亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        燃料電池陰極氧還原電極材料研究進(jìn)展

        2016-03-13 18:43:50
        化工技術(shù)與開發(fā) 2016年5期
        關(guān)鍵詞:催化活性陰極燃料電池

        藺 潔

        (溫州大學(xué)化學(xué)與材料工程學(xué)院,浙江 溫州 325000)

        燃料電池陰極氧還原電極材料研究進(jìn)展

        藺 潔

        (溫州大學(xué)化學(xué)與材料工程學(xué)院,浙江 溫州 325000)

        目前燃料電池陰極氧還原電極材料主要以鉑基貴金屬電催化劑為主,然而鉑的儲量極其有限,成本昂貴,并且鉑基電催化劑的穩(wěn)定性較差,這些因素嚴(yán)重制約了其在商業(yè)中的廣泛應(yīng)用,因此研究制備成本低、具有高穩(wěn)定性的非貴金屬碳基催化劑是燃料電池電催化劑的研究重點(diǎn)。本文簡單概述了燃料電池陰極氧還原電極材料的研究進(jìn)展。

        燃料電池;氧還原;電極材料

        發(fā)展清潔、安全、充足的綠色能源是未來能源的發(fā)展方向。隨著全球經(jīng)濟(jì)的高速發(fā)展,傳統(tǒng)的不可再生能源,如石油、煤、天然氣等儲量有限,終有一天會消耗殆盡,且它們的利用率很低,會造成嚴(yán)重的環(huán)境污染,對人類的生存造成嚴(yán)重威脅,不符合現(xiàn)代社會所提倡的可持續(xù)發(fā)展戰(zhàn)略。因此,尋求高效、充足、可再生的環(huán)境友好型新能源迫在眉睫。

        燃料電池是一種能夠通過氧化還原反應(yīng)將氧化劑和燃料中的化學(xué)能直接轉(zhuǎn)化為電能的能量轉(zhuǎn)換裝置。與傳統(tǒng)的電池相比,燃料電池不受“卡諾循環(huán)”的限制,能量轉(zhuǎn)換率比較高[1],能夠達(dá)到60%~80%,其實(shí)際利用率是普通內(nèi)燃機(jī)的2~3倍,是一種環(huán)境友好的能量轉(zhuǎn)換裝置,因其原料來源廣泛、安全可靠、噪聲低等優(yōu)點(diǎn),近年來備受國內(nèi)外研究者的親睞。

        電極材料是決定燃料電池氧還原性能好壞的關(guān)鍵因素之一。目前燃料電池陰極氧還原電極材料主要以鉑基貴金屬電催化劑為主,然而鉑的儲量極其有限,成本昂貴,并且鉑基電催化劑的穩(wěn)定性較差,這些因素嚴(yán)重制約了其在商業(yè)中的廣泛應(yīng)用,因此研究制備成本低、具有高穩(wěn)定性的非貴金屬碳基催化劑是燃料電池電催化劑的研究重點(diǎn)。

        1 燃料電池陰極氧還原電極材料研究進(jìn)展

        目前應(yīng)用于燃料電池陰極氧還原的催化劑主要有Pt基催化劑、非金屬摻雜碳基催化劑和非貴金屬摻雜碳基催化劑。

        1.1 Pt基催化劑

        目前,應(yīng)用最多的陰極ORR催化劑主要是Pt基催化劑[2-4],Pt基催化劑的催化活性高,是最早用于燃料電池陰極氧還原的催化劑。被廣泛應(yīng)用的Pt基催化劑主要是Pt/C和Pt-M/C合金催化劑兩種。Pt/C催化劑目前的應(yīng)用比較廣泛,但由于其價(jià)格昂貴,資源有限,并且非常容易CO中毒而失去活性,限制了其在商業(yè)燃料電池中的廣泛應(yīng)用。Pt-M/ C合金催化劑(M=Fe,Zn,Co等)是在Pt/C的基礎(chǔ)上摻雜一些過渡金屬,形成二元或多元合金,從而獲得更高效催化活性的氧還原催化劑。Mukerjee等[5]通過研究發(fā)現(xiàn),Pt/Cr、Pt/Co和Pt/Ni都有比Pt/C更好的氧還原催化活性。Myong-ki等[6]研究表明,在比表面積相同時(shí),Pt合金催化劑比純的Pt催化劑擁有更高的催化活性,這是由于Pt合金催化劑中相鄰的Pt-Pt之間的距離減小,使得其氧吸附能力增強(qiáng)。Pt基催化劑雖然有著優(yōu)異的催化性能,但是它對燃料中的雜質(zhì)敏感,易被氨氣、一氧化碳和硫化氫等毒化,且抗透過性能差,比如甲醇的透過會明顯降低其陰極氧還原催化活性,然而最重要的是,它的成本太高,從而限制了其在商業(yè)中的廣泛應(yīng)用。

