亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        均相體系中酸堿協(xié)同催化二氧化碳與環(huán)氧化物的環(huán)加成反應(yīng)

        2016-03-19 07:30:52羅榮昌周賢太楊智張武英紀(jì)紅兵
        化工學(xué)報(bào) 2016年1期
        關(guān)鍵詞:催化作用二氧化碳

        羅榮昌,周賢太,楊智,張武英,紀(jì)紅兵

        (中山大學(xué)化學(xué)與化學(xué)工程學(xué)院,廣東 廣州 510275)

        ?

        均相體系中酸堿協(xié)同催化二氧化碳與環(huán)氧化物的環(huán)加成反應(yīng)

        羅榮昌,周賢太,楊智,張武英,紀(jì)紅兵

        (中山大學(xué)化學(xué)與化學(xué)工程學(xué)院,廣東 廣州 510275)

        摘要:基于“可持續(xù)發(fā)展”和“綠色化學(xué)”的概念,近年來(lái)CO2的捕獲、儲(chǔ)存及資源化利用在工業(yè)上和學(xué)術(shù)上一直備受關(guān)注。通過(guò)具有100%原子經(jīng)濟(jì)性特點(diǎn)的CO2與環(huán)氧化物環(huán)加成反應(yīng)合成五元環(huán)狀碳酸酯是最有前景的方法之一?;诰啻呋瘎┑脑O(shè)計(jì)思想與方法,以CO2和環(huán)氧化物的活化本質(zhì)出發(fā),從催化劑結(jié)構(gòu)的角度綜述了均相體系中酸堿協(xié)同催化CO2與環(huán)氧化物環(huán)加成反應(yīng)合成環(huán)狀碳酸酯的研究進(jìn)展,包括簡(jiǎn)單二元催化體系、功能型一元催化體系和金屬配合物催化體系等。

        關(guān)鍵詞:二氧化碳;催化作用;配合物;環(huán)狀碳酸酯;環(huán)加成反應(yīng);酸堿協(xié)同催化

        2015-06-01收到初稿,2015-07-01收到修改稿。

        聯(lián)系人:紀(jì)紅兵。第一作者:羅榮昌(1982—),男,博士,副研究員。

        Received date: 2015-06-01.

        引 言

        據(jù)聯(lián)合國(guó)最新發(fā)布的《年度溫室氣體公報(bào)》顯示,地球大氣之中所含CO2的濃度與過(guò)去20年相比呈現(xiàn)出加速上升的趨勢(shì)。同時(shí)世界氣象組織全球大氣監(jiān)測(cè)網(wǎng)的多個(gè)監(jiān)測(cè)站目前測(cè)得大氣中CO2濃度均已超過(guò)了400 cm3·m-3(400 ppm)這一閾值——這一濃度水平比工業(yè)革命前約增加了40%,地球氣候系統(tǒng)即將不堪重負(fù)[1]。2014年9月,國(guó)務(wù)院批復(fù)實(shí)施《國(guó)家應(yīng)對(duì)氣候變化規(guī)劃(2014—2020年)》,其主要內(nèi)容是到2020年實(shí)現(xiàn)單位國(guó)內(nèi)生產(chǎn)總值CO2排放比2005年下降40%~45%,非化石能源占一次能源消費(fèi)的比重達(dá)到15%左右。2015年1月1日起,《中華人民共和國(guó)新環(huán)境保護(hù)法》實(shí)施。因此,如何將排入大氣的CO2廢氣當(dāng)作資源加以合理利用是一個(gè)十分有意義的課題[2-8]。但是由于CO2中碳是最高價(jià)態(tài),性質(zhì)非常穩(wěn)定,因此抬高了反應(yīng)的能壘,使得反應(yīng)很難發(fā)生。

        目前主要策略有以下幾種:①使用具有高能量態(tài)的原料(如H2、不飽和化合物、小環(huán)類有機(jī)化合物或金屬化合物);②合成具有低能量的目標(biāo)分子(如有機(jī)碳酸酯);③設(shè)計(jì)易趨向于生成目標(biāo)產(chǎn)物的反應(yīng)路徑;④使用更強(qiáng)大的能量引發(fā)反應(yīng)(如光能、電能或熱能)。在眾多CO2資源化利用的技術(shù)路線中,通過(guò)CO2與環(huán)氧化物的環(huán)加成反應(yīng)催化合成環(huán)狀碳酸酯是為數(shù)不多的工業(yè)化途徑之一,并且該反應(yīng)具有原料價(jià)廉、原子利用率高、副產(chǎn)物少等優(yōu)點(diǎn),符合綠色化學(xué)與原子經(jīng)濟(jì)的要求。另外,產(chǎn)品環(huán)狀碳酸酯是一種具有高沸點(diǎn)、非質(zhì)子強(qiáng)極性的有機(jī)溶劑,在化學(xué)合成、氣體分離、高能密度電池的電解液金屬萃取及精細(xì)化工等領(lǐng)域具有廣泛的應(yīng)用[9-10]。

        當(dāng)前,工業(yè)上制備環(huán)狀碳酸酯的催化劑主要是季銨鹽(如TEAB)和堿金屬鹵化物(如KI)等。由于它們易溶于產(chǎn)物環(huán)狀碳酸酯,并且在進(jìn)行產(chǎn)物提純濃縮時(shí)不易結(jié)塊,可以實(shí)現(xiàn)工業(yè)催化劑的回收。但是它們難溶于環(huán)氧化合物,反應(yīng)時(shí)需要加入大量的有機(jī)溶劑,同時(shí)需要在高溫或高壓的條件下才能取得較好的催化活性。因此,在溫和條件下開發(fā)綠色高效的無(wú)溶劑催化體系仍然是制備環(huán)狀碳酸酯領(lǐng)域的研究熱點(diǎn)。在過(guò)去的幾十年里,各式各樣的催化劑系統(tǒng)已經(jīng)成功地應(yīng)用于上述反應(yīng)中,如金屬氧化物[11]、季鹽[12]、堿金屬鹵化物[13]、離子液體[14-17]、過(guò)渡金屬配合物[18-19]、N-雜環(huán)卡賓[20]和功能性有機(jī)聚合物[21-22]等。

        相對(duì)多相催化劑而言[23],均相催化劑具有更高的催化活性,并且具有選擇性高和反應(yīng)條件溫和(有些甚至是常溫常壓)等優(yōu)點(diǎn)[24-25]。因此,本文基于均相催化劑的設(shè)計(jì)思想與方法,以CO2和環(huán)氧化物的活化本質(zhì)為出發(fā)點(diǎn),從催化劑結(jié)構(gòu)的角度重點(diǎn)綜述了均相體系中酸堿協(xié)同催化CO2與環(huán)氧化物環(huán)加成反應(yīng)合成環(huán)狀碳酸酯的研究進(jìn)展,主要內(nèi)容包括簡(jiǎn)單二元催化體系和功能型一元催化體系等,并對(duì)金屬配合物催化體系做了較為系統(tǒng)的總結(jié)。

        1 簡(jiǎn)單二元催化體系

        1.1 堿金屬鹽

        大量文獻(xiàn)報(bào)道一些簡(jiǎn)單的堿金屬鹽類(如K2CO3、 KCl、 KI和LiBr)可以直接催化CO2與環(huán)氧化物的環(huán)加成反應(yīng)。其中KI是為數(shù)不多的合成環(huán)狀碳酸酯的工業(yè)催化劑。一般而言,單一使用KI催化活性較低,需要額外加入有機(jī)溶劑或助劑增強(qiáng)其催化活性,并且反應(yīng)通常在高溫高壓下進(jìn)行。工業(yè)上,考慮到易于操作和安全的特點(diǎn),KI催化的環(huán)加成反應(yīng)一般在無(wú)溶劑的條件下進(jìn)行。

        1997年,日本Kasuga等[26]將冠醚1(如18?冠?6)加入不同的堿金屬鹵化物(如KI)組成雙催化體系時(shí)發(fā)現(xiàn),這類大環(huán)化合物不僅能夠增大KI在有機(jī)溶劑中的溶解度,而且能夠與鉀離子形成穩(wěn)定的配合物,使堿金屬陽(yáng)離子(K+)與鹵素陰離子(I-)分離,增強(qiáng)碘離子的親核性,從而在相同條件下明顯提高環(huán)狀碳酸酯的收率。但是冠醚價(jià)格較高且毒性大,因此可以采用毒性較小且價(jià)格相對(duì)便宜的聚乙二醇(PEG)替代冠醚[27]。當(dāng)利用KI/PEG400為催化劑,在反應(yīng)溫度150℃和 CO2初始?jí)毫?.0 MPa的條件下,反應(yīng)8 h后碳酸丙烯酯(PC)的產(chǎn)率可達(dá)到100%,而在相同條件下單獨(dú)使用KI為催化劑時(shí)PC產(chǎn)率僅為8%。這表明PEG也可以提高堿金屬鹵化物的催化活性。最近印度Jain等[28]直接用PEG400包裹KBr成功制得單一組分的配合物[K+(PEG)Br?],并應(yīng)用到上述環(huán)加成反應(yīng)中,取得了令人滿意的結(jié)果。當(dāng)催化劑2用量為10%(摩爾分?jǐn)?shù)),在0.1 MPa和100℃的條件下反應(yīng)1 h后,SC的產(chǎn)率超過(guò)98%,并且該催化劑能夠直接通過(guò)加入無(wú)水乙醚的方法實(shí)現(xiàn)回收,連續(xù)使用6次后其催化活性沒(méi)有明顯降低。

        2008年,Han等[29]發(fā)現(xiàn)少量β-環(huán)糊精的加入也能改善KI催化合成環(huán)狀碳酸酯的性能。以摩爾分?jǐn)?shù)2.5% 的KI為催化劑,在6.0 MPa和120℃的條件下加入0.1 g β-環(huán)糊精,反應(yīng)4 h后,PC的產(chǎn)率高達(dá)98%。該協(xié)同催化作用可能與β-環(huán)糊精空腔的活性羥基有關(guān),具有類似空腔結(jié)構(gòu)的葫蘆脲(含羰基)也能提高KI的催化活性。這可能是因?yàn)榱u基(作為L(zhǎng)ewis酸)能與底物環(huán)氧化物的氧原子之間形成穩(wěn)定的氫鍵。該作用對(duì)鹵離子(親核試劑)進(jìn)攻環(huán)氧三元環(huán)開環(huán)是十分有益的。為了更好地理解氫鍵幫助下KI催化環(huán)加成反應(yīng)的機(jī)理,該研究組用量子化學(xué)計(jì)算方法成功地解釋了酸堿協(xié)同催化作用的發(fā)生[30]。

        基于該思路,一系列含有羥基的化合物(充當(dāng)助催化劑)成功地應(yīng)用到合成環(huán)狀碳酸酯的反應(yīng)中,如纖維素[31]、木質(zhì)素[32]、季戊四醇[33]等。相對(duì)β-環(huán)糊精來(lái)說(shuō),纖維素是一種自然界大量存在、價(jià)格低廉且可降解的原料,更具有工業(yè)應(yīng)用前景。當(dāng)以摩爾分?jǐn)?shù)2.0% 的KI為催化劑,在2.0 MPa和110℃的條件下加入質(zhì)量分?jǐn)?shù)66%的纖維素4,反應(yīng)1.5 h后,環(huán)氧丙烷(PO)就能基本完全轉(zhuǎn)化。這種高效催化轉(zhuǎn)化的獲得歸因于纖維素鄰近羥基與環(huán)氧化物能形成氫鍵所致。進(jìn)一步研究發(fā)現(xiàn)鄰二醇類有機(jī)化合物作為助劑時(shí)比簡(jiǎn)單醇或孤立的二元醇活性高,這與形成氫鍵時(shí)七元環(huán)的穩(wěn)定性有關(guān)。另外,當(dāng)加入木質(zhì)素5(含酚羥基)或季戊四醇6(含醇羥基)后也觀察到了類似的現(xiàn)象。更值得注意的是,含羧基的有機(jī)化合物(如HCOOH)也能有效地促進(jìn)KI催化CO2與環(huán)氧化物的環(huán)加成反應(yīng)。用微波加熱(200 W)方法,當(dāng)加入摩爾分?jǐn)?shù)約15%的HCOOH和摩爾分?jǐn)?shù)1.6%的KI時(shí),在0.96 MPa的條件下,僅需要反應(yīng)15 mim,AGE的轉(zhuǎn)化率就達(dá)96%以上。

