽能力和成活率[23]。同時(shí),鹽脅迫也會誘導(dǎo)乙烯的合成。高鹽脅迫下,擬南芥中ACC合成酶基因AtACS4和AtACS7的表達(dá)水平明顯提高;煙草中NtACS1、NtACO1、NtACO2和NtACO3基因的表達(dá)也受鹽脅迫的誘導(dǎo)[24]。
此外,乙烯信號轉(zhuǎn)導(dǎo)途徑中的各個(gè)組分也參與植物的鹽脅迫反應(yīng)。研究發(fā)現(xiàn),在鹽和滲透脅迫條件下,擬南芥乙烯受體基因ETR1的轉(zhuǎn)錄水平和蛋白豐度都顯著下降;與野生型相比,功能獲得性突變體etr1-1、ein4-1和etr2-1在種子萌發(fā)和幼苗生長發(fā)育階段表現(xiàn)出對鹽的敏感性;相反,功能缺失突變體etr1-7則表現(xiàn)出耐鹽的表型特征[25-27]。在煙草中也發(fā)現(xiàn),煙草乙烯受體基因NTHK1受鹽誘導(dǎo),異源表達(dá)煙草NTHK1的轉(zhuǎn)基因擬南芥對鹽的敏感性明顯增加,而且也改變了鹽應(yīng)答相關(guān)基因的表達(dá),例如促進(jìn)了AtERF4,COR6.6,RD17,RD21A和VSP2基因的表達(dá),但抑制了BBC1,LEA和AtNAC2基因的表達(dá)[26,28-30]。乙烯信號轉(zhuǎn)導(dǎo)的負(fù)調(diào)控因子CTR1也參與植物的鹽脅迫反應(yīng)。與野生型相比,ctr1-1突變體在種子萌發(fā)和幼苗生長階段表現(xiàn)組成型的乙烯反應(yīng)和鹽脅迫抗性[27]。EIN2在響應(yīng)鹽脅迫的過程中起著正調(diào)控作用,擬南芥功能缺失突變體ein2-1和ein2-5在種子萌發(fā)、幼苗生長及營養(yǎng)生長階段都表現(xiàn)出鹽敏感的表型,種子萌發(fā)和幼苗生長均延遲[29-31]。EIN3是乙烯信號轉(zhuǎn)導(dǎo)中的正調(diào)控因子,在鹽脅迫下,EIN3的表達(dá)水平達(dá)到最大,EIN3蛋白積累。擬南芥功能缺失突變體ein3-1對鹽的敏感性明顯增加;過表達(dá)EIN3株系則表現(xiàn)出較強(qiáng)的耐鹽性[29]。作為乙烯信號途徑下游組分,ERFs轉(zhuǎn)錄因子家族通過識別不同的順式作用元件,調(diào)節(jié)多種功能基因的表達(dá),參與植物逆境脅迫應(yīng)答。許多ERF基因,例如擬南芥AtERF1、AtERF5、ESE1、ESE2、ESE3,小麥TaERF1,大豆GmERF7,茉莉酸和乙烯響應(yīng)因子JERF1/3的表達(dá)都受乙烯和鹽脅迫誘導(dǎo)[31-35]。擬南芥Aterf98-1、白菜BrERF4、枸杞子LchERF、苜蓿MsERF11和番茄SlERF5基因的過表達(dá)都提高了轉(zhuǎn)基因株系的鹽脅迫抗性[31,35-38]。
綜上可見,無論是外施乙烯還是過表達(dá)乙烯合成基因,或是加強(qiáng)乙烯信號轉(zhuǎn)導(dǎo),都會增加植物對鹽脅迫的耐受性。但也有報(bào)道指出,增加體內(nèi)乙烯含量會提高植物對鹽脅迫的敏感性,例如,ACS7和MPK9在促進(jìn)乙烯合成后又導(dǎo)致植物對鹽敏感性增加[39,40];在水稻中SIT1促進(jìn)乙烯合成后降低耐鹽性,并且過表達(dá)OsEIL1或OsEIL2都使植物對鹽敏感性增加[41]。這些結(jié)果表明乙烯的動態(tài)平衡在植物的鹽脅迫反應(yīng)中可能發(fā)揮更重要的作用。
4.2在干旱脅迫響應(yīng)中的作用
干旱是影響農(nóng)業(yè)生產(chǎn)的主要非生物脅迫因子,嚴(yán)重威脅著作物的生存及其產(chǎn)量。研究顯示,干旱脅迫下植物體內(nèi)積累乙烯并影響植物的抗旱能力。大豆中干旱脅迫上調(diào)乙烯合成相關(guān)基因的表達(dá),但抑制乙烯信號途徑中的CTR1表達(dá)[42]。利用基因沉默技術(shù)抑制轉(zhuǎn)基因玉米中的乙烯水平,能顯著提高干旱環(huán)境下的玉米產(chǎn)量[43]。干旱環(huán)境下,植物通過調(diào)控基因表達(dá)實(shí)現(xiàn)對環(huán)境條件的適應(yīng),其中在轉(zhuǎn)錄水平的調(diào)控研究較多。植物中有許多脅迫相關(guān)的轉(zhuǎn)錄因子家族,例如bZIP、WRKY、AP2/ERF和MYB等[44-47]。其中ERF轉(zhuǎn)錄因子早期被稱作乙烯應(yīng)答元件結(jié)合蛋白(EREBP),是植物特有的一類轉(zhuǎn)錄因子,屬于AP2/ERF轉(zhuǎn)錄因子家族。