許蕊
(黑龍江護(hù)理高等專科學(xué)校,哈爾濱 150086)
數(shù)學(xué)建模思想在高職數(shù)學(xué)中的滲透研究
許蕊
(黑龍江護(hù)理高等專科學(xué)校,哈爾濱 150086)
隨著社會(huì)的發(fā)展和科學(xué)的進(jìn)步,高職教育受到更多人的關(guān)注,在高職教學(xué)中數(shù)學(xué)更是教學(xué)任務(wù)中的重要一項(xiàng)。在高職數(shù)學(xué)教學(xué)中將數(shù)學(xué)建模思想滲透其中,能夠更好地幫助提升高職數(shù)學(xué)教學(xué)質(zhì)量,同時(shí)也符合現(xiàn)在國家對(duì)高職教育的培養(yǎng)要求和目標(biāo)要求。
數(shù)學(xué)建模思想;高職數(shù)學(xué);滲透研究
在高職數(shù)學(xué)的教學(xué)中逐漸滲透數(shù)學(xué)建模思想,能夠潛移默化地影響學(xué)生的學(xué)習(xí)能力和思考方式,并且提升學(xué)生的創(chuàng)新能力和實(shí)踐操作能力,能夠更好地幫助高職學(xué)生成為高質(zhì)量、高技能的專門應(yīng)用型人才。數(shù)學(xué)建模就是將生產(chǎn)生活和學(xué)習(xí)工作中遇到的各種實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,讓學(xué)生能夠在解決數(shù)學(xué)問題的基礎(chǔ)上更多地考慮到實(shí)際情況。從實(shí)際問題出發(fā),將問題類比規(guī)劃并且通過抽象形式的表達(dá)轉(zhuǎn)化為數(shù)學(xué)問題,在數(shù)學(xué)公式的變化中將實(shí)際問題解決,并且能夠更好地理解實(shí)際問題和數(shù)學(xué)之間的緊密聯(lián)系,這就是數(shù)學(xué)建模思想的重要意義。數(shù)學(xué)建模思想能夠更好地幫助學(xué)生提高中職數(shù)學(xué)的學(xué)習(xí)能力,并且在中職數(shù)學(xué)學(xué)習(xí)中能夠獨(dú)辟蹊徑,尋找出新的解決問題的方法,能夠提升學(xué)生的創(chuàng)新應(yīng)用能力,增強(qiáng)學(xué)生對(duì)中職數(shù)學(xué)學(xué)習(xí)的興趣,在數(shù)學(xué)學(xué)習(xí)中更具有積極性和主觀能動(dòng)性。
高職數(shù)學(xué)教學(xué)中加入數(shù)學(xué)建模的思想能夠在學(xué)生學(xué)習(xí)數(shù)學(xué)的過程中慢慢地對(duì)學(xué)生學(xué)習(xí)能力和創(chuàng)新能力產(chǎn)生影響,主要作用是在潛移默化的基礎(chǔ)上產(chǎn)生的,在實(shí)際高職教學(xué)中能夠?qū)?shù)學(xué)建模思想和實(shí)際的高職數(shù)學(xué)教育目標(biāo)結(jié)合在一起,是高職數(shù)學(xué)改革的主要目標(biāo)。高職數(shù)學(xué)教育更多地趨向于理論知識(shí)的教學(xué),而數(shù)學(xué)建模思想則更好地將實(shí)際問題推送到數(shù)學(xué)面前,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)理論知識(shí)解決實(shí)際問題的能力,在長久的數(shù)學(xué)建模思想和高職數(shù)學(xué)教學(xué)的結(jié)合培養(yǎng)下,學(xué)生的數(shù)學(xué)建模能力能夠得到有效的培養(yǎng),這種長時(shí)間潛移默化的影響更能幫助學(xué)生提升創(chuàng)新實(shí)踐能力,完成高職數(shù)學(xué)教學(xué)目標(biāo)。
3.1 在高職數(shù)學(xué)的教學(xué)內(nèi)容上引入數(shù)學(xué)建模思想
以往的高職數(shù)學(xué)的教學(xué)內(nèi)容更趨向于對(duì)理論數(shù)學(xué)知識(shí)和公式概念的教學(xué),這些基本知識(shí)都不能很好地和實(shí)踐應(yīng)用相聯(lián)系,不能很好地讓高職學(xué)生明白數(shù)學(xué)的意義和數(shù)學(xué)在生活中的應(yīng)用,而將數(shù)學(xué)建模思想滲透到高職數(shù)學(xué)中則能夠更好地幫助學(xué)生理解數(shù)學(xué)和實(shí)際工作學(xué)習(xí)生活的聯(lián)系,增強(qiáng)學(xué)生對(duì)高職數(shù)學(xué)的學(xué)習(xí)興趣,同時(shí)也更能加深學(xué)生對(duì)數(shù)學(xué)理論知識(shí)的理解。在高職數(shù)學(xué)學(xué)習(xí)內(nèi)容中函數(shù)是教學(xué)中的重點(diǎn)和難點(diǎn),學(xué)生往往在這部分?jǐn)?shù)學(xué)知識(shí)的學(xué)習(xí)上掌握得不夠好,函數(shù)是個(gè)非常抽象的概念,而如果將數(shù)學(xué)建模思想滲透到函數(shù)的教學(xué)內(nèi)容中,通過數(shù)學(xué)建模思想將實(shí)際生產(chǎn)生活中的問題應(yīng)用到函數(shù)的學(xué)習(xí)和應(yīng)用中,能夠更好地幫助學(xué)生學(xué)習(xí)和理解函數(shù)知識(shí)。比如在高職學(xué)生參加工作后最常見的問題就是工時(shí)和工作任務(wù)量的關(guān)系,如何在有限的工作時(shí)間T內(nèi)完成最大的工作量X,則需要學(xué)生利用函數(shù)關(guān)系得出最大工作效率Y,這些應(yīng)用都加深了高職學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解。
3.2 在高職數(shù)學(xué)知識(shí)的應(yīng)用上加以滲透數(shù)學(xué)建模思想