        一些含氮元素的多功能有機(jī)化合物也能充當(dāng)助催化劑,并成功應(yīng)用到KI催化的環(huán)加成中。美國(guó)Ramidi等[34]研究發(fā)現(xiàn),當(dāng)以摩爾分?jǐn)?shù)0.1%的KI為催化劑,在2.0 MPa和130℃的條件下加入等物質(zhì)的量的DMAP時(shí),反應(yīng)3 h后,PC的產(chǎn)率大于73%。加入氨基醇7[35-36]、多巴胺8[37]、氨基酸9[38-39]、羥基咪唑類[40]等有類似的作用。例如,當(dāng)以摩爾分?jǐn)?shù)2.0%的KI為催化劑,在1.0 MPa和90℃的條件下加入等物質(zhì)的量的三乙醇胺時(shí),反應(yīng)3 h后,1,2?環(huán)氧丁烷便基本轉(zhuǎn)化成相應(yīng)的環(huán)狀碳酸酯。一般認(rèn)為含氮類有機(jī)化合物的堿性能夠活化CO2分子,而羧基或羥基等活性基團(tuán)的存在可以活化環(huán)氧化物,這種雙重活化作用有效地促進(jìn)了環(huán)加成反應(yīng)的順利進(jìn)行。

        另外,Han等[41]報(bào)道含有季銨鹽的卵磷脂10也能充當(dāng)助劑,幫助KI催化環(huán)加成反應(yīng)。當(dāng)以摩爾分?jǐn)?shù)1.25%的KI為催化劑,在2.0 MPa和100℃的條件下加入等摩爾量的卵磷脂時(shí),反應(yīng)4 h后,PC的產(chǎn)率大于98%。更值得注意的是,一般而言,簡(jiǎn)單金屬有機(jī)配合物也能有效活化環(huán)氧化物(作為L(zhǎng)ewis酸),如salen Al[42]、二氯二茂鈦[43]等。特別是當(dāng)同時(shí)加入salen Al、18?冠?6和KI組成三元催化體系時(shí),可以在常溫常壓條件下實(shí)現(xiàn)環(huán)狀碳酸酯的合成。

        圖1 季銨鹽催化CO2與環(huán)氧化物環(huán)加成反應(yīng)的一般機(jī)理Fig.1 Proposed mechanism of cycloaddition reaction of CO2and epoxides catalyzed by quaternary ammonium salts

        2002年,Calo等[44]報(bào)道了熔融狀態(tài)下的TBAB 或TBAI作為催化劑在常壓下可以催化CO2與環(huán)氧化物反應(yīng)合成環(huán)狀碳酸酯,并且反應(yīng)完成后可以通過(guò)加入大量乙酸乙酯萃取的方法實(shí)現(xiàn)環(huán)狀碳酸酯產(chǎn)物和季銨鹽的快速分離,但是催化劑用量太大,限制了工業(yè)應(yīng)用。因此,降低催化劑的用量、加入助催化劑使反應(yīng)在相對(duì)溫和的條件下進(jìn)行、提高催化劑的活性是這類催化體系設(shè)計(jì)的一個(gè)主要方向。在季鹽催化CO2與環(huán)氧化物的環(huán)加成反應(yīng)比較公認(rèn)的反應(yīng)機(jī)理模型中,一般存在兩種不同的環(huán)氧化物活化模式,如圖2所示。

        目前,許多文獻(xiàn)報(bào)道一些簡(jiǎn)單金屬鹽(如鹵化鋅[45-47]、鈮鹽[48]等)的加入能夠有效地提高季鹽的催化效率。當(dāng)以摩爾分?jǐn)?shù)11.4%的TBAI為催化劑,在8.0 MPa和80℃的條件下加入摩爾分?jǐn)?shù)2.8% 的ZnBr2時(shí),反應(yīng)0.5 h后,SC的產(chǎn)率大于95%;而以摩爾分?jǐn)?shù)2.0%的TBAB為催化劑,在常溫常壓下(25℃,0.1 MPa)加入摩爾分?jǐn)?shù)1.0%的Nb(OEt)5時(shí),反應(yīng)4 h后,PO的轉(zhuǎn)化率可達(dá)74%,主要生成目標(biāo)環(huán)狀碳酸酯,基本無(wú)其他副產(chǎn)物生成。這類Lewis酸堿協(xié)同催化體系的優(yōu)點(diǎn)在于其結(jié)構(gòu)相對(duì)簡(jiǎn)單、合成比較容易,但是缺點(diǎn)在于有些催化體系組分復(fù)雜、難以回收循環(huán)使用。

        圖2 環(huán)氧化物的不同活化模式Fig.2 Different modes for ring opening of epoxide

        另外,許多課題組證實(shí)加入含羥基類的物質(zhì)(作為氫鍵供體,如酚類有機(jī)物[49]、多元醇[50]、硅醇類[51]等)也能夠有效地改善季鹽催化劑的活性。因此,一系列類似的雙組分催化體系成功應(yīng)用于合成環(huán)狀碳酸酯的反應(yīng)中。當(dāng)以摩爾分?jǐn)?shù)5.0%的TBAB為催化劑,在0.4 MPa和70℃的條件下加入摩爾分?jǐn)?shù)5.0%的季戊四醇12時(shí),反應(yīng)16 h后,PC的產(chǎn)率大于96%,并且該助催化劑能夠直接通過(guò)加入無(wú)水乙醚的方法實(shí)現(xiàn)回收,連續(xù)使用8次后其催化活性沒(méi)有明顯降低,體現(xiàn)出季戊四醇在環(huán)加成反應(yīng)中是一種高活性、高穩(wěn)定性且易回收的助催化劑。同時(shí),Mattson等[52]發(fā)現(xiàn),以摩爾分?jǐn)?shù)10.0%的TBAI為催化劑,在0.1 MPa和23℃的條件下加入摩爾分?jǐn)?shù)10.0%的二萘基硅醇13時(shí),反應(yīng)18 h后,SC的產(chǎn)率為93%。以上高效催化轉(zhuǎn)化的取得是由于有機(jī)化合物中的活性基團(tuán)可通過(guò)氫鍵作用減弱環(huán)氧化合物上CO鍵的結(jié)合力,使環(huán)氧化合物開環(huán)更容易進(jìn)行。該催化體系的機(jī)理可以通過(guò)在線紅外光譜、核磁共振譜、量子化學(xué)計(jì)算等方法證明。更值得注意的是,Zhang等[53]還發(fā)現(xiàn)少量水的存在就能有效提高季鹽催化劑的活性。例如,當(dāng)反應(yīng)體系中沒(méi)有水時(shí)PPh3BuI催化轉(zhuǎn)化PO的轉(zhuǎn)化率僅有24%,而加入一定量的水后PO的轉(zhuǎn)化率提高到99%以上,但過(guò)多的水會(huì)生成一定量的副產(chǎn)物,降低環(huán)狀碳酸酯的選擇性。

        圖3 助劑幫助下季銨鹽催化CO2與環(huán)氧化物環(huán)加成反應(yīng)的一般機(jī)理Fig.3 Proposed mechanism of cycloaddition reaction of CO2and epoxides catalyzed by quaternary ammonium salts in presence of co-catalyst

        咪唑類離子液體作為一類常見(jiàn)的季銨鹽類化合物同樣廣泛用作催化劑催化CO2與環(huán)氧化物的環(huán)加成反應(yīng),這是由于離子液體催化劑具有結(jié)構(gòu)易調(diào)且易于回收的特點(diǎn)。常規(guī)咪唑類離子液體主要是靠其自身的特殊結(jié)構(gòu)與CO2分子之間的復(fù)雜作用實(shí)現(xiàn)CO2的固定。另外,咪唑類離子液體可以溶解大量的CO2之后其體積膨脹率很小,而傳統(tǒng)有機(jī)溶劑吸收CO2之后其體積膨脹率較大。這些特性都表現(xiàn)出了離子液體在用于CO2吸收固定中的獨(dú)特優(yōu)勢(shì)。早在2001年,Deng課題組[56]首先使用摩爾分?jǐn)?shù)2.5% 的[BMIM]BF4催化PO與CO2偶聯(lián)合成PC。當(dāng)在110℃、2.5 MPa的條件下,生成PC的TOF較低。而韓國(guó)Kim等[57]使用鹵化鋅(作為L(zhǎng)ewis酸)與咪唑類離子液體組成雙組分催化體系并應(yīng)用到PO環(huán)加成反應(yīng)中,PC的產(chǎn)率有了極大的提高,Xia等[58]和Sun等[59]也報(bào)道了類似的催化體系。最近,德國(guó)Wilhelm等[60]發(fā)現(xiàn),以摩爾分?jǐn)?shù)2.0%的咪唑類離子液體[BMIM]Br為催化劑,在非常溫和的條件下(0.4 MPa,室溫)加入摩爾分?jǐn)?shù)1.0%的NbCl5時(shí),反應(yīng)2 h后,PC的產(chǎn)率為82%,PC的選擇性大于99%。上述催化反應(yīng)機(jī)理與一般季銨鹽的機(jī)理相似。另外,離子液體中的咪唑大環(huán)可能通過(guò)靜電作用穩(wěn)定烷氧活性中間體,調(diào)節(jié)其電荷分布,方便CO2分子的進(jìn)攻。

        1.3 有機(jī)堿

        2007年,Jones等[61]報(bào)道使用直接DMAP可以催化PO與CO2環(huán)加成合成PC,當(dāng)在1.7 MPa和120℃的條件下使用摩爾分?jǐn)?shù)0.4%的DMAP催化劑,并加入少量CH2Cl2時(shí),反應(yīng)4 h,可得到85%產(chǎn)率的碳酸丙烯酯。其他超強(qiáng)堿(如DBU)也能獲得類似的催化結(jié)果。當(dāng)然,若將一些金屬鹽(如SnCl4[62]、ZnBr2[63-68]、NbCl5[69-71]等)或含羥基的有機(jī)物(如苯酚[72-73]、纖維素[74]、席夫堿等)作為添加劑用于DMAP或DBU等有機(jī)堿催化的環(huán)加成反應(yīng)中,催化活性進(jìn)一步提高。這種酸堿協(xié)同催化作用機(jī)理一般認(rèn)為:氫鍵供體或金屬鹽活化環(huán)氧化物,而超強(qiáng)堿活化CO2分子形成氨基甲酸鹽中間體,然后進(jìn)攻環(huán)氧化物開環(huán)。如圖4所示。

        圖4 有機(jī)堿催化CO2與環(huán)氧化物環(huán)加成反應(yīng)的一般機(jī)理Fig.4 Proposed mechanism of cycloaddition reaction of CO2and epoxides catalyzed by organic bases

        類似地,Kawanami等[75]發(fā)現(xiàn)在超臨界CO2條件下直接用堿性有機(jī)溶劑DMF可以催化環(huán)氧化物與CO2環(huán)加成合成環(huán)狀碳酸酯。隨后我國(guó)科學(xué)家將DMF催化環(huán)氧化物的范圍拓寬,并且取得了優(yōu)異的效果。同時(shí),如果加入一些助劑(如ZnBr2[66]、NBS[76]、BnBr[77]等)組成雙組分催化體系用于催化環(huán)加成反應(yīng),這些酸堿協(xié)同催化體系也被認(rèn)為是十分高效的。例如,以摩爾分?jǐn)?shù)5.0%的芐溴(BnBr)為助催化劑,DMF作溶劑時(shí),在0.1 MPa和120℃的條件下,反應(yīng)24 h后,SC的分離產(chǎn)率為73%。另外,Lü課題組[78]使用摩爾分?jǐn)?shù)0.5%的NHC作催化劑催化環(huán)氧化物與CO2的環(huán)加成反應(yīng)。在2.0 MPa 和120℃、以CH2Cl2作溶劑條件下,反應(yīng)48 h,得到100%產(chǎn)率的PC。