在已經(jīng)發(fā)現(xiàn)的ERF轉(zhuǎn)錄因子中,一部分ERF轉(zhuǎn)錄因子通過與GCC-box的結(jié)合調(diào)控植物抗病相關(guān)基因及其它信號途徑的基因表達(dá);另一部分ERF轉(zhuǎn)錄因子則通過與DRE順式作用元件的結(jié)合調(diào)控植物對非生物脅迫的響性。目前已經(jīng)證實(shí)了很多ERF類轉(zhuǎn)錄因子與植物抗旱性有關(guān)。在煙草乙烯不敏感突變體中,干旱脅迫可誘導(dǎo)煙草NtAP2和NtERF基因家族成員的高水平表達(dá),耐旱性顯著提高[48]。在水稻、煙草、番茄和小麥中過表達(dá)JERF3,GmERF3,SlERF5,可提高對干旱脅迫的抗性[49,51-53]。同時(shí),ERF轉(zhuǎn)錄因子在植物脅迫應(yīng)答中,除了作為轉(zhuǎn)錄激活子激活植物脅迫相關(guān)的基因表達(dá)外,某些ERF轉(zhuǎn)錄因子也可作為轉(zhuǎn)錄抑制子,抑制某些脅迫相關(guān)基因的表達(dá),例如,擬南芥中的ERF轉(zhuǎn)錄因子RAP2.1可以在體內(nèi)直接和干旱和低溫響應(yīng)的功能基因(RD/COR)啟動子區(qū)域的DRE元件結(jié)合從而抑制這些基因的表達(dá)[54]。擬南芥AtERF4也通過負(fù)調(diào)節(jié)植物防衛(wèi)基因PDF1.2的表達(dá),進(jìn)而調(diào)控乙烯反應(yīng);在擬南芥中過量表達(dá)AtERF4將導(dǎo)致植株對干旱更為敏感[55]。
4.3在低溫脅迫響應(yīng)中的作用
與其他環(huán)境脅迫不同,低溫脅迫下植物體內(nèi)乙烯含量明顯降低并維持在較低水平。乙烯合成基因過表達(dá)或外施ACC會提高內(nèi)源乙烯含量從而降低植物體的耐寒性;相反,外施乙烯抑制劑AVG或AgNO3時(shí)則會增強(qiáng)植物體對低溫的抵抗能力,說明乙烯在植物響應(yīng)低溫脅迫中起負(fù)調(diào)控作用。另外,乙烯不敏感突變體如etr1-1、ein4-1、ein2-5、ein3-1和ein3都表現(xiàn)出抗寒性增強(qiáng),過表達(dá)EIN3則會降低植物的抗寒性[56]。
乙烯參與植物抗寒性主要是通過CBF依賴的冷響應(yīng)基因和A-型的ARRs基因而實(shí)現(xiàn)的。CBF基因?qū)儆贏P2/ERF轉(zhuǎn)錄因子家族中的成員,調(diào)控上百種COR基因的表達(dá),它們的啟動子含有保守基序CCGAC,稱為CRT/DRE順式調(diào)節(jié)元件。CBF可以識別并結(jié)合啟動子區(qū)的CRT序列,調(diào)控這類COR基因的表達(dá)。擬南芥中參與低溫信號途徑的CBF基因有3個(gè),CBF1/DREB1B、CBF2/DREB1C和CBF3/ DREB1A。CBF1和CBF3敲除株系表現(xiàn)冷敏感的表型,cbf2缺失突變體植株則表現(xiàn)抗低溫;擬南芥中過表達(dá)CBFs植株表現(xiàn)出比野生型植株更加抗冷、抗旱和抗鹽的表型;說明CBFs是低溫信號途徑中的正調(diào)控因子[57,58]。還有一些AP2/ERF轉(zhuǎn)錄因子也參與植物的低溫脅迫應(yīng)答。例如,TERF2/LeERF2可結(jié)合ACS,ACO等乙烯合成基因的啟動子元件,激活它們的表達(dá),乙烯進(jìn)而激活低溫脅迫相關(guān)基因PRB-1b,Osmotin的表達(dá),提高植物對低溫的耐受性[59]。過表達(dá)煙草TERF2的番茄植株體內(nèi)的滲透調(diào)節(jié)物質(zhì)含量和葉綠素水平明顯提高,ROS、MDA含量和離子滲漏明顯降低;同時(shí)還激活了低溫相關(guān)基因OsFer1,OsTrx23和OsLti6 等的表達(dá),對低溫脅迫的抗性明顯提高;而反義表達(dá)TERF2的番茄植株則降低了對低溫的耐受能力,但噴施外源乙烯可恢復(fù)番茄植株的低溫抗性,表明TERF2通過乙烯信號途徑來調(diào)控對低溫脅迫的抗性反應(yīng)[60]。在葡萄中,低溫促進(jìn)乙烯釋放,施用乙烯合成抑制劑降低其抗冷性,而過量表達(dá)VaERF057則提高轉(zhuǎn)基因擬南芥的抗冷性,說明乙烯在調(diào)控植物的低溫脅迫反應(yīng)中作用不同,可能與植物種類有關(guān)[61]。
4.4在生物脅迫響應(yīng)中的作用
