李成希,孟祖超,劉 祥
?
綜述與展望
可見光光催化劑的研究進展
李成希,孟祖超*,劉祥
(西安石油大學化學化工學院,陜西 西安 710065)
摘要:綜述TiO2、改性TiO2光催化劑和非TiO2體系光催化劑在可見光催化領域的研究進展,概述了光催化劑的光催化原理和應用方向,針對可見光光催化劑發(fā)展現(xiàn)狀中存在的量子效率和可見光利用率低、且回收難等問題進行闡述,并指出制備組成可控、形貌可控、易于回收利用且可見光利用率高的新型光催化劑是研究首要方向。
關鍵詞:催化化學;可見光光催化劑;改性TiO2;非TiO2體系;鉍系可見光光催化劑
CLC number:TQ034;O643.36Document code: AArticle ID: 1008-1143(2016)04-0007-09
1972年,F(xiàn)ujishima A等[1]首次發(fā)現(xiàn)了單晶TiO2電極能夠光催化分解水,Carey J H等[2]將TiO2用于光催化降解水中有機污染物,由此光催化材料引起廣泛關注。雖然TiO2具有廉價、無毒、光催化性能好和穩(wěn)定性高等優(yōu)點,但TiO2光催化劑的禁帶寬度為3.2 eV,僅在紫外光區(qū)有響應。紫外光(波長<400 nm)在太陽光中不足5%[3],可見光[波長(400~700) nm]在太陽光中達43%。因此,提高可見光響應成為半導體光催化劑應用的關鍵。目前,對TiO2的修飾改性使之光響應波長紅移至可見光區(qū)及新型非TiO2可見光催化材料的開發(fā)是光納米催化劑主要研究方向。
本文綜述TiO2、改性TiO2光催化劑和非TiO2體系光催化劑在可見光催化領域的研究進展,概述了光催化劑的應用方向,針對可見光光催化劑發(fā)展現(xiàn)狀存在的主要問題進行闡述,并提出可見光光催化劑未來的發(fā)展趨勢。
1光催化原理
光催化機制主要依托于能帶理論,催化劑能帶不連續(xù),在導帶和能帶之間存在能級差[4]。半導體光催化劑吸收大于或等于禁帶寬度的光子能量后,價帶電子受到激發(fā)躍遷至導帶產(chǎn)生電子-空穴對,光激發(fā)的電子和空穴遷移到催化劑體相或表面,與水或有機物在催化劑體相發(fā)生氧化還原反應,即光催化作用[5]。
激發(fā)和遷移是光催化反應歷程中關鍵步驟,激發(fā)由電子能帶結構調(diào)控,即禁帶寬度和能帶位置決定催化劑響應可見光波長范圍和反應能否進行[6]。可見光響應半導體材料的禁帶寬度應小于3.0 eV(對應波長為413 nm)[5]。目前,TiO2、ZnO、CdS、WO3、SnO2、ZnS