        2 功能型一元催化體系

        圖5 雙功能型季鹽催化CO2與環(huán)氧化物環(huán)加成反應(yīng)的一般機(jī)理Fig.5 Proposed mechanism of cycloaddition reaction of CO2and epoxides catalyzed by bifunctional quaternary onium salts

        鑒于離子液體是一種可設(shè)計(jì)和修飾的功能型分子,越來(lái)越多的科研工作者將羥基[84-86]、羧基[87-89]、氨基[90]、磺酸基[91-92]等官能團(tuán)直接引入到咪唑類離子液體中,設(shè)計(jì)合成了一系列功能化的離子液體,并應(yīng)用到CO2與環(huán)氧化物的環(huán)加成反應(yīng)中。研究發(fā)現(xiàn),這些功能化離子液體能夠有效地改善對(duì)CO2分子的吸收能力,提高催化活性。另外,它們都易與產(chǎn)物分離,催化劑的重復(fù)使用性較好。譬如,Zhang課題組[84,87]報(bào)道了以摩爾分?jǐn)?shù)1.0%的含羧基的咪唑類離子液體20為催化劑,在2.0 MPa和125℃的條件下,反應(yīng)1 h后,PC的收率可達(dá)到98%。最近,德國(guó)Cokoja等[93]發(fā)現(xiàn),若以摩爾分?jǐn)?shù)5.0%的含羥基的雙咪唑類離子液體21作催化劑,在0.4 MPa 和70℃的條件下,反應(yīng)16 h后,PO的轉(zhuǎn)化率超過(guò)95%,PC的選擇性大于99%,并且該催化劑能夠直接通過(guò)加入無(wú)水乙醚的方法實(shí)現(xiàn)回收,連續(xù)使用10次后其催化活性沒(méi)有明顯降低。另外,該研究小組還用量子化學(xué)計(jì)算的方法推測(cè)出了可能的機(jī)理。

        3 金屬配合物催化體系

        在金屬配合物催化CO2與環(huán)氧化物的反應(yīng)中,一般而言,金屬中心充當(dāng)Lewis酸,作為親電試劑,在親核試劑的幫助下對(duì)環(huán)氧化物進(jìn)行活化開環(huán)。主要的機(jī)理模型有以下4種,分別遵循單金屬協(xié)同催化機(jī)理(A,B)和雙金屬協(xié)同催化機(jī)理(C,D),如圖6所示。

        3.1 金屬卟啉配合物

        圖6 金屬配合物催化CO2與環(huán)氧化物環(huán)加成反應(yīng)的一般機(jī)理Fig.6 Proposed mechanism of cycloaddition reaction of CO2and epoxides catalyzed by metal complexes

        除金屬鋁可作為配位中心外,其他金屬也廣泛應(yīng)用到環(huán)加成反應(yīng)中。Kruper等[98]于1995年報(bào)道了3價(jià)鉻卟啉配合物23與有機(jī)堿DMAP組成雙組分催化劑應(yīng)用到合成環(huán)狀碳酸酯的反應(yīng)中。結(jié)果表明具有不同結(jié)構(gòu)的配合物在環(huán)氧化物中的溶解度對(duì)其催化活性具有重要的影響。接下來(lái),2004年Nguyen等[99]報(bào)道用金屬鈷代替有毒的鉻制備了催化劑24,在120℃和2.0 MPa的條件下,有機(jī)堿DAMP的存在能大大提高催化體系的活性。類似地,2007年Jing課題組[100]用PTAT代替常見(jiàn)的DAMP,在更加溫和的條件(50℃,0.7 MPa)下實(shí)現(xiàn)了環(huán)狀碳酸酯的高效合成。2012年該課題組考察了不同金屬配位中心(如錫、鎂、鋁等)對(duì)催化反應(yīng)的影響,研究發(fā)現(xiàn)金屬卟啉催化劑的催化活性的順序?yàn)锳l3+?Mg2+>Sn4+>Sn2+,這與金屬中心的Lewis酸性強(qiáng)度是一致的[101]。此外,該課題組還合成了季銨鹽功能化的鈷卟啉配合物[102],使用摩爾分?jǐn)?shù)0.1%的25,在6.6 MPa和80℃無(wú)溶劑的條件下,反應(yīng)5 h后,PC的產(chǎn)率可達(dá)95%以上,TOF為191 h?1。具有類似功能的四吡啶基鈷卟啉26也相繼被報(bào)道[103],該類催化劑由于同時(shí)具有Lewis酸中心和Lewis堿中心(或親核試劑),可以在不添加任何助劑的條件下實(shí)現(xiàn)催化循環(huán)過(guò)程。

        在金屬卟啉催化CO2與環(huán)氧化合物的環(huán)加成反應(yīng)合成環(huán)狀碳酸酯的領(lǐng)域中,日本科學(xué)家Ema研究組[104-106]取得了重大突破,將季銨鹽基團(tuán)通過(guò)共價(jià)鍵聯(lián)的方式引入到卟啉外環(huán)的結(jié)構(gòu)中,合成了一系列單核、雙核甚至三核的金屬卟啉配合物。當(dāng)使用摩爾分?jǐn)?shù)0.005%的雙功能型單核鎂卟啉27a作為催化劑時(shí),不需要添加任何有機(jī)溶劑和助劑,在1.7MPa和120℃的條件下,反應(yīng)3 h后,1,2?環(huán)氧己烷基本轉(zhuǎn)化成相應(yīng)的環(huán)狀碳酸酯。同時(shí),該課題組用量子化學(xué)計(jì)算方法對(duì)催化劑的空間結(jié)構(gòu)進(jìn)行了優(yōu)化,并對(duì)催化反應(yīng)的機(jī)理進(jìn)行了推測(cè),認(rèn)為該催化循環(huán)遵循分子內(nèi)Lewis酸堿協(xié)同催化的機(jī)理[106]。另外,為了獲得更高的TOF值,研究發(fā)現(xiàn),當(dāng)分別使用雙核及三核鎂卟啉(27b和27c)作催化劑時(shí)TOF值分別為220000 h-1和46000 h?1,而若用金屬鋅代替鎂時(shí)TOF值也分別高達(dá)310000 h-1和40000 h?1。因此,該過(guò)程體現(xiàn)出金屬卟啉配合物是一種仿生催化劑(人工模似酶——葉綠素)的特點(diǎn),成功實(shí)現(xiàn)了對(duì)CO2分子的高效固定。

        另外值得注意的是,金屬酞菁(Pc)是一類與金屬卟啉具有類似結(jié)構(gòu)和性質(zhì)的配合物,與金屬卟啉類似的是金屬酞菁28也可用作環(huán)加成反應(yīng)的催化劑。2000年,He研究組[107]報(bào)道酞菁鋁PcAlCl在有機(jī)堿存在下對(duì)CO2與環(huán)氧化物的環(huán)加成反應(yīng)具有較高的催化活性??疾觳煌饘僦行膶?duì)催化性能的影響時(shí)發(fā)現(xiàn)對(duì)應(yīng)的催化活性的順序?yàn)椋篜cAlCl>MgPc>FePc?NiPc≈CoPc。但是它們均需要在有機(jī)堿作助催化劑的條件下才能表現(xiàn)出良好的催化活性。

        3.2 金屬salen配合物

        salen這個(gè)名字是由水楊醛(salicylaldehyde)和乙二胺(ethylenediamine)組合而成的。salen配體是主要是受卟啉結(jié)構(gòu)的啟發(fā)而人工合成的配體,這樣在設(shè)計(jì)過(guò)程中就可以將立體位阻和電子效應(yīng)考慮在內(nèi)。早在2001年,美國(guó)Nguyen研究組[108]報(bào)道使用傳統(tǒng)salen Cr配合物與DMAP組成雙組分催化體系催化環(huán)氧化合物與CO2的環(huán)加成反應(yīng)合成環(huán)狀碳酸酯。當(dāng)以摩爾分?jǐn)?shù)1.0%的29作催化劑,加入等物質(zhì)的量的DMAP作助劑,在5.0 MPa和75℃的條件下反應(yīng)1.5 h,PC的收率可達(dá)到100%,但是該催化過(guò)程需要加入有毒的CH2Cl2作溶劑。Sun課題組[109]于2008年設(shè)計(jì)并合成了一系列雙功能型salen Cr催化劑30,該類催化劑同時(shí)具有金屬Lewis酸中心(親電基團(tuán))和Lewis堿中心,因此當(dāng)以有機(jī)強(qiáng)堿TBD作為L(zhǎng)ewis堿中心時(shí)催化劑更容易進(jìn)攻環(huán)氧化合物使其開環(huán)。當(dāng)僅以摩爾分?jǐn)?shù)0.02%的salen Cr作催化劑時(shí),不需要添加任何有機(jī)溶劑和助劑,在2.0 MPa和80℃的條件下反應(yīng)1 h,TOF高達(dá)2120 h?1,在25℃和0.5 MPa的條件下反應(yīng)24 h后TOF也可達(dá)42 h?1。

        金屬鉻具有一定的毒性,限制了salen Cr的應(yīng)用范圍。金屬鈷作為另一種低毒的過(guò)渡金屬元素受到廣泛關(guān)注。雖然salen Co配合物也可以催化CO2與環(huán)氧化合物的環(huán)加成反應(yīng)合成環(huán)狀碳酸酯,但常常伴有聚碳酸酯的生成。于是許多研究組通過(guò)對(duì)反應(yīng)條件進(jìn)行控制高產(chǎn)率高選擇性地制備出環(huán)狀碳酸酯,基本沒(méi)有副產(chǎn)物聚碳酸酯的生成。譬如,2004 年Nguyen等[110]也研究了salen Co配合物和DMAP的雙組分催化體系在環(huán)加成反應(yīng)中的催化性能。當(dāng)以摩爾分?jǐn)?shù)1.0%的31a作催化劑,加入2倍物質(zhì)的量的DMAP作助劑,以CH2Cl2為溶劑,在2.0 MPa 和100℃的條件下反應(yīng)1.5 h,PC的收率可達(dá)到100%,并且這一催化體系對(duì)其他環(huán)氧化合物的普適性和選擇性都很好。隨后,Jing研究組對(duì)催化劑和助劑的結(jié)構(gòu)進(jìn)行了優(yōu)化,當(dāng)加入摩爾分?jǐn)?shù)0.1%的31b和摩爾分?jǐn)?shù)0.2%的PTAT時(shí),不添加任何有機(jī)溶劑,在0.7 MPa和25℃的條件下反應(yīng)1.5 h,PC產(chǎn)率可達(dá)90%,TOF值為611 h?1[111]。若將摩爾分?jǐn)?shù)0.1%的聚合型手性salen Co催化劑32和摩爾分?jǐn)?shù)0.2%的TBAF組成雙組分體系應(yīng)用到不對(duì)稱環(huán)加成反應(yīng)中,在1.2 MPa和25℃的條件下反應(yīng)12 h,PO的轉(zhuǎn)化率可達(dá)39.4%,ee值為73%[112]。另外研究發(fā)現(xiàn),向反應(yīng)體系中加入甲醇,該催化劑可快速沉淀下來(lái),并且重復(fù)使用10次后仍能保持較高的催化活性。

        借鑒雙功能催化劑的設(shè)計(jì)思想,2008年國(guó)內(nèi)He課題組[113]通過(guò)共價(jià)鍵聯(lián)方法將季鹽(作為助劑)引入到salen Co配合物中,制得了一系列雙功能型催化劑。直接加入摩爾分?jǐn)?shù)0.5%的33,不需要添加任何有機(jī)溶劑和助劑,在4.0 MPa和100℃的條件下反應(yīng)4 h,PC的收率可達(dá)到94%。隨后Jing研究組[114]也合成了一系列雙功能季鹽或季銨鹽功能化的手性salen Co催化劑34,并成功應(yīng)用到不對(duì)稱環(huán)加成反應(yīng)中,若只加入摩爾分?jǐn)?shù)0.1%的34b,在0.6 MPa和0℃的條件下反應(yīng)48 h,PC產(chǎn)率可以達(dá)到24%,ee值可達(dá)77%以上。印度Kureshy等[115]也利用類似的思想,直接將有機(jī)堿(Lewis堿中心,作為助劑)引入到手性salen Co配合物中,合成了聚合型手性催化劑35,不添加任何有機(jī)溶劑和助劑,只加入摩爾分?jǐn)?shù)0.1%的35,在0.1 MPa和20℃的條件下反應(yīng)36 h,PC產(chǎn)率可達(dá)43%,ee值為70%左右。另外,該類強(qiáng)極性的雙功能催化劑在反應(yīng)完畢后加入有機(jī)溶劑(如無(wú)水乙醚)可以沉淀下來(lái),循環(huán)使用多次后仍能體現(xiàn)出較高的催化效率,賦予“均相催化,兩相分離”的特點(diǎn)。