乙烯不僅在植物的非生物脅迫響應(yīng)中發(fā)揮作用,植物中還存在大量與生物脅迫響應(yīng)有關(guān)的ERF型轉(zhuǎn)錄因子。擬南芥AtERF1、AtERF2和AtERF14基因通過乙烯和茉莉酸信號轉(zhuǎn)導(dǎo)途徑,在抵抗生物脅迫過程中起著至關(guān)重要的作用,過表達(dá)AtERF2表現(xiàn)出較強(qiáng)的抗病性以及能誘導(dǎo)大量抗病相關(guān)基因的表達(dá)[62]。轉(zhuǎn)基因植株中過量表達(dá)海島棉乙烯反應(yīng)相關(guān)因子GbERF1,通過激活木質(zhì)素合成提高了黃萎病抗性[63]。煙草中分離的Tsi1基因,特異地與GCC盒和DRE/CRT元件結(jié)合;過表達(dá)Tsi1的轉(zhuǎn)基因煙草植株對鹽脅迫和細(xì)菌的耐受能力明顯提高[64]。在擬南芥中超量表達(dá)番茄基因Pti4,能夠激活水楊酸調(diào)控基因PR1、PR2的表達(dá),同時(shí)激活茉莉素及乙烯調(diào)控基因PR3、PR4、PDF1.2和Thi2.1的表達(dá)。番茄Pti4在擬南芥中超表達(dá)也提高了其對真菌病原物和細(xì)菌病原物的抵抗能力[65]。研究表明,植物激素參與不同的防御相關(guān)基因的激活,在激素介導(dǎo)的逆境脅迫防御中起著重要的橋梁作用[66,67]。
乙烯信號轉(zhuǎn)導(dǎo)是一個(gè)復(fù)雜的分子調(diào)控過程,信號傳導(dǎo)途徑的每個(gè)重要組分在不同分子水平上受到嚴(yán)格的調(diào)節(jié)和控制。過去幾年,雖然人們對乙烯信號傳導(dǎo)途徑及其重要組分的分子調(diào)控取得了一些進(jìn)展,但關(guān)于乙烯信號轉(zhuǎn)導(dǎo)的分子機(jī)制和乙烯反應(yīng)調(diào)控因子的作用機(jī)制仍遠(yuǎn)未探究清楚,很多乙烯反應(yīng)和乙烯信號轉(zhuǎn)導(dǎo)的重要調(diào)控因子尚未挖掘出來。特別是乙烯受體的調(diào)控因子有哪些,乙烯受體的信號轉(zhuǎn)導(dǎo)如何調(diào)控,調(diào)控因子的分子作用機(jī)制等,都是亟需回答的重要科學(xué)問題。同時(shí),乙烯信號傳導(dǎo)途徑并不是獨(dú)立存在的,與其它植物激素如生長素、赤霉素、脫落酸等具有交互作用,因此,通過繼續(xù)挖掘每個(gè)信號組分的功能與作用機(jī)制,從而建立完善的乙烯信號網(wǎng)絡(luò)可以為今后構(gòu)建植物各個(gè)生理階段的激素互作調(diào)控模型奠定基礎(chǔ)。
近年來全球氣候變暖,人口數(shù)量增加,環(huán)境條件惡化,植物所面臨的生存逆境,如高溫、干旱、高鹽、低溫及病害等問題日趨嚴(yán)峻,對農(nóng)業(yè)生產(chǎn)構(gòu)成了較大的威脅。目前,植物激素的抗逆機(jī)理受到科研工作者的高度關(guān)注,乙烯同植物抗逆性的關(guān)系研究取得了一定的進(jìn)展,初步認(rèn)識到乙烯在植物抗逆性中的復(fù)雜作用。但是,乙烯在植物響應(yīng)逆境脅迫過程中的具體調(diào)控機(jī)制尚不明確,逆境脅迫下乙烯的作用機(jī)理有待于進(jìn)一步深入探索,特別是如何應(yīng)用乙烯來合理調(diào)控植物的生長發(fā)育,增強(qiáng)植物的環(huán)境適應(yīng)能力,最終培育篩選出抗性高產(chǎn)的優(yōu)良品種。
[1]Binder BM, Chang C, Schaller GE. Perception of ethylene by plants ethylene receptors[M]// McManus MT. Annual plant reviews vol. 44:The plant hormone ethylene. Oxford:Wiley-Blackwell, 2012:117-45.
[2]Guo H, Ecker JR. The ethylene signaling pathway:new insights[J]. Curr Opin Plant Biol, 2004, 7:40-49.
[3]Bisson MMA, Groth G. New insight in ethylene signaling:autokinase activity of ETR1 modulates the interaction of receptors and EIN2[J]. Mol Plant, 2010, 3:882-889.