        1.2 非金屬摻雜碳基催化劑

        從理論上來說,不含金屬的催化劑應(yīng)該更能夠增強(qiáng)其耐酸堿的腐蝕性,且其成本低廉,不會由于燃料中的CH3OH或CO而中毒。理論計(jì)算和實(shí)驗(yàn)結(jié)果均表明,一些無金屬摻雜碳基催化劑由于其特殊的電子特性和二維納米結(jié)構(gòu)而具有良好的催化活性[7-9]。近年來研究比較多的雜原子摻雜碳材料主要有氮摻雜、硫摻雜、磷摻雜以及硼摻雜等電催化劑材料。通常用到的碳材料有石墨烯[10-11]、Vulcan XC-72[12]、碳球[13]、碳纖維[14]、炭氣凝膠[15]、富勒烯[16]和碳納米籠狀顆粒[17],這些碳材料可以作為氮摻雜的載體,來制備氧還原電催化劑。目前,制備這類催化劑的方法主要有高溫裂解法[18]、化學(xué)氣相沉積(CVD)法[19-20]等。碳材料中的氮主要有4種存在形式:吡啶型N(Pyridinic N)、石墨型N(Graphitic N)、吡咯型N(Pyrrolic N)及氧化型N(N-Oxide)。其中吡啶型氮和吡咯型氮主要存在于材料的邊緣及缺陷處,石墨化氮在石墨結(jié)構(gòu)內(nèi)取代碳原子,一部分存在于材料的邊緣,而另一部分存在石墨化架構(gòu)的體相中,吡啶型氮也能以氧化形式存在[21-22]。Zelenay[23]課題組研究的Co-聚吡咯-碳結(jié)構(gòu)說明了N-金屬活性與穩(wěn)定性并存。合成過程中,硝酸鈷被聚吡咯的陣列包圍,然后通過Vulcan XC-72載體被硼氫化鈉還原,這樣制備得到的氧還原催化劑具有很好的活性和穩(wěn)定性。其氫-氧燃料電池的功率密度約為150mW·cm-2,放電時(shí)間能夠持續(xù)100h而沒有損失。但與Pt/C相比,該氧還原催化劑的還原電位仍然很高。

        近年來,有研究指出,可利用兩種及以上非金屬元素對碳材料進(jìn)行雙摻雜,形成獨(dú)特的電荷網(wǎng)絡(luò)結(jié)構(gòu),改變氧氣分子和催化劑之間的吸附方式,從而提高其氧還原催化活性。Dai等[24]通過高溫?zé)峤夥ㄖ苽淞伺?氮雙摻雜的VA-BCN,實(shí)驗(yàn)結(jié)果表明,在堿性電解液中,該催化劑具有良好的氧還原催化活性。最近,硼/氮摻雜已經(jīng)被應(yīng)用到碳納米管和石墨烯的摻雜中,如Sun等[25]利用尿素、硼酸和聚乙二醇為前驅(qū)體制備B/N摻雜石墨烯(BNG),通過改變前驅(qū)體的質(zhì)量比和合成溫度,作者得到了一系列的B/ N摻雜石墨烯(BNG)催化劑。這些催化劑的電化學(xué)性能顯示,高的氧還原催化活性不僅依賴于B-N鍵,而且依賴于高含量的C-B和C-N鍵,并且使其擁有高的電化學(xué)穩(wěn)定性和抗甲醇中毒性。Chen等[26]報(bào)道,利用熱溶劑法一步設(shè)計(jì)合成硫摻雜石墨烯,催化劑是利用還原劑Na2S和硫磺同時(shí)還原氧化石墨烯得到的。該催化劑表現(xiàn)出優(yōu)越的氧還原催化活性和穩(wěn)定性。戴立明等[27]通過化學(xué)氣相沉積法,以吡啶、三苯基磷為前驅(qū)體,二茂鐵為催化劑,制備P/N雙摻雜的垂直排列碳納米管(PN-ACNT),這些P/N雙摻雜的碳納米管表現(xiàn)出極佳的氧還原催化活性以及很好的抗甲醇和一氧化碳中毒能力,由于其協(xié)同效應(yīng)表現(xiàn)出完全的四電子轉(zhuǎn)移過程。