        由于采用過(guò)渡金屬元素作為催化劑配位中心,反應(yīng)結(jié)束后產(chǎn)品環(huán)狀碳酸酯的色澤較深,需要進(jìn)行脫色處理。因此,鋁作為一種無(wú)毒、易得且環(huán)境友好的主族金屬?gòu)V泛應(yīng)用到環(huán)加成反應(yīng)中。2002年,Lü等[116-118]首先報(bào)道了salen Al 36和TBAB的雙組分催化體系可以高效催化合成碳酸乙烯酯(EC),在1.6 MPa的CO2壓力和110℃的條件下,TOF高達(dá)2220 h-1。而當(dāng)使用salen Al、KI和冠醚組成的三組分催化體系時(shí),也取得了類似的結(jié)果。特別是在0.6 MPa和25℃(常溫近常壓)的條件下,TOF仍可達(dá)58 h?1。隨后美國(guó)Darensbourg研究組[119-120]將充當(dāng)助劑作用的季鹽或季銨鹽(親核試劑)直接引入到salen Al配合物中,制得的雙功能型催化劑37在環(huán)加成反應(yīng)中也被認(rèn)為是相當(dāng)高效的。最近Lü 等[121]報(bào)道的季銨鹽修飾的salen Al催化劑38,在2.5 MPa和120℃的條件下,TOF高達(dá)5250 h-1。本課題組[122]借鑒雙功能催化劑的設(shè)計(jì)思想,并利用聚乙二醇在CO2中的溶脹作用,創(chuàng)新性地將含有聚醚鏈的咪唑類離子液體單元引入到salen Al配合物中,合成了一系列結(jié)構(gòu)新穎的多功能鋁催化劑,研究發(fā)現(xiàn)在無(wú)需添加任何助劑和溶劑的條件下反應(yīng)即能高效發(fā)生,當(dāng)使用摩爾分?jǐn)?shù)0.5%的39b作催化劑時(shí),在100℃和1.0 MPa的條件下反應(yīng)2.5 h,AGC的收率可達(dá)95%以上。高效催化性能的獲得與高活性物種——鋁的六配位形式有關(guān),該物種的存在(27Al NMR證明)能有效地調(diào)節(jié)鋁離子的Lewis酸性,從而更好地活化環(huán)氧化物,實(shí)現(xiàn)環(huán)加成反應(yīng)的過(guò)程強(qiáng)化。另外聚醚鏈的作用主要體現(xiàn)在:①賦予該催化劑具有捕獲CO2分子的功能,有效地解決了環(huán)加成反應(yīng)中的氣液傳質(zhì)問(wèn)題;②改進(jìn)強(qiáng)極性催化劑在底物中的溶解度,賦予催化劑“均相催化,兩相分離”的特點(diǎn);③聚醚鏈的長(zhǎng)度直接影響催化劑的活性,可調(diào)節(jié)咪唑陽(yáng)離子與鹵素陰離子間的靜電作用,進(jìn)而調(diào)變親核試劑的Lewis堿性,有利于環(huán)氧化物的開環(huán)。最后,以在線紅外光譜技術(shù)為手段對(duì)反應(yīng)進(jìn)行動(dòng)力學(xué)分析時(shí)發(fā)現(xiàn),該反應(yīng)對(duì)環(huán)氧化物和催化劑的濃度都是一級(jí)的,單個(gè)催化劑分子就能實(shí)現(xiàn)CO2反應(yīng)的催化循環(huán),遵循單金屬協(xié)同催化的機(jī)理。

        另外更值得注意的是,英國(guó)North研究組于2007年合成的雙核salen Al配合物在該領(lǐng)域占有統(tǒng)治地位[123-125]。當(dāng)使用摩爾分?jǐn)?shù)2.5%的40a,加入等摩爾量的TBAB充當(dāng)助催化劑,在常溫常壓(25℃,0.1 MPa)和無(wú)溶劑條件下,催化SO的環(huán)加成反應(yīng),反應(yīng)3 h后SC收率取得62%,反應(yīng)24 h后達(dá)到98%。隨后該研究組對(duì)雙金屬salen Al和TBAB組成的雙組分催化體系在CO2與環(huán)氧化合物的環(huán)加成反應(yīng)中進(jìn)行了反應(yīng)動(dòng)力學(xué)研究。研究表明,當(dāng)使用SO為模型底物時(shí),化學(xué)反應(yīng)速率對(duì)SO的濃度、CO2的濃度和salen Al的濃度都是一級(jí)的,而對(duì)TBAB的濃度是二級(jí)的,Rate=[SO]1[CO2]1[CAT]1[TBAB]2。根據(jù)反應(yīng)動(dòng)力學(xué)分析,CO2插入到TBAB與環(huán)氧化物形成的中間體中的步驟是反應(yīng)的決速步驟。同時(shí),TBAB在反應(yīng)結(jié)束后分解產(chǎn)生了三丁胺。隨后,為了避免使用助催化劑的弊端,該研究小組[126-128]還同樣合成了一系列季銨鹽或季鹽修飾的雙核salen Al催化劑(40b和40c)。由于這一雙功能催化劑既包含Lewis酸中心又包含Lewis堿中心,在常溫常壓條件下不再加入任何助催化劑就能催化環(huán)氧化合物與CO2的環(huán)加成反應(yīng)合成相應(yīng)的環(huán)狀碳酸酯。

        類似地,其他金屬中心(如錫、錳、釩、鋅等)的單核salen配合物也相繼被報(bào)道應(yīng)用于環(huán)加成反應(yīng)中。2004年,Nguyen等[129]使用制備的salen Sn配合物41與DMAP組成二元催化體系,在0.7 MPa 和120℃的條件下催化PO與CO2的環(huán)加成反應(yīng),TOF為531 h?1。Shi等[130]合成了一種新型的金屬催化劑42,在2.5 MPa和120℃的條件下,以摩爾分?jǐn)?shù)2.0%的三乙胺為助催化劑、CH2Cl2為溶劑,以摩爾分?jǐn)?shù)1.0%的42a催化PO與CO2的環(huán)加成反應(yīng),得到接近100%的PC產(chǎn)率。Baiker等[131]在2008年使用均相salen Mn 配合物43作催化劑,在超臨界CO2和140℃的條件下催化SO與CO2的環(huán)加成反應(yīng),得到了91%的SC產(chǎn)率,TOF為203 h?1。隨后他們使用X射線吸收光譜對(duì)salen Mn配合物催化環(huán)氧化合物與CO2環(huán)加成合成環(huán)碳酸酯的反應(yīng)機(jī)理進(jìn)行了詳細(xì)報(bào)道,結(jié)果表明其催化機(jī)理與salen Al和salen Cr配合物催化環(huán)加成反應(yīng)的機(jī)理相似[132]。2012年西班牙Kleij課題組[133]制備了salen VO配合物44,也能催化上述反應(yīng)。

        更令人注意的是,該研究小組報(bào)道salphen Zn配合物45在1.0 MPa和室溫的條件下,以CH2Cl2為溶劑,也可以高效地催化環(huán)氧化合物與CO2環(huán)加成反應(yīng)合成環(huán)狀碳酸酯,反應(yīng)18 h后可以得到90% 的PC產(chǎn)率[134-137]。另外,采用量子化學(xué)計(jì)算方法對(duì)反應(yīng)過(guò)渡態(tài)進(jìn)行了結(jié)構(gòu)優(yōu)化,并推測(cè)出可能的反應(yīng)機(jī)理[138]。最近該研究小組[139]還利用鋅配合物的結(jié)構(gòu)特點(diǎn)設(shè)計(jì)并合成了一種結(jié)構(gòu)新穎的雙功能型Zn(salpyr)配合物46,不需要加入任何助劑和有機(jī)溶劑,摩爾分?jǐn)?shù)0.5%的該催化劑在1.0 MPa和80℃的條件下催化1,2-環(huán)氧己烷與CO2的環(huán)加成反應(yīng),取得了基本完全的轉(zhuǎn)化率,同時(shí)環(huán)狀碳酸酯的選擇性也達(dá)到99%。Jiang課題組[140]通過(guò)分析雙功能催化劑的結(jié)構(gòu)特點(diǎn),直接將有機(jī)堿(如N-甲基高哌嗪)引入到salphen金屬配合物中,合成了另一類Lewis酸堿雙功能催化劑,當(dāng)使用摩爾分?jǐn)?shù)1.0%的47,無(wú)需加入任何助劑和有機(jī)溶劑,在100℃和2.0 MPa的條件下反應(yīng)4 h,PC的產(chǎn)率可達(dá)92%,而在相同條件下由salphen Zn和N-甲基高哌嗪組成的雙組分催化體系卻只能獲得中等程度的收率。因此,酸堿雙功能催化劑可有效提高環(huán)加成反應(yīng)的催化效率,但由于其合成和表征相對(duì)困難,是一個(gè)十分具有挑戰(zhàn)和前景的方向。

        3.3 其他金屬配合物

        除了金屬卟啉和金屬salen類配合物以外,其他多種金屬配合物也可用于催化CO2與環(huán)氧化物之間的環(huán)加成反應(yīng)。早在2000年,日本Kim等[141]就報(bào)道了一種簡(jiǎn)單易合成的鋅配合物[L2ZnX2](L:吡啶及其衍生物)。當(dāng)使用摩爾分?jǐn)?shù)0.2%的48時(shí),在3.4 MPa和100℃的條件下反應(yīng)1 h,PC的產(chǎn)率可達(dá)80%,TOF值為405 h?1。另外通過(guò)對(duì)中間體雙核鋅配合物(單晶)的合成和表征證實(shí)了鋅催化劑在環(huán)加成反應(yīng)中遵循雙金屬協(xié)同催化機(jī)理。該小組進(jìn)一步研究發(fā)現(xiàn),若直接使用2,2′-聯(lián)吡啶鹵化鋅配合物49作催化劑,在相同的條件下催化活性卻很低,這可能與鋅配合物的空間配位構(gòu)型及催化反應(yīng)機(jī)理有關(guān)[142]。最近,本課題組[143]采用共價(jià)鍵鏈的方式首次將咪唑類離子液體單元引入到2,2′-聯(lián)吡啶鋅配合物中,合成了一系列結(jié)構(gòu)新穎的鋅催化劑50。研究表明,在相對(duì)溫和的條件下,不添加任何有機(jī)溶劑和助劑,該類催化劑在環(huán)加成反應(yīng)中體現(xiàn)出優(yōu)異的催化性能。反應(yīng)動(dòng)力學(xué)分析結(jié)果顯示:化學(xué)反應(yīng)速率對(duì)SO的濃度是一級(jí)的,而對(duì)催化劑的濃度是二級(jí)的。