[4]Ju C, Yoon GM, Shemansky JM, et al. CTR1phosphorylates EIN2 to control ethylene signaling from the ER membrane o the nucleus[J]. Proc Natl Acad Sci USA, 2012, 9:19486-19491.
[5]Wen X, Zhang C, Ji Y, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus[J]. Cell Res, 2012, 22:1613-6.
[6]Li W, Ma M, Feng Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015, 163:670-83.
[7]Merchante C, Brumos J, Yun J, et al. Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2[J]. Cell, 2015, 163:684-97.
[8]An F, Zhao Q, Ji Y, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2in Arabidopsis[J]. Plant Cell, 2010, 22:2384-401.
[9]Resnick JS, Wen CK, Shockey JA, et al. REVERSIONTOETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103:7917-7922.
[10]Dong CH, Jang M, Scharein B, et al. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1[J]. J Biol Chem, 2010, 285:40706-40713.
[11]Barry CS, Giovannoni JJ. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling[J]. Proc Natl Acad Sci USA, 2006, 103:7923-7928.
[12]Ma Q, Du W, Brandizzi F, et al. Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato[J]. Plant Physiol, 2012, 160:1968-1984.
[13]Rivarola M, Mcclellan CA, Resnick JS, et al. ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by genetic interaction with RTE1[J]. Plant Physiol, 2009, 150:547-551.
[14]Chang JH, Clay JM, Chang C. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis[J]. Plant J, 2014, 77:558-567.
[15]Wang H, Sun Y, Chang J, et al. Regulatory function of Arabidopsis lipid transfer protein 1(LTP1)in ethylene response and signaling[J]. Plant Molecular Biology, 2016, 91:471-484.
[16]Gao Z, Chen YF, Randlett MD, et al. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes[J]. J Biol Chem, 2003, 278:34725-34732.
[17]Ji Y, Guo H. From endoplasmic reticulum(ER)to nucleus:EIN2 bridges the gap in ethylene signaling[J]. Mol Plant, 2013, 6:11-14.
[18]Li WY, Ma MD, Feng Y, et al. EIN2-directed translational regulation of ethylene signaling in Arabidopsis[J]. Cell, 2015,163:670-683.