        1.3 非貴金屬摻雜碳基催化劑

        近年來,非貴金屬摻雜氧還原催化劑的發(fā)展已經(jīng)廣泛推動了多種能量轉(zhuǎn)換裝置的商業(yè)化。其中,最有發(fā)展前途的非貴金屬摻雜氧還原催化劑是過渡金屬氮摻雜碳材料(M-N-C,M= Co,F(xiàn)e,Mn,Ni等)。由于其前驅(qū)體資源廣泛,成本低廉,以及卓越的氧還原催化活性,因此受到國內(nèi)外學(xué)術(shù)界的廣泛關(guān)注。最早由Jasinski等[28]發(fā)現(xiàn)金屬酞菁具有金屬-N4,能夠在酸性介質(zhì)中催化氧還原反應(yīng)。最近,在固定過渡金屬-N4大環(huán)化合物以及提高其催化活性的研究中取得了突破性進(jìn)展。M-N-C催化劑由于其原子結(jié)構(gòu)的復(fù)雜性,使得其催化活性位點(diǎn)及催化機(jī)制還不是很清楚。Fe、Mn、Ni、Co、Cr、Cu等過渡金屬元素作為M-N-C材料中的中心原子已經(jīng)被人們大量研究過,研究結(jié)果初步表明,以Fe和Co為中心原子的M-N-C型催化劑表現(xiàn)出最好的氧還原催化活性[29-31]。Dodelet等[32]通過在Ar和NH3氛圍中熱解醋酸鐵和碳載體合成了Fe-N-C催化劑,并且顯示了較高的氧還原催化活性。Bashyam等[33]將鈷原子摻入到聚吡咯中,得到的Co-N-C催化劑表現(xiàn)出很好的氧還原催化活性,從而證實(shí)了將過渡金屬摻入到導(dǎo)電聚合物可以有效提高其氧還原催化活性。Wang等[34]研究了不同金屬含量對催化劑氧還原催化活性的影響,研究結(jié)果表明,過渡金屬的含量對催化劑催化活性的高低具有明顯影響。同時(shí),隨著過渡金屬含量的增加,催化劑的ORR催化活性明顯提高,但當(dāng)金屬含量增加到某一個(gè)值時(shí),催化劑的ORR催化活性隨著金屬含量的增加反而會降低,這也證明了催化劑中的金屬含量有一個(gè)最佳的比例。Lefevre等[35]使用醋酸鐵為金屬前驅(qū)體時(shí),當(dāng)金屬含量為0.2wt%時(shí),其ORR催化活性最高。當(dāng)鐵含量超過最佳值后,生成的Fe顆粒會導(dǎo)致其催化活性降低。Liu等[36]使用聚苯胺熱解作為載體,制備Fe-CNx催化劑,實(shí)驗(yàn)結(jié)果表明,金屬Fe的含量為1.2wt%時(shí),催化劑的ORR催化活性最高,增加或減少鐵含量都會降低其ORR催化活性。可以看出,不同體系下,金屬的最佳含量差別很大。很多研究者已經(jīng)通過實(shí)驗(yàn)證實(shí),對材料進(jìn)行溫度處理可以明顯提高其ORR催化活性和催化穩(wěn)定性[37]。Lalande等[38]研究了溫度處理對CoPcTc/C(碳載鈷酞菁)性能的影響,結(jié)果表明,CoPcTc/C經(jīng)過500~700℃處理仍能保持原來的結(jié)構(gòu),催化劑具有最好的催化活性,但催化劑的穩(wěn)定性很差,活性下降明顯,經(jīng)過900℃處理的CoPcTc/C具有最穩(wěn)定的ORR催化性能。然而900℃處理已經(jīng)將材料中的Co-N結(jié)構(gòu)破壞,鈷以金屬鈷和氧化鈷的形式存在。Niwa等[42]制備了FePc催化劑,其研究結(jié)果指出,當(dāng)熱處理溫度低于500℃時(shí),催化劑基本上沒有催化活性,當(dāng)處理溫度高于500℃,其催化活性明顯升高,溫度升高到600℃時(shí),其ORR催化活性最高,繼續(xù)升高溫度,催化劑的氧還原催化活性降低。研究者認(rèn)為,熱處理過程中,材料的碳化使其導(dǎo)電性提高,從而提高了催化劑的催化活性。