        另外Kleij等[144]首先報(bào)道了氨基三酚鋁配合物在環(huán)加成反應(yīng)中的應(yīng)用,使用摩爾分?jǐn)?shù)0.05%的51,并加入摩爾分?jǐn)?shù)0.25%的TBAI,在1.0 MPa和90℃的條件下催化1,2?環(huán)氧己烷與CO2的環(huán)加成反應(yīng),反應(yīng)2 h后獲得了96%的環(huán)氧化物轉(zhuǎn)化率。若進(jìn)一步優(yōu)化催化劑的結(jié)構(gòu),選取不同的季銨鹽作助劑,TOF最高可達(dá)36000 h-1。另外,該二元催化體系具有更優(yōu)異的底物適用性,不論是末端的環(huán)氧化物還是二取代的環(huán)氧化物,甚至內(nèi)環(huán)型的環(huán)氧化物,都取得了不錯(cuò)的環(huán)狀碳酸酯收率。類似的氨基三酚鐵或鉻配合物均有相關(guān)報(bào)道,也取得了不錯(cuò)的催化結(jié)果。英國(guó)Styring等[145]報(bào)道了一種結(jié)構(gòu)新穎的不對(duì)稱Al(salacen)配合物,以摩爾分?jǐn)?shù)1.0%的52和等摩爾量的TBAB,在1.0 MPa和110℃的條件下反應(yīng)48 h,SC的產(chǎn)率可達(dá)90%以上,但是該催化體系需要加入CH2Cl2作溶劑。此外,North等[146-147]也制備了一系列結(jié)構(gòu)新穎的鋁配合物(53~55),并用于催化合成環(huán)狀碳酸酯的反應(yīng),在相對(duì)溫和的條件下都取得了不錯(cuò)的催化性能。最近,Yao等[148]設(shè)計(jì)的鈮配合物也取得了不錯(cuò)的催化性能,當(dāng)使用摩爾分?jǐn)?shù)0.2%的56和摩爾分?jǐn)?shù)0.4%的TBAI時(shí),在0.7 MPa和85℃的條件下反應(yīng)1 h,TOF值高達(dá)4000 h-1。意大利Buonerba等[149]報(bào)道了一種結(jié)構(gòu)新穎的雙核鐵配合物,并應(yīng)用到環(huán)加成反應(yīng)中,當(dāng)使用摩爾分?jǐn)?shù)0.025%的57和摩爾分?jǐn)?shù)0.1%的TBAB時(shí),在2.0 MPa和100℃的條件下反應(yīng)6 h,PC的產(chǎn)率可達(dá)96%,TOF值為580 h?1。

        圖7 雙功能型金屬配合物活化環(huán)氧化物的兩種模式Fig.7 Cooperative activation of epoxide with bifunctional catalysts

        由此可見(jiàn),目前開發(fā)的金屬配合物催化體系雖然對(duì)CO2與環(huán)氧化物的環(huán)加成反應(yīng)具有較好的催化活性,但是一般需要加入有機(jī)堿或季鹽作為助催化劑,大多數(shù)金屬配合物單獨(dú)使用時(shí)幾乎沒(méi)有任何催化活性。通過(guò)共價(jià)鍵聯(lián)的方式將這些助劑直接引入到金屬配合物中合成結(jié)構(gòu)新穎的雙功能型催化劑,被認(rèn)為是實(shí)現(xiàn)高效催化轉(zhuǎn)化的有效方法。雙功能型金屬配合物活化環(huán)氧化物主要有兩種模式,如圖7所示。另外,這類催化劑的優(yōu)點(diǎn)在于催化效率高、催化劑穩(wěn)定、可以回收使用、有工業(yè)應(yīng)用的前景,缺點(diǎn)在于結(jié)構(gòu)相對(duì)復(fù)雜、合成條件苛刻、合成路線復(fù)雜、制備成本昂貴,這都使得金屬配合物催化劑的應(yīng)用受到很大限制。因此,進(jìn)一步開發(fā)更為簡(jiǎn)單高效的催化體系、提高催化效率、降低合成難度是該類催化劑的研究方向。

        4 結(jié)論與展望

        綜上所述,目前科學(xué)家們開發(fā)探究了各式各樣的催化體系,并應(yīng)用于CO2與環(huán)氧化合物環(huán)加成反應(yīng)。均相催化劑由于具有催化活性較高的特點(diǎn)而受到廣泛關(guān)注,特別是一些金屬有機(jī)配合物(如雙核salen Al催化劑),在相當(dāng)溫和的條件下就能催化CO2與環(huán)氧化合物反應(yīng)的進(jìn)行。目前已經(jīng)報(bào)道的均相催化劑還有一些明顯不足,如催化劑用量過(guò)大且催化活性普遍不高、反應(yīng)條件不夠溫和、催化劑合成路線復(fù)雜且成本較高、有些催化劑熱穩(wěn)定性差且難簡(jiǎn)單回收、活性組分易流失等,這些都是以后設(shè)計(jì)環(huán)加成催化劑時(shí)要解決和改進(jìn)的地方。在CO2與環(huán)氧化物環(huán)加成反應(yīng)機(jī)理的研究中,一般認(rèn)為在反應(yīng)過(guò)程中環(huán)氧化物和CO2分別被催化體系中的酸性位和堿性位活化,這種酸堿協(xié)同催化作用可以高效地促進(jìn)該反應(yīng)的進(jìn)行,因此,這一經(jīng)驗(yàn)理論為以后設(shè)計(jì)并開發(fā)高效優(yōu)良的催化劑提供了重要的參考,具有重大意義。

        References

        [1] OMAE I. Recent developments in carbon dioxide utilization for the production of organic chemicals [J]. Coordin. Chem. Rev., 2012, 256 (13/14): 1384-1405. DOI: 10.1016/j.ccr.2012.03.017.

        [2] MAEDA C, MIYAZAKI Y, EMA T. Recent progress in catalytic conversions of carbon dioxide [J]. Catal. Sci. Technol., 2014, 4 (6): 1482-1497. DOI: 10.1039/C3CY00993A.

        [3] LIU Q, WU L, JACKSTELL R, et al. Using carbon dioxide as a building block in organic synthesis [J]. Nat. Commun., 2015, 6: 1-15. DOI: 10.1038/ncomms6933.

        [4] OMAE I. Aspects of carbon dioxide utilization [J]. Catal. Today, 2006, 115 (1/2/3/4): 33-52. DOI: 10.1016/j.cattod.2006.02.024.

        [5] ARESTA M, DIBENEDETTO A. Utilisation of CO2as a chemical feedstock: opportunities and challenges [J]. Dalton Trans., 2007, 28 (28): 2975-2992. DOI: 10.1039/B700658F.

        [6] SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide [J]. Chem. Rev., 2007, 107 (6): 2365-2387. DOI: 10.1021/cr068357u.

        [7] YU K M K, CURCIC I, GABRIEL J, et al. Recent advances in CO2capture and utilization [J]. ChemSusChem, 2008, 1 (11): 893-899. DOI: 10.1002/cssc.200800169.

        [8] RIDUAN S N, ZHANG Y. Recent developments in carbon dioxide utilization under mild conditions [J]. Dalton Trans., 2010, 39 (14): 3347-3357. DOI: 10.1039/B920163G.

        [9] SCH?FFNER B, SCH?FFNER F, VEREVKIN S P, et al. Organic carbonates as solvents in synthesis and catalysis [J]. Chem. Rev., 2010, 110 (8): 4554-4581. DOI: 10.1021/cr900393d.

        [10] CLEMENTS J H. Reactive applications of cyclic alkylene carbonates [J]. Ind. Eng. Chem. Res., 2003, 42 (4): 663-674.

        [11] NORTH M, PASQUALE R, YOUNG C. Synthesis of cyclic carbonates from epoxides and CO2[J]. Green Chem., 2010, 12 (9): 1514-1539. DOI: 10.1039/c0gc00065e.

        [12] HE Q, O'BRIEN J W, KITSELMAN K A, et al. Synthesis of cyclic carbonates from CO2and epoxides using ionic liquids and related catalysts including choline chloride-metal halide mixtures [J]. Catal. Sci. Technol., 2014, 4 (6): 1513-1528. DOI: 10.1039/C3CY00998J.

        [13] COMERFORD J W, INGRAM L D V, NORTH M, et al. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings [J]. Green Chem., 2015, 17 (4): 1966-1987. DOI: 10.1039/C4GC01719F.

        [14] SUN J, FUJITA S I, ARAI M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids [J]. J. Organomet. Chem., 2005, 690 (44): 3490-3497. DOI: 10.1016/j.jorganchem.2005.02.011.

        [15] ZHANG S, CHEN Y, LI F, et al. Fixation and conversion of CO2using ionic liquids [J]. Catal. Today, 2006, 115 (1/2/3/4): 61-69. DOI: 10.1016/j.cattod.2006.02.021.

        [16] ZHANG J, SUN J, ZHANG X, et al. The recent development of CO2fixation and conversion by ionic liquid [J]. Greenh. Gases, 2011, 1 (2): 142-159. DOI: 10.1002/ghg.13.

        [17] XU B, WANG J, SUN J, et al. Fixation of CO2into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach [J]. Green Chem., 2015, 17 (1): 108-122. DOI: 10.1039/C4GC01754D.

        [18] YIN X, MOSS J R. Recent developments in the activation of carbon dioxide by metal complexes [J]. Coordin. Chem. Rev., 1999, 181 (1): 27-59. DOI: 10.1016/S0010-8545 (98)00171-4.

        [19] DECORTES A, CASTILLA A M, KLEIJ A W. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2to epoxides [J]. Angew. Chem. Int. Ed., 2010, 49 (51): 9822-9837. DOI: 10.1002/anie.201002087.

        [20] FIORANI G, GUO W, KLEIJ A W. Sustainable conversion of carbon dioxide: the advent of organocatalysis [J]. Green Chem., 2015, 17 (3): 1375-1389. DOI: 10.1039/C4GC01959H.

        [21] ZHU M Q, CARREON M A. Porous crystals as active catalysts for the synthesis of cyclic carbonates [J]. J. Appl. Polym. Sci., 2014, 131 (5): 13. DOI: 10.1002/app.39738.

        [22] BEYZAVI M H, STEPHENSON C J, LIU Y, et al. Metal-organic framework-based catalysts: chemical fixation of CO2with epoxides leading to cyclic organic carbonates [J]. Frontiers in Energy Research, 2015, 2: 1-10. DOI: 10.3389/fenrg.2014.00063.

        [23] DAI W, LUO S, YIN S, et al. The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts [J]. Appl. Catal. A: Gen., 2009, 366 (1): 2-12. DOI: 10.1016/j.apcata.2009.06.045.

        [24] SAKAKURA T, KOHNO K. The synthesis of organic carbonates from carbon dioxide [J]. Chem. Commun., 2009, 47 (11): 1312-1330. DOI: 10.1039/B819997C.

        [25] MARTíN C, FIORANI G, KLEIJ A W. Recent advances in the catalytic preparation of cyclic organic carbonates [J]. ACS Catal., 2015, 5 (2): 1353-1370. DOI: 10.1021/cs5018997.

        [26] KASUGA K, KABATA N. The fixation of carbon dioxide with1,2-epoxypropane catalyzed by alkali-metal halide in the presence of a crown ether [J]. Inorg. Chim. Acta, 1997, 257 (2): 277-278. DOI: 10.1016/S0020-1693 (96)05481-3.

        [27] 唐占忠, 彥陳, 瞿志堅(jiān), 等. 碳酸乙烯酯的合成研究 [J]. 石油化工, 1996, 25 (6): 409-413. TANG Z Z ,CHEN Y, QU Z F, et al. Study on synthesis of ethylene carbonate [J]. Petrochemical Technology, 1996, 25 (6): 409-413.

        [28] KUMAR S, JAIN S L. Polyethylene glycol wrapped potassium bromide assisted chemical fixation of carbon dioxide [J]. Ind. Eng. Chem. Res., 2013, 53 (2): 541-546. DOI: 10.1021/ie4033439.

        [29] SONG J, ZHANG Z, HAN B, et al. Synthesis of cyclic carbonates from epoxides and CO2catalyzed by potassium halide in the presence of b-cyclodextrin [J]. Green Chem., 2008, 10 (12): 1337-1341. DOI: 10.1039/B815105A.

        [30] MA J, LIU J, ZHANG Z, et al. The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2with propylene oxide [J]. Green Chem., 2012, 14 (9): 2410-2420. DOI: 10.1039/C2GC35711A.

        [31] LIANG S, LIU H, JIANG T, et al. Highly efficient synthesis of cyclic carbonates from CO2and epoxides over cellulose/KI [J]. Chem. Commun., 2011, 47 (7): 2131-2133. DOI: 10.1039/C0CC04829A.

        [32] WU Z, XIE H, YU X, et al. Lignin-based green catalyst for the chemical fixation of carbon dioxide with epoxides to form cyclic carbonates under solvent-free conditions [J]. ChemCatChem, 2013, 5 (6): 1328-1333. DOI: 10.1002/cctc.201200894.