[19]Solano R, Stepanova A, Chao Q, et al. Nuclear events in ethylene signaling:a transcriptional cascade mediated by ETHYLENEINSENSITIVE3 and ETHYLENE-RESPONSE -FACTOR1[J]. Genes Dev, 1998, 12:3703-3714.
[20]Zhu Z, An F, Feng Y, et al. Derepression of ethylene-stabilized transcription factors(EIN3/EIL1)mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108:12539-12544.
[21]Song S, Huang H, Gao H, et al. Interaction between MYC2 and ETHYLENEIN SENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis[J]. Plant Cell,2014, 26:263-79.
[22] An F, Zhao Q, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2in Arabidopsis[J]. Plant Cell, 2010, 22:2384-401.
[23]Achard P, Cheng H. De Grauwel, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757):91-94.
[24] Wang NN, Shih MC, Li N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4,AtACS5, and AtACS7 induced by hormones and stresses[J]. J Exp Bot, 2005, 56(413):909-920.
[25]Cao WH, Liu J, Zhou QY, et al. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress[J]. Plant Cell Environ, 2006, 29:1210-1219.
[26]Wang Y, Wang T, Li K, et al. Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress[J]. Plant Growth Regul, 2008, 54:261-269.
[27]Cao Y, Chen S, Zhang J. Ethylene signaling regulates salt stress response[J]. Plant Signaling & Behavior, 2008, 3:761-763.
[28]He X, Mu R, Cao W, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development[J]. Plant J,2005, 44:903-916.
[29]Wang Y, Liu C, Li K, et al. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway[J]. Plant Mol Biol, 2007, 64:633-644.
[30]Peng J, Li Z, Wen X, et al. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis[J]. PLoS Genet, 10:e1004664.
[31] Zhang L, Li Z, Quan R, et al. An AP2 domain-containing gene,ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis[J]. Plant Physiology, 2011, 157:854-865.
[32] Xu Z, Xia L, Chen M, et al. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1(TaERF1)that increases multiple stress tolerance[J]. Plant Mol Biol, 2007,65:719-732.
[33]Wang H, Huang Z, Chen Q, et al. Ectopic over-expression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance[J]. Plant Mol Biol, 2004, 55:183-192.
[34]Zhai Y, Wang Y, Li Y, et al. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco[J]. Gene, 2013,513:174-183.
[35]Zhang H, Huang Z, Xie B, et al. The ethylene-, jasmonate-,abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco[J]. Planta, 2004, 220:262-270.
[36] Chen T, Yang Q, et al. An alfalfa(Medicago sativa L. )ethylene response factor gene, MsERF11, enhances salt tolerance in transgenic Arabidopsis[J]. Plant Cell Rep, 2012, 31:1737-1746.
[37]Wu D, Ji J, Wang G, et al. LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco[J]. Plant Cell Rep, 2014, 33:2033-2045.
[38]Liu W, Wang Y, Gao C. The ethylene response factor(ERF)genes from Tamarix hispida respond to salt, drought and ABA treatment[J]. Trees, 2014, 28:317-327.
[39]Dong H, Zhen Z, Peng J, et al. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis[J]. J Exp Bot, 2011, 62(14):4875-4887
[40]Xu J, Li Y, Wang Y, et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis[J]. J Biol Chem, 2008, 283(40):26996-27006
[41]Yang C, Ma B, et al. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]. Plant Physiol, 2015, 169:148-165.
[42]Arraes FBM, Beneventi MA, Sa MELD, et al. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance[J]. Bmc Plant Biology, 2015, 15(1):1-20.
[43] Habben JE, Bao X, et al. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions[J]. Plant Biotechnology Journal, 2014, 12(6):685-693.
[44]Wan L, Zhang J, Zhang H, et al. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice[J]. PLoS One,2011, 6:e25216.
[45]Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcriptionfactors in Arabidopsis[J]. Trends Plant Sci, 2002, 7:106-111.
[46]Mare C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38:a new transcription factor involved in cold- and drought-response in barley[J]. Plant Mol Bio, 2004, l55:399-416.
[47]Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression[J]. Plant Cell, 1997, 9:1859-1868.
[48]Wang H, Wang F, Zheng F, et al. Ethylene-insensitive mutants of Nicotiana tabacum exhibit drought stress resistance[J]. Plant Growth Regulation, 2016, 79:107-117.
[49]Wu L, Zhang Z, Zhang H, et al. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought,and freezing[J]. Plant Physiol, 2008, 148:1953-1963.