高職教育的教學(xué)目標(biāo)和教學(xué)任務(wù)就是為社會(huì)培養(yǎng)更多的專門性技能人才,他們更多地和實(shí)際操作工作相接觸,而數(shù)學(xué)建模思想在高職數(shù)學(xué)知識(shí)應(yīng)用上的滲透則很好地幫助學(xué)生提升實(shí)際操作能力,幫助學(xué)生更好地理解數(shù)學(xué)知識(shí),利用數(shù)學(xué)的知識(shí)和方法解決實(shí)際技能型工作中的問題。在高職數(shù)學(xué)知識(shí)的應(yīng)用上滲透數(shù)學(xué)建模思想就是將具體的生產(chǎn)工作中遇到的各類問題類比抽象為相應(yīng)的數(shù)學(xué)模型,進(jìn)而利用數(shù)學(xué)知識(shí)解決實(shí)際生產(chǎn)中的問題,數(shù)學(xué)模型的建立則更好地幫助高職學(xué)生解決生產(chǎn)工作中的問題,并且能夠加深學(xué)生對(duì)理論公式的理解和記憶。數(shù)學(xué)建模思想在中職教學(xué)中知識(shí)內(nèi)容應(yīng)用上的滲透則更注重于培養(yǎng)學(xué)生的實(shí)際應(yīng)用能力,而不僅僅是數(shù)學(xué)知識(shí)的死記硬背和大量的數(shù)學(xué)計(jì)算。例如,在飲料工廠的生產(chǎn)中如何設(shè)計(jì)飲料瓶使工廠達(dá)到最大的經(jīng)濟(jì)效益,在生活中我們很少見到方形的瓶子,而更多的是圓形飲料瓶,這就是通過裝等體積的飲料,如何設(shè)計(jì)才能使得飲料瓶的面積最小,也就在最大程度上達(dá)到節(jié)約物料、節(jié)約成本的目的。通過面積和直徑,體積和直徑的關(guān)系來設(shè)計(jì)出最經(jīng)濟(jì)的飲料瓶外形,則是對(duì)數(shù)學(xué)建模思想在高職數(shù)學(xué)內(nèi)容應(yīng)用上比較好的案例。
3.3 在高職數(shù)學(xué)考試中運(yùn)用數(shù)學(xué)建模思想
在高職數(shù)學(xué)教學(xué)中,不僅要在數(shù)學(xué)知識(shí)內(nèi)容和數(shù)學(xué)知識(shí)應(yīng)用上滲透數(shù)學(xué)建模思想,更要在實(shí)際的學(xué)習(xí)中應(yīng)用到數(shù)學(xué)建模思想。比如在高職數(shù)學(xué)的教學(xué)考核上,采用更多的方法對(duì)學(xué)生的能力進(jìn)行判斷,可以利用小組同學(xué)間合作與競(jìng)爭(zhēng)的關(guān)系,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)建模思想在數(shù)學(xué)應(yīng)用中的理解,利用考試中數(shù)學(xué)建模方法和思想幫助學(xué)生提升獨(dú)立思考能力和探索創(chuàng)新能力。
數(shù)學(xué)建模思想在高職數(shù)學(xué)中的應(yīng)用符合高職教育的培養(yǎng)目標(biāo),為社會(huì)提供了更多高能力、高素質(zhì)的專門技能型人才,數(shù)學(xué)建模思想在高職數(shù)學(xué)教學(xué)中的應(yīng)用提升了學(xué)生的創(chuàng)新實(shí)踐能力,同時(shí)也加深了學(xué)生對(duì)高職數(shù)學(xué)知識(shí)的理解和應(yīng)用,進(jìn)而幫助學(xué)生能夠?qū)?shù)學(xué)知識(shí)更好地應(yīng)用到以后的生產(chǎn)實(shí)踐工作中,利用數(shù)學(xué)知識(shí)解決工作的實(shí)際問題,進(jìn)而為社會(huì)做出更大的貢獻(xiàn)。
[1]鐘國富,郭宗慶.關(guān)于在高職數(shù)學(xué)教學(xué)中融入數(shù)學(xué)建模思想的思考[J].教育與職業(yè),2011,(04):143-150
[2]馮鳳萍.高職數(shù)學(xué)教學(xué)中數(shù)學(xué)建模思想的滲透[J].教育教學(xué)論壇,2010,(36):90-91.
The Research of Mathematical Modeling Thought in Higher Vocational Mathematics
XU Rui
(Heilongjiang College of nursing,Harbin 150086,China)
With the development of society and the progress of science,higher vocational education has been concerned by more people.In the teaching of higher vocational education,mathematics is an important task.In the higher vocational mathematics teaching,mathematical modeling thought infiltration among them,can better help to improve the quality of higher vocational mathematics teaching,but also in line with the current state of higher vocational education training requirements and objectives.
Mathematical modeling;Higher vocational mathematics;Infiltration research
G712
A
1674-8646(2016)01-0116-02
2015-11-19
許蕊(1983-),女,黑龍江哈爾濱人,碩士,講師,從事數(shù)學(xué)與應(yīng)用數(shù)學(xué)研究。