        [33] ZHOU L, LIU Y, HE Z, et al. Pentaerythritol and KI: an efficient catalytic system for the conversion from CO2and epoxides to cyclic carbonates [J]. J. Chem. Res., 2013, (2): 102-104. DOI: 10.3184/174751913x13571500195988.

        [34] RAMIDI P, MUNSHI P, GARTIA Y, et al. Synergistic effect of alkali halide and Lewis base on the catalytic synthesis of cyclic carbonate from CO2and epoxide [J]. Chem. Phys. Lett., 2011, 512 (4/5/6): 273-277. DOI: 10.1016/j.cplett.2011.07.035.

        [35] WERNER T, TENHUMBERG N. Synthesis of cyclic carbonates from epoxides and CO2catalyzed by potassium iodide and amino alcohols [J]. J. CO2Utili., 2014, 7 (7): 39-45. DOI: 10.1016/j.jcou.2014.04.002.

        [36] XIAO B, SUN J, WANG J, et al. Triethanolamine/KI: a multifunctional catalyst for CO2activation and conversion with epoxides into cyclic carbonates [J]. Synthetic. Commun., 2013, 43 (22): 2985-2997. DOI: 10.1080/00397911.2012.754471.

        [37] YANG Z, SUN J, LIU X, et al. Nano-sized polydopamine-based biomimetic catalyst for the efficient synthesis of cyclic carbonates [J]. Tetrahedron Lett., 2014, 55 (21): 3239-3243. DOI: 10.1016/j.tetlet.2014.04.033.

        [38] ROSHAN K R, KATHALIKKATTIL A C, THARUN J, et al. Amino acid/KI as multi-functional synergistic catalysts for cyclic carbonate synthesis from CO2under mild reaction conditions: a DFT corroborated study [J]. Dalton Trans., 2014, 43 (5): 2023-2031. DOI: 10.1039/C3DT52830H.

        [39] YANG Z, SUN J, CHENG W, et al. Biocompatible and recyclable amino acid binary catalyst for efficient chemical fixation of CO2[J]. Catal. Commun., 2014, 44: 6-9. DOI: 10.1016/j.catcom.2013.07.025.

        [40] WERNER T, TENHUMBERG N, BüTTNER H. Hydroxyl-functionalized imidazoles: highly active additives for the potassium iodide-catalyzed synthesis of 1,3-Dioxolan-2-one derivatives from epoxides and carbon dioxide [J]. ChemCatChem, 2014, 6 (12): 3493-3500. DOI: 10.1002/cctc.201402572.

        [41] SONG J, ZHANG B, ZHANG P, et al. Highly efficient synthesis of cyclic carbonates from CO2and epoxides catalyzed by KI/lecithin [J]. Catal. Today, 2012, 183 (1): 130-135. DOI: 10.1016/j.cattod.2011.08.042.

        [42] LU X, ZHANG Y, JIN K, et al. Highly active electrophile-nucleophile catalyst system for the cycloaddition of CO2to epoxides at ambient temperature [J]. J. Catal., 2004, 227 (2): 537-541. DOI: 10.1016/j.jcat.2004.07.018.

        [43] BAI D, NIAN G, WANG G, et al. Titanocene dichloride/KI: an efficient catalytic system for synthesis of cyclic carbonates from epoxides and CO2[J]. Appl. Organomet. Chem., 2013, 27 (3): 184-187. DOI: 10.1002/aoc.2967.

        [44] CALO V, NACCI A, MONOPOLI A, et al. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts [J]. Org. Lett., 2002, 4 (15): 2561-2563. DOI: 10.1021/ol026189w.

        [45] SUN J, FUJITA S I, ZHAO F, et al. A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide [J]. Appl. Catal. A: Gen., 2005, 287 (2): 221-226. DOI: 10.1016/j.apcata.2005.03.035.

        [46] SUN J, WANG L, ZHANG S, et al. ZnCl2/phosphonium halide: an efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate [J]. J. Mol. Catal. A: Chem., 2006, 256 (1/2): 295-300. DOI: 10.1016/j.molcata.2006.05.004.

        [47] WU S, ZHANG X, DAI W, et al. ZnBr2-Ph4PI as highly efficient catalyst for cyclic carbonates synthesis from terminal epoxides and carbon dioxide [J]. Appl. Catal. A: Gen., 2008, 341 (1/2): 106-111. DOI: 10.1016/j.apcata.2008.02.021.

        [48] DELIA V, DUTTA B, SOFACK-KREUTZER J, et al. Nucleophile-directed selectivity towards linear carbonates in the niobium pentaethoxide-catalysed cycloaddition of CO2and propylene oxide [J]. Catal. Sci. Technol., 2014, 4 (6): 1534-1538. DOI: 10.1039/C4CY00003J.

        [49] WHITEOAK C J, NOVA A, MASERAS F, et al. Merging sustainability with organocatalysis in the formation of organic carbonates by using CO2as a feedstock [J]. ChemSusChem, 2012, 5 (10): 2032-2038. DOI: 10.1002/cssc.201200255.

        [50] WILHELM M E, ANTHOFER M H, COKOJA M, et al. Cycloaddition of carbon dioxide and epoxides using pentaerythritol and halides as dual catalyst system [J]. ChemSusChem, 2014, 7 (5): 1357-1360. DOI: 10.1021/cr300430e.

        [51] HARDMAN-BALDWIN A M, MATTSON A E. Silanediol-catalyzed carbon dioxide fixation [J]. ChemSusChem, 2014, 7 (12): 3275-3278. DOI: 10.1002/cssc.201402783.

        [52] WANG J, SUN J, CHENG W, et al. Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates [J]. Phys. Chem. Chem. Phys., 2012, 14 (31): 11021-11026. DOI: 10.1039/C2CP41698K.

        [53] SUN J, REN J, ZHANG S, et al. Water as an efficient medium for the synthesis of cyclic carbonate [J]. Tetrahedron Lett., 2009, 50: 423-426. DOI: 10.1016/j.tetlet.2008.11.034.

        [54] FOLTRAN S, MEREAU R, TASSAING T. Theoretical study on the chemical fixation of carbon dioxide with propylene oxide catalyzed by ammonium and guanidinium salts [J]. Catal. Sci. Technol., 2014, 4 (6): 1585-1597. DOI: 10.1039/C3CY00955F.

        [55] WANG J, DONG K, CHENG W, et al. Insights into quaternaryammonium salts-catalyzed fixation carbon dioxide with epoxides [J]. Catal. Sci. Technol., 2012, 2 (7): 1480-1484. DOI: 10.1039/C2CY20103H.

        [56] PENG J, DENG Y. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids [J]. New J. Chem., 2001, 25 (4): 639-641. DOI: 10.1039/b008923k.

        [57] KIM Y J, CHEONG M. Chemical fixation of carbon dioxide to propylene carbonate in ionic liquids [J]. B. Kor. Chem. Soc., 2002, 27 (7): 1027-1028.

        [58] LI F, XIAO L, XIA C, et al. Chemical fixation of CO2with highly efficient ZnCl2/[BMIm]Br catalyst system [J]. Tetrahedron Lett., 2004, 45 (45): 8307-8310. DOI: 10.1016/j.tetlet.2004.09.074.

        [59] SUN J, FUJITA S I, ZHAO F, et al. Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions [J]. Green Chem., 2004, 6 (12): 613-616. DOI: 10.1039/B413229G.

        [60] WILHELM M E, ANTHOFER M H, REICH R M, et al. Niobium (Ⅴ) chloride and imidazolium bromides as efficient dual catalyst system for the cycloaddition of carbon dioxide and propylene oxide [J]. Catal. Sci. Technol., 2014, 4 (6): 1638-1643. DOI: 10.1039/C3CY01057K.

        [61] SHIELS R A, JONES C W. Homogeneous and heterogeneous 4-(N,N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate [J]. J. Mol. Catal. A: Chem., 2007, 261 (2): 160-166. DOI: 10.1016/j.molcata.2006.08.002.

        [62] JING H, NGUYEN S T. SnCl4-organic base: highly efficient catalyst system for coupling reaction of CO2and epoxides [J]. J. Mol. Catal. A: Chem., 2007, 261: 12-15. DOI: 10.1016/j.molcata.2006.07.057.

        [63] SEO U R, CHUNG Y K. Poly(4-vinylimidazolium)s/diazabicyclo [5.4.0]undec-7-ene/Zinc(II) bromide-catalyzed cycloaddition of carbon dioxide to epoxides [J]. Adv. Synth. Catal., 2014, 356 (9): 1955-1961. DOI: 10.1002/adsc.201400047.

        [64] KIM H S, BAE J Y, LEE J S, et al. Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide [J]. J. Catal., 2005, 232 (1): 80-84. DOI: 10.1016/j.jcat.2005.01.033.

        [65] LIU X, CAO C, LI Y, et al. Cycloaddition of CO2to epoxides catalyzed by N-Heterocyclic carbene NHC-ZnBr2system under mild conditions [J]. Synlett, 2012, (9): 1343-1348. DOI: 10.1055/s-0031-1290957.

        [66] ZHONG S, LIANG L, LIU B, et al. ZnBr2/DMF as simple and highly active Lewis acid-base catalysts for the cycloaddition of CO2to propylene oxide [J]. J. CO2Utili., 2014, 6: 75-79. DOI: 10.1016/j.jcou.2014.02.004.

        [67] LIU M, LIU B, SHI L, et al. Melamine-ZnI2as heterogeneous catalysts for efficient chemical fixation of carbon dioxide to cyclic carbonates [J]. RSC Adv., 2015, 5 (2): 960-966. DOI: 10.1039/c4ra11460d.

        [68] LIU M, LIU B, ZHONG S, et al. Kinetics and mechanistic insight into efficient fixation of CO2to epoxides over N-heterocyclic compound/ZnBr2catalysts [J]. Ind. Eng. Chem. Res., 2015, 54: 633-640. DOI: 10.1021/ie5042879.

        [69] HOU Z, CHEN A, CHEN C, et al. Niobate salts of organic base catalyzed chemical fixation of carbon dioxide with epoxides to form cyclic carbonates [J]. Green Chem., 2015, 17 (3): 1842-1852. DOI: 10.1039/C4GC02244K.

        [70] D'ELIA V, GHANI A A, MONASSIER A, et al. Dynamics of the NbCl5-catalyzed cycloaddition of propylene oxide and CO2: assessing the dual role of the nucleophilic Co-catalysts [J]. Chem. Eur. J., 2014, 20 (37): 11870-11882. DOI: 10.1002/chem.201400324.

        [71] MONASSIER A, D'ELIA V, COKOJA M, et al. Synthesis of cyclic carbonates from epoxides and CO2under mild conditions using a simple, highly efficient niobium-based catalyst [J]. ChemCatChem, 2013, 5 (6): 1321-1324. DOI: 10.1002/cctc.201200916.

        [72] SHEN Y, DUAN W, SHI M. Phenol and organic bases Co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates [J]. Adv. Synth. Catal., 2003, 345 (3): 337-340. DOI: 10.1002/adsc.200390035.

        [73] SHEN Y, DUAN W, SHI M. Chemical fixation of carbon dioxide Co-catalyzed by a combination of Schiff bases or phenols and organic bases [J]. Eur. J. Org. Chem., 2004, 2004 (14): 3080-3089. DOI: 10.1002/ejoc.200400083.

        [74] SUN J, CHENG W, YANG Z, et al. Superbase/cellulose: an environmental benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates [J]. Green Chem., 2014, 16 (6): 3071-3078. DOI: 10.1039/C3GC41850B.

        [75] KAWANAMI H, IKUSHIMA Y. Chemical fixation of carbon dioxide to styrene carbonateunder supercritical conditions with DMF in the absence of any additional catalysts [J]. Chem. Commun., 2000, (21): 2089-2090. DOI: 10.1039/B006682F.

        [76] KOZAK J A, WU J, SU X, et al. Bromine-catalyzed conversion of CO2and epoxides to cyclic carbonates under continuous flow conditions [J]. J. Am. Chem. Soc., 2013, 135 (49): 18497-18501. DOI: 10.1021/ja4079094.