        2 結(jié)語

        燃料電池陰極氧還原電極材料的種類很多,本文簡單介紹了幾類比較常見的氧還原電催化劑,為研究制備低成本、具有高活性和穩(wěn)定性的非貴金屬碳基催化劑提供理論基礎(chǔ),使其能夠盡快實(shí)現(xiàn)在商業(yè)化生產(chǎn)中的廣泛應(yīng)用。

        [1] Markovic N. M., Schmidt T. J., Stamenkovic V., et al. Oxygen reduction reaction on Pt and Pt bimet all icsurfaces: A selective review[J]. Fuel Cells, 2001(2): 105-116.

        [2] Jeon M. K., Zhang Y. A., McGinn P. J. A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electroreduction reaction[J]. Electrochim Acta., 2010(55): 5318-5325.

        [3] Koh S., Toney M. F., Strasser P., Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR)[J]. Electrochim Acta., 2007(52): 2765-2774.

        [4] Srivastava R., Mani P., Hahn N., et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles[J]. Angew. Chem. Int. Ed.,2007(46): 8988-8991.

        [5] Jalan V. M. Noble Metal panadium Alloy Catalyst and Method for Making: US: 4, 202, 934[P].

        [6] Myoung K. M., Jihoon C., Kyuwoong C., et al. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell application[J]. Electrochimica Acta., 2000(45): 4211-4217.

        [7] Gong K., Du F., Xia Z., et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science, 2009, 323(5915): 760-764.

        [8] Silva R., Voiry D., Chhowalla M., et al. Efficient Metal-Free Electrocatalysts for Oxygen Reduction: Polyaniline-Derived N- and O-Doped Mesoporous Carbons[J]. Journal of the American Chemical Society, 2013, 135(21):7823-7826.

        [9] Yang W., Fellinger T., Antonietti M. Efficient Metal-Free Oxygen Reduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-Doped Carbons Made from Ionic Liquids and Nucleobases[J]. Journal of the American Chemical Society, 2011, 33(2): 206-209.

        [10] Geng D., Chen Y., Chen Y., et al. High oxygen-reduction activity and durability of nitrogen-doped graphene[J]. Energy Enviro Sci, 2011(4): 760-764.

        [11] Luo Z., Lim S., Tian Z., et al. Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property[J]. J Mater Chem., 2011(21): 8038-8044.

        [12] Chisaka M., Iijima T., Tomita A., et al. Oxygen Reduction Reaction Activity of Vulcan XC-72 Doped with Nitrogen under NH3Gas in Acid Media[J]. J. Electrochem Soc.,2010(157): B1701-B1706.

        [13] Zhou X., Yang Z., Nie H., et al. Catalyst-free growth of large scale nitrogen-doped carbon spheres as efficient electrocatalysts for oxygen reduction in alkaline medium[J]. J. Power Sources, 2011(196): 9970-9974.

        [14] Chen T., Cai Z., Yang Z., et al. Nitrogen-Doped Carbon Nanotube Composite Fiber with a Core-Sheath Structure for Novel Electrodes[J]. Adv Mater., 2011(23): 4620-4625.