[50]Zhang Z, Zhang H, Quan R, et al. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco[J]. Plant Physiol, 2009, 150:365-377.
[51] Pan Y, Seymour GB, Lu C, et al. An ethylene response factor(ERF5)promoting adaptation to drought and salt tolerance in tomato[J]. Plant Cell Rep, 2012, 31:349-360.
[52]Quan R, Hu S, Zhang Z, et al. Overexpression of an ERF transcription factor TSRF1, improves rice drought tolerance[J]. Plant Biotechnology Journal, 2010, 8(4):476-88.
[53] Rong W, Qi L, et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat[J]. Plant Biotechnology Journal, 2014, 12(4):468-479.
[54]Dong CJ, Liu JY. The Arabidopsis EAR-motif-containing protein RAP2. 1 functions as an active transcriptional repressor to keep stress responses under tight control[J]. BMC Plant Biol, 2010,10, 47.
[55]Yang Z, Tian L, Latoszek-Green M, et al. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses[J]. Plant Mol Biol, 2005, 58:585-596.
[56]Shi, Y, Tian, S, Hou, L, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and Type-A ARR genes in Arabidopsis[J]. The Plant Cell, 2012,24:2578-2595.
[57]Miura K, Furumoto T. Cold signaling and cold response in plants[J]. International Journal of Molecular Sciences, 2013, 14(3):5312-5337.
[58]Ye S K, Lee M, Lee J H, et al. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis[J]. Plant Molecular Biology, 2015, 89(1-2):1-15.
[59]Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis[J]. Plant Mol Biol, 2010,73:241-249.
[60]Tian Y, Zhang H, Pan X, et al. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings[J]. Transgenic Res, 2011, 20:857-866.
[61]Sun X, Zhao T, Gan S, et al. Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057[J]. Scientific Reports, 2016, 6.
[62]O?ate-Sánchez L, Anderson JP, Young J, et al. AtERF14, a member of the ERF family of transcription factors, plays a non redundant role in plant defense[J]. Plant Physiol, 2007, 143:400-409.
[63]Guo W, Li J, Miao Y, et al. An ethylene response-related factor,GbERF1 - like, from Gossypium barbadense, improves resistance to Verticillium dahliae, via activating lignin synthesis[J]. Plant Molecular Biology, 2016, 91(3):1-14.
[64]Nishiuchi T, Suzuki K, Kitajima S, et al. Wounding activates immediate early transcription of genes for ERFs in tobacco plants[J]. Plant Mol Biol, 2002, 49:473-482.
[65]Gu YQ, Wildermuth MC, Chakravarthy S, et al. Tomato transcription factors Pti4, Pti5 and Pti6 activate defense responses when expressed in Arabidopsis[J]. Plant Cell, 2002, 14:817-831.
[66] Guo W, Li J, Miao Y, et al. An ethylene response-related factor,GbERF1 - like, from Gossypium barbadense, improves resistance to Verticillium dahliae, via activating lignin synthesis[J]. Plant Molecular Biology, 2016, 91(3):1-14.
[67] Yang Y X, Ahammed G J, et al. Crosstalk among jasmonate,salicylate and ethylene signaling pathways in plant disease and immune responses[J].Current Protein & Peptide Science, 2015,16(5).
(責(zé)任編輯 李楠)
Ethylene Signaling and Its Role in Plant Stress Response
ZHANG Tao DONG Chun-hai
(College of Life Sciences,Qingdao Agricultural University,Qingdao 266109)
The gaseous phytohormone ethylene affects many aspects of plant growth,development,and stress responses. In the model plant Arabidopsis thaliana,ethylene binding to receptors triggers a kinase cascade that is propagated through a number of components to the nuclear transcription factors involved in the ethylene responsive gene expression and plant responses. This article reviews the update research on regulation of the ethylene receptors,the ethylene signal transduction,and the key regulators. Meanwhile,functional roles of the ethylene signaling and regulators in plant stress responses are also discussed.
ethylene;receptors;signaling;stress response
2016-06-23
國家自然科學(xué)基金(31370322),山東省科技研發(fā)計(jì)劃(2015GNC110012)
張弢,女,副教授,研究方向:植物逆境分子生物學(xué);E-mail:zhangtao9210@sohu.com
董春海,男,教授,研究方向:植物分子細(xì)胞生物學(xué);E-mail:chunhai79@yahoo.com