        [77] WANG L, LIN L, ZHANG G, et al. Synthesis of cyclic carbonates from CO2and epoxides catalyzed by low loadings of benzyl bromide/DMF at ambient pressure [J]. Chem. Commun., 2014, 50 (94): 14813-14816. DOI: 10.1039/C4CC06791F.

        [78] ZHOU H, WANG Y, ZHANG W, et al. N-Heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide [J]. Green Chem., 2011, 13 (3): 644-650. DOI: 10.1039/C0GC00541J.

        [79] ZHOU Y, HU S, MA X, et al. Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts [J]. J. Mol. Catal. A: Chem., 2008, 284 (1/2): 52-57. DOI: 10.1016/j.molcata.2008.01.010.

        [80] DAI W, JIN B, LUO S, et al. Functionalized phosphonium-based ionic liquids as efficient catalysts for the synthesis of cyclic carbonate from expoxides and carbon dioxide [J]. Appl. Catal. A: Gen., 2014, 470 (470): 183-188. DOI: 10.1016/j.apcata.2013.10.060.

        [81] WERNER T, BüTTNER H. Phosphorus-based bifunctional organocatalysts for the addition of carbon dioxide and epoxides [J]. ChemSusChem, 2014, 7 (12): 3268-3271. DOI: 10.1002/cssc.201402477.

        [82] CHENG W, XIAO B, SUN J, et al. Effect of hydrogen bond of hydroxyl-functionalized ammonium ionic liquids on cycloaddition of CO2[J]. Tetrahedron Lett., 2015, 56 (11):1416-1419. DOI: 10.1016/j.tetlet.2015.01.174.

        [83] WANG L, LI P, JIN X, et al. Mechanism of fixation of CO2in the presence of hydroxyl-functionalized quaternary ammonium salts [J]. J. CO2Utili., 2015, 10: 113-119. DOI: 10.1016/j.jcou.2015.02.006.

        [84] SUN J, ZHANG S, CHENG W, et al. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2to cyclic carbonate [J]. Tetrahedron Lett., 2008, 49 (22): 3588-3591. DOI: 10.1016/j.tetlet.2008.04.022.

        [85] WANG J, CHENG W, SUN J, et al. Efficient fixation of CO2into organic carbonates catalyzed by 2-hydroxymethyl-functionalized ionic liquids [J]. RSC Adv., 2014, 4 (5): 2360-2367. DOI:10.1039/C3RA45918G.

        [86] WANG L, JIN X, LI P, et al. Hydroxyl-functionalized ionic liquid promoted CO2fixation according to electrostatic attraction and hydrogen bonding interaction [J]. Ind. Eng. Chem. Res., 2014, 53 (20): 8426-8435. DOI: 10.1021/ie501063f.

        [87] SUN J, HAN L, CHENG W, et al. Efficient acid-base bifunctional catalysts for the fixation of CO2with epoxides under metal- and solvent-free conditions [J]. ChemSusChem, 2011, 4 (4): 502-507. DOI: 10.1002/cssc.201000305.

        [88] XIAO L, LV D, WU W. Br?nsted acidic ionic liquids mediated metallic salts catalytic system for the chemical fixation of carbon dioxide to form cyclic carbonates [J]. Catal. Lett., 2011, 141 (12): 1838-1844. DOI: 10.1007/s10562-011-0682-3.

        [89] HAN L, CHOI S J, PARK M S, et al. Carboxylic acid functionalized imidazolium-based ionic liquids: efficient catalysts for cycloaddition of CO2and epoxides [J]. React. Kinet. Mech. Cat., 2012, 106 (1): 25-35. DOI: 10.1007/s11144-011-0399-8.

        [90] YUE C, SU D, ZHANG X, et al. Amino-functional imidazolium ionic liquids for CO2activation and conversion to form cyclic carbonate [J]. Catal. Lett., 2014, 144 (7): 1313-1321. DOI: 10.1007/s10562-014-1241-5.

        [91] XIAO L, LV D, SU D, et al. Influence of acidic strength on the catalytic activity of Br?nsted acidic ionic liquids on synthesizing cyclic carbonate from carbon dioxide and epoxide [J]. J. Clean. Prod., 2014, 67 (67): 285-290. DOI: 10.1016/j.jclepro.2013.12.031.

        [92] XIAO L, SU D, YUE C, et al. Protic ionic liquids: a highly efficient catalyst for synthesis of cyclic carbonate from carbon dioxide and epoxides [J]. J. CO2Utili., 2014, 6 (6): 1-6. DOI: 10.1016/j.jcou.2014.01.004.

        [93] ANTHOFER M H, WILHELM M E, COKOJA M, et al. Hydroxy-functionalized imidazolium bromides as catalysts for the cycloaddition of CO2and epoxides to cyclic carbonates [J]. ChemCatChem, 2015, 7 (1): 94-98. DOI: 10.1002/cctc.201402754.

        [94] INOUE S, TAKEDA N. Reaction of carbon dioxide with tetraphenylporphinatoaluminium ethyl in visible light [J]. B. Chem. Soc. Jpn., 1977, 50 (4): 984-986. DOI: 10.1246/bcsj.50.984.

        [95] TAKEDA N, INOUE S. Activation of carbon dioxide by tetraphenylporphinatoaluminium methoxide. reaction with epoxide [J]. B. Chem. Soc. Jpn., 1978, 51 (12): 3564-3567. DOI: 10.1246/bcsj.51.3564.

        [96] AIDA T, INOUE S. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group [J]. J. Am. Chem. Soc., 1983, 105 (5): 1304-1309. DOI: 10.1021/ja00343a038.

        [97] QIN Y, GUO H, SHENG X, et al. Aluminum porphyrin complex with high activity and selectivity for cyclic carbonate synthesis [J]. Green Chem., 2015, 17 (5): 2853-2858. DOI: 10.1039/C4GC02310B.

        [98] KRUPER W J, DELLAR D D. Catalytic formation of cyclic carbonates from epoxides and CO2with chromium metalloporphyrinates [J]. J. Org. Chem., 1995, 60 (3): 725-727. DOI: 10.1021/jo00108a042.

        [99] PADDOCK R L, HIYAMA Y, MCKAY J M, et al. Co(III) porphyrin/DMAP: an efficient catalyst system for the synthesis of cyclic carbonates from CO2and epoxides [J]. Tetrahedron Lett., 2004, 45 (9): 2023-2026. DOI: 10.1016/j.tetlet.2003.10.101.

        [100] JIN L, JING H, CHANG T, et al. Metal porphyrin/ phenyltrimethylammonium tribromide: high efficient catalysts for coupling reaction of CO2and epoxides [J]. J. Mol. Catal. A: Chem., 2007, 261 (2): 262-266. DOI: 10.1016/j.molcata.2006.06.011.

        [101] BAI D, DUAN S, HAI L, et al. Carbon dioxide fixation by cycloaddition with epoxides, catalyzed by biomimetic metalloporphyrins [J]. ChemCatChem, 2012, 4 (11): 1752-1758. DOI: 10.1002/cctc.201200204.

        [102] 柏東升, 王曉旋, 宋瑩瑩, 等, 雙功能金屬卟啉催化環(huán)氧化合物與CO2偶聯(lián)反應(yīng)合成環(huán)碳酸酯 [J]. 催化學(xué)報(bào), 2010, 31 (2): 176-180. DOI: 10.3724/SP.J.1088.2010.90838. BAI D S, WANG X X, SONG Y Y, et al. Bifunctional metalloporphyrins-catalyzed coupling reaction of epoxides and CO2to cyclic carbonates [J]. Chin. J. Catal., 2010, 31: 176-180. DOI: 10.1016/S1872-2067 (09)60044-9.

        [103] REN T G, LI W J, BU Z W, et al. CoCl(TPPyP) , a novel bifunctional catalyst for the coupling reaction of carbon dioxide and propylene oxide [J]. J. Chem. Res., 2010, 34 (7): 361-364. DOI: 10.3184/030823410x12762744367622.

        [104] EMA T, MIYAZAKI Y, KOYAMA S, et al. A bifunctional catalyst for carbon dioxide fixation: cooperative double activation of epoxides for the synthesis of cyclic carbonates [J]. Chem. Commun., 2012, 48 (37): 4489-4491. DOI: 10.1039/C2CC30591G.

        [105] MAEDA C, TANIGUCHI T, OGAWA K, et al. Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides [J]. Angew. Chem. Int. Ed., 2015, 54: 134-138. DOI: 10.1002/anie.201409729.

        [106] EMA T, MIYAZAKI Y, SHIMONISHI J, et al. Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: structural optimization and mechanistic study [J]. J. Am. Chem. Soc., 2014, 136 (43): 15270-15279. DOI: 10.1021/ja507665a.

        [107] JI D, LU X, HE R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst [J]. Appl. Catal. A: Gen., 2000, 203 (2): 329-333. DOI: 10.1016/S0926-860X (00)00500-7.

        [108] PADDOCK R L, NGUYEN S T. Chemical CO2fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2and epoxides [J]. J. Am. Chem. Soc., 2001, 123 (46): 11498-11499.

        [109] ZHANG X, JIA Y, LU X, et al. Intramolecularly two-centered cooperation catalysis for the synthesis of cyclic carbonates from CO2and epoxides [J]. Tetrahedron Lett., 2008, 49 (46): 6589-6592. DOI: 10.1016/j.tetlet.2008.09.035.

        [110] PADDOCK R L, NGUYEN S T. Chiral (salen)CoⅢ catalyst for the synthesis of cyclic carbonates [J]. Chem. Commun., 2004, 14 (14): 1622-1623. DOI: 10.1039/b401543f.

        [111] CHANG T, JING H, JIN L, et al. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides [J]. J. Mol. Catal. A: Chem., 2007, 264 (1/2): 241-247. DOI: 10.1016/j.molcata.2006.08.089.

        [112] YAN P, JING H. Catalytic asymmetric cycloaddition of carbon dioxide and propylene oxide using novel chiral polymers of BINOL-salen-cobalt(Ⅲ) salts [J]. Adv. Synth. Catal., 2009, 351 (9): 1325-1332. DOI: 10.1002/adsc.200900137.

        [113] MIAO C, WANG J, WU Y, et al. Bifunctional metal-salen complexes as efficient catalysts for the fixation of CO2with epoxides under solvent-free conditions [J]. ChemSusChem, 2008, 1 (3): 236-241. DOI: 10.1002/cssc.200700133.

        [114] CHANG T, JIN L, JING H. Bifunctional chiral catalyst for thesynthesis of chiral cyclic carbonates from carbon dioxide and epoxides [J]. ChemCatChem, 2009, 1 (3): 379-383. DOI: 10.1002/cctc.200900135.

        [115] ROY T, KURESHY R I, KHAN N H, et al. Asymmetric cycloaddition of CO2and an epoxide using recyclable bifunctional polymeric Co(Ⅲ) salen complexes under mild conditions [J]. Catal. Sci. Technol., 2013, 3 (10): 2661-2667. DOI: 10.1039/c3cy00325f.

        [116] LU X, FENG X, HE R. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst [J]. Appl. Catal. A: Gen., 2002, 234 (1/2): 25-33. DOI: 10.1016/s0926-860x (02)00223-5.

        [117] LU X, HE R, BAI C. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst [J]. J. Mol. Catal. A: Chem., 2002, 186 (1/2): 1-11. DOI: 10.1016/s1381-1169(01)00442-3.

        [118] LU X, ZHANG Y, LIANG B, et al. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts [J]. J. Mol. Catal. A: Chem., 2004, 210 (1/2): 31-34. DOI: 10.1016/j.molcata.2003.09.010.

        [119] TIAN D, LIU B, GAN Q, et al. Formation of cyclic carbonates from carbon dioxide and epoxides coupling reactions efficiently catalyzed by robust, recyclable one-component aluminum-salen complexes [J]. ACS Catal., 2012, 2 (9): 2029-2035. DOI: 10.1021/cs300462r.