        [15] Jin H., Zhang H., Zhong H., et al. Nitrogen-doped carbon xerogel: A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane(PEM)fuel cells[J]. Energy Environ Sci., 2011(4): 3389-3394.

        [16] Gao F., Zhao G. L., Yang S, et al. Nitrogen-Doped Fullerene as a Potential Catalyst for Hydrogen Fuel Cells[J]. J Am Chem Soc., 2012(135): 3315-3318.

        [17] Chen S., Bi J., Zhao Y., et al. Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction[J]. Adv. Mater., 2012(24): 5593-5597.

        [18] Li Yunyong, Li Zesheng, Shen Peikang. Simultaneous Formation of Ultrahigh Surface Area and Three-Dimensional Hierarchical Porous Graphene-Like Networks for Fast and Highly Stable Supercapacitors[J]. Adv. Mater.,2013(25): 2474-2480.

        [19] Wang B. Recent Development of Non-platium Catalystsfor Oxygen Reduction Reaction[J]. J. Power Sources,2005(152): 1-15.

        [20] Stephen M., Keith J. S. Influence of Nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes[J]. J. Pys. Chem. B, 2005, 109 (10): 4707-4716.

        [21] Jin Z., Yao J., Kittrell C., et al. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets[J]. ACS Nano, 2011(5): 4112-4117.

        [22] Sharifi T., Hu G., Jia X., et al. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes[J]. ACS Nano., 2012, 6(10): 8904-8912.

        [23] Bashyam R., Zelenay P. A Class of Non-Precious Metal Composite Catalysts for Fuel Cells[J]. Nature, 2006,443(7107): 63-66.

        [24] Wang S., Iyyamperumal E., Roy A., et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by codoping with boron and nitrogen[J]. Angewandte Chemie International Edition, 2011(123): 11960-11964.

        [25] Huang S. F., Terakura K., Ozaki T., et al. First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction[J]. Phys. Rev. B,2009(80): 235410.

        [26] Chen L., Cui X., Wang Y., et al. One-step synthesis of sulfur doped graphene foam for oxygen reduction reactions[J]. Dalton Trans., 2014(43): 3420.

        [27] Yu D., Xue Y., Dai L. M. Vertically-aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction[J]. The Journal of Physical Chemistry Letters, 2012(3): 2863-2870.

        [28] Jasinski R. A new fuel cell cathode catalyst[J]. Nature,1964, 201(4925): 1212-1213.

        [29] Ohms D., Herzog S., Franke R., et al., Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile[J]. Journal of Power Sources, 1992, 38(3): 327-334.

        [30] Van Veen J. A. Rob, Van Baar Jan F., Kroese Kees J. Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen[J]. Journal of the Chemical Society, 1981, 77(11): 2827-2843.

        [31] Wiesener K., Ohms D., Neumann V., et al. N4 macrocycles as electrocatalysts for the cathodic reduction of oxygen[J]. Materials Chemistry and Physics, 1989, 22(3/4): 457-475.

        [32] Lefèvre M., Proietti E., Jaouen F., et al. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009(324): 71-74.

        [33] Bashyam R., Zelenay P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006(443): 63-66.

        [34] Wang H., Cote R., Faubert G., et al. Effect of the pretreatment of carbon black supports on the activity of Febased electrocatalysts for the reduction of oxygen[J]. The Journal of Physical Chemistry B, 1999, 103(12): 2042-2049.

        [35] Lefèvre M., Dodelet J. P., Bertrand P. O2Reduction in PEM Fuel Cells: Activity and Active Site Structural Information for Catalysts Obtained by the Pyrolysis at High Temperature of Fe Precursors[J]. The Journal of Physical Chemistry B, 2000(104): 11238-11247.

        [36] Liu G., Li X., Ganesan P., et al. Development of nonprecious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon[J]. Applied Catalysis B: Environmental, 2009(93): 156-165.

        [37] Faubert G., Lalande G., Cté R., et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1996(41): 1689-1701.

        [38] Lalande G., Cté R., Tamizhmani G., et al., Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1995(40): 2635-2646.