        [120] TIAN D, LIU B, ZHANG L, et al. Coupling reaction of carbon dioxide and epoxides efficiently catalyzed by one-component aluminum-salen complex under solvent-free conditions [J]. J. Ind. Eng. Chem., 2012, 18 (4): 1332-1338. DOI: 10.1016/j.jiec.2012.01.034.

        [121] REN W, LIU Y, LU X. Bifunctional aluminum catalyst for CO2fixation: regioselective ring opening of three-membered heterocyclic compounds [J]. J. Org. Chem., 2014, 79 (20): 9771-9777. DOI: 10.1021/jo501926p.

        [122] LUO R, ZHOU X, CHEN S, et al. Highly efficient synthesis of cyclic carbonates from epoxides catalyzed by salen aluminum complexes with built-in “CO2capture” capability under mild conditions [J]. Green Chem., 2014, 16 (3): 1496-1506. DOI: 10.1039/C3GC42388C.

        [123] MELéNDEZ J, NORTH M, PASQUALE R. Synthesis of cyclic carbonates from atmospheric pressure carbon dioxide using exceptionally active aluminium(salen) complexes as catalysts [J]. Eur. J. Inorg. Chem., 2007, 2007 (21): 3323-3326. DOI: 10.1002/ejic.200700521.

        [124] NORTH M, PASQUALE R. Mechanism of cyclic carbonate synthesis from epoxides and CO2[J]. Angew. Chem. Int. Ed., 2009, 48 (16): 2946-2948. DOI: 10.1002/anie.200805451.

        [125] CLEGG W, HARRINGTON R, NORTH M, et al. Cyclic carbonate synthesis catalysed by bimetallic aluminium-salen complexes [J]. Chem. Eur. J., 2010, 16 (23): 6828-6843. DOI: 10.1002/chem.201000030.

        [126] MELENDEZ J, NORTH M, VILLUENDAS P. One-component catalysts for cyclic carbonate synthesis [J]. Chem. Commun., 2009, 18 (18): 2577-2579. DOI: 10.1039/B900180H.

        [127] MELENDEZ J, NORTH M, VILLUENDAS P, et al. One-component bimetallic aluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization [J]. Dalton Trans., 2011, 40 (15): 3885-3902. DOI: 10.1039/C0DT01196G.

        [128] NORTH M, VILLUENDAS P, YOUNG C. Inter- and intramolecular phosphonium salt cocatalysis in cyclic carbonate synthesis catalysed by a bimetallic aluminium(salen) complex [J]. Tetrahedron Lett., 2012, 53 (22): 2736-2740. DOI: 10.1016/j.tetlet.2012.03.090.

        [129] JING H, EDULJI S K, GIBBS J M, et al. (Salen)Tin complexes: syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO2and oropylene oxide [J]. Inorg. Chem., 2004, 43 (14): 4315-4327. DOI: 10.1021/ic034855z.

        [130] SHEN Y, DUAN W, SHI M. Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes [J]. J. Org. Chem., 2003, 68 (4): 1559-1562. DOI: 10.1021/jo020191j.

        [131] JUTZ F, GRUNWALDT J D, BAIKER A. Mn(Ⅲ)(salen)-catalyzed synthesis of cyclic organic carbonates from propylene and styrene oxide in “supercritical” CO2[J]. J. Mol. Catal. A: Chem., 2008, 279 (1): 94-103. DOI: 10.1016/j.molcata.2007.10.010.

        [132] JUTZ F, GRUNWALDT J D, BAIKER A. In situ XAS study of the Mn(III)(salen)Br catalyzed synthesis of cyclic organic carbonates from epoxides and CO2[J]. J. Mol. Catal. A: Chem., 2009, 297 (2): 63-72. DOI: 10.1016/j.molcata.2008.10.009.

        [133] COLETTI A, WHITEOAK C J, CONTE V, et al. Vanadium catalyzed synthesis of cyclic organic carbonates [J]. ChemCatChem, 2012, 4 (8): 1190-1196. DOI: 10.1002/cctc.201100398.

        [134] DECORTES A, MARTINEZ B M, BENET-BUCHHOLZ J, et al. Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst [J]. Chem. Commun., 2010, 46 (25): 4580-4582. DOI: 10.1039/C000493F.

        [135] DECORTES A, KLEIJ A W. Ambient fixation of carbon dioxide using a ZnIIsalphen catalyst [J]. ChemCatChem, 2011, 3 (5): 831-834. DOI: 10.1002/cctc.201100031.

        [136] TAHERIMEHR M, DECORTES A, AL-AMSYAR S M, et al. A highly active Zn(salphen) catalyst for production of organic carbonates in a green CO2medium [J]. Catal. Sci. Technol., 2012, 2 (11): 2231-2237.

        [137] ESCáRCEGA B M V, MARTíNEZ B M, MARTIN E, et al. A recyclable trinuclear bifunctional catalyst derived from a tetraoxo bis-Zn(salphen) metalloligand [J]. Chem. Eur. J., 2013, 19 (8): 2641-2648. DOI: 10.1002/chem.201204132.

        [138] CASTRO G F, SALASSA G, KLEIJ A W, et al. A DFT study on the mechanism of the cycloaddition reaction of CO2to epoxides catalyzed by Zn(salphen) complexes [J]. Chem. Eur. J., 2013, 19 (20): 6289-6298. DOI: 10.1002/chem.201203985.

        [139] MARTIN C, WHITEOAK C J, MARTIN E, et al. Easily accessible bifunctional Zn(salpyr) catalysts for the formation of organic carbonates [J]. Catal. Sci. Technol., 2014, 4 (6): 1615-1621. 10.1039/C3CY01043K.

        [140] REN Y, CHEN J, QI C, et al. A new type of Lewis acid-base bifunctional M(salphen) (M=Zn, Cu and Ni) Catalysts for CO2Fixation [J]. ChemCatChem, 2015, 7 (10): 1535-1538. DOI: 10.1002/cctc.201500113.

        [141] KIM H S, KIM J J, LEE B G, et al. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2and epoxides [J]. Angew. Chem. Int. Ed., 2000, 39 (22): 4096-4098. DOI: 10.1002/1521-3773(20001117).

        [142] KIM H S, KIM J J, LEE S D, et al. New mechanistic insight into the coupling reactions of CO2and epoxides in the presence of zinccomplexes [J]. Chem. Eur. J., 2003, 9 (3): 678-686. DOI: 10.1002/chem.200390076.

        [143] LUO R, ZHOU X, ZHANG W, et al. New bi-functional zinc catalysts based on robust and easy-to-handle N-chelating ligands for the synthesis of cyclic carbonates from epoxides and CO2under mild conditions [J]. Green Chem., 2014, 16 (9): 4179-4189. DOI: 10.1039/C4GC00671B.

        [144] WHITEOAK C J, KIELLAND N, LASERNA V, et al. Highly active aluminium catalysts for the formation of organic carbonates from CO2and oxiranes [J]. Chem. Eur. J., 2014, 20 (8): 2264-2275. DOI: 10.1002/chem.201302536.

        [145] STYRING P, SUPASITMONGKOL S. A single centre aluminium(III) catalyst and TBAB as an ionic organo-catalyst for the homogeneous catalytic synthesis of styrene carbonate [J]. Catal. Sci. Technol., 2014, 4 (6): 1622-1630. DOI: 10.1039/C3CY01015E.

        [146] CASTRO-OSMA J A, ALONSO-MORENO C, LARA-SANCHEZ A, et al. Synthesis of cyclic carbonates catalysed by aluminium heteroscorpionate complexes [J]. Catal. Sci. Technol., 2014, 4 (6): 1674-1684. DOI: 10.1039/C3CY00810J.

        [147] CASTRO-OSMA J A, LARA-SANCHEZ A, NORTH M, et al. Synthesis of cyclic carbonates using monometallic, and helical bimetallic, aluminium complexes [J]. Catal. Sci. Technol., 2012, 2 (5): 1021-1026. DOI: 10.1039/C2CY00517D.

        [148] QIN J, WANG P, LI Q, et al. Catalytic production of cyclic carbonates mediated by lanthanide phenolates under mild conditions [J]. Chem. Commun., 2014, 50 (75): 10952-10955. DOI: 10.1039/C4CC02065K.

        [149] BUONERBA A, DE NISI A, GRASSI A, et al. Novel iron(Ⅲ) catalyst for the efficient and selective coupling of carbon dioxide and epoxides to cyclic carbonates [J]. Catal. Sci. Technol., 2015, 5 (1): 118-123. DOI: 10.1039/C4CY01187B.

        Foundation item: supported by the National Science Fund for Distinguished Young Scholars (21425627).

        Acid-base synergistic effect promoted cycloaddition reaction from CO2with epoxide in homogenous catalysis systems

        LUO Rongchang, ZHOU Xiantai, YANG Zhi, ZHANG Wuying, JI Hongbing
        (School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China)

        Abstract:In terms of the so-called “sustainable society” and “green chemistry” concepts, carbon dioxide capture, storage and utilization have been attracted much attention from both industrial and academic viewpoints in recent years. The synthesis of five-membered cyclic carbonates via the 100% atom-economical cycloaddition of epoxides with CO2under mild condition is one of the most promising ways. Herein, based on the design idea of homogenous catalysts, the research advance of the acid-base synergistic effect promoted the cycloaddition reaction from CO2and epoxide is reviewed from the perspective of catalyst structure, including simple binary catalytic systems, functionalized one-component catalytic systems and metal complexes catalytic systems etc.

        Key words:carbon dioxide; catalysis; complexes; cyclic carbonate; cycloaddition reaction; acid-base synergistic effect

        Corresponding author:Prof. JI Hongbing, jihb@mail.sysu.edu.cn

        基金項(xiàng)目:國(guó)家杰出青年科學(xué)基金項(xiàng)目(21425627)。

        中圖分類號(hào):TQ 028.8

        文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):0438—1157(2016)01—0258—19

        DOI:10.11949/j.issn.0438-1157.20150749

        猜你喜歡
        催化作用二氧化碳
        揚(yáng)眉吐氣的二氧化碳
        用多種裝置巧制二氧化碳
        用多種裝置巧制二氧化碳
        “抓捕”二氧化碳
        如何“看清”大氣中的二氧化碳
        探討環(huán)己烷氧化反應(yīng)中有機(jī)小分子的催化作用
        一類具有自動(dòng)催化作用和飽和定律的雙分子模型的圖靈不穩(wěn)定性和霍普夫分歧
        探究仿真教學(xué)法在護(hù)理專業(yè)高效課堂中的應(yīng)用
        淺談硫酸在高中階段涉及有機(jī)化學(xué)反應(yīng)中的應(yīng)用
        淺談硫酸在高中階段涉及有機(jī)化學(xué)反應(yīng)中的應(yīng)用
        亚洲人成无码区在线观看| 亚洲av熟女天堂系列| 国内激情一区二区视频| 亚洲乱精品中文字字幕| 中文字幕一区二区在线看| 久久女人精品天堂av影院麻 | 婷婷久久av综合一区二区三区| 久久精品熟女亚洲av麻豆永永| 一边摸一边抽搐一进一出视频| 少妇愉情理伦片丰满丰满| 亚洲日韩精品无码专区网站| 综合无码一区二区三区四区五区 | 深夜福利国产| 国产女主播福利一区二区| 久久精品国产亚洲av超清| 国产高清在线观看av片| 精品国产乱码久久久久久影片| 国产成人免费一区二区三区| 又黄又爽的成人免费视频| 岛国大片在线免费观看| 国产成人夜色在线视频观看| 中文字幕亚洲永久精品| 亚洲人不卡另类日韩精品| 久久久久成人精品无码| 一本一道久久综合狠狠老| 亚洲高潮喷水中文字幕| 加勒比特在线视频播放| 久久久免费看少妇高潮| 欧美性受xxxx狂喷水| 狠狠躁夜夜躁AV网站中文字幕| 国产精品原创永久在线观看| 青青草久热手机在线视频观看| 91成人国产九色在线观看| 好大好湿好硬顶到了好爽视频| 人妻 日韩精品 中文字幕| 综合久久久久6亚洲综合| 亚洲av综合日韩精品久久| 成年人观看视频在线播放| 亚洲精品久久久久久久久久吃药| 黄 色 人 成 网 站 免 费| 永久免费中文字幕av|