        [39] Okada T., Gokita M., Yuasa M., et al. Oxygen Reduction Characteristics of Heat-Treated Catalysts Based on Cobalt-Porphyrin Ion Complexes, Journal of The Electrochemical Society[J]. 1998(145): 815-822.

        [40] Gouérec P., Biloul A., Contamin O., et al. Oxygen reduction in acid media catalyzed by heat treated cobalt tetraazaannulene supported on an active charcoal: correlations between the performances after longevity tests and the active site configuration as seen by XPS and ToF-SIMS[J]. Journal of Electroanalytical Chemistry, 1997(422): 61-75.

        [41] Gojkovi? S. L., Gupta S., Savinell R. F. Heat-treated iron(Ⅲ) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part Ⅱ. Kinetics of oxygen reduction[J]. Journal of Electroanalytical Chemistry, 1999(462): 63-72.

        [42] Niwa H., Saito M., Kobayashi M., et al. Probing carbon edge exposure of iron phthalocyanine-based oxygen reduction catalysts by soft X-ray absorption spectroscopy[J]. Journal of Power Sources, 2013(223): 30-35.

        Review of Fuel Cell Cathode Oxygen Reduction Electrode Materials

        LIN Jie
        (College of Chemistry and Material Engineering, Wenzhou University, Wenzhou 325000, China)

        At present, platinum based materials were the most effective oxygen reduction reaction catalysts in fuel cells cathode oxygen reduction. Due to their high cost, scarcity and short life span, wide commercialization of FCs was still limited. Therefore, one of the important research directions in the feld of fuel cells was to design and prepare a novel structure of carbon-based non-precious metal catalysts with low cost and high cycle stability. In this paper, the research progress of fuel cell cathode oxygen reduction electrode materials was simply summarized.

        fuel cells; ORR; electrode materials

        TM 911

        A

        1671-9905(2016)05-0040-04

        2016-03-17

        猜你喜歡
        催化活性陰極燃料電池
        Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China
        燃料電池題解法分析
        場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進(jìn)展
        電子制作(2018年12期)2018-08-01 00:47:46
        試駕豐田氫燃料電池車“MIRAI未來”后的六個(gè)疑問?
        車迷(2017年12期)2018-01-18 02:16:11
        燃料電池的維護(hù)與保養(yǎng)
        電子制作(2017年10期)2017-04-18 07:23:13
        IT-SOFCs陰極材料Sm0.8La0.2Ba1-xSrxFe2O5+δ的制備與表征
        微生物燃料電池空氣陰極的研究進(jìn)展
        稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
        環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見光催化活性
        Fe3+摻雜三維分級納米Bi2WO6的合成及其光催化活性增強(qiáng)機(jī)理
        亚洲av综合国产av日韩| 久久久久久久尹人综合网亚洲| 日本一区二区三区看片| 国产一区二区三区日韩在线观看| 久久久久亚洲av成人网人人软件| 亚洲综合色自拍一区| 一区二区三区日本大片| 久久精品伊人久久精品| 无套内谢孕妇毛片免费看| 精品国产一区二区三区免费| 国产精品嫩草影院午夜| 久久久亚洲精品蜜臀av| 色婷婷精品久久二区二区蜜桃| 亚洲欧美国产国产综合一区| 国产亚洲欧美在线| 中文字幕中乱码一区无线精品| 国产不卡在线视频观看| 日日婷婷夜日日天干| 亚洲区在线播放| 亚洲一区有码在线观看| 午夜福利理论片在线观看播放| 无码人妻精品一区二区三区不卡 | 品色堂永远免费| 无码毛片aaa在线| 蜜桃在线观看免费高清完整版| 中文字幕一区久久精品 | 国产久热精品无码激情| 中日韩欧美高清在线播放| 日本免费看一区二区三区| 欧美综合天天夜夜久久| 亚洲国产精品久久久久久久| 亚洲视频在线播放免费视频| 免费人成视频网站在在线| 亚洲精品suv精品一区二区| 亚洲偷自拍另类图片二区| 国成成人av一区二区三区| 97久人人做人人妻人人玩精品| 1717国产精品久久| 水蜜桃视频在线观看免费18| 亚洲久悠悠色悠在线播放| 激情偷乱人成视频在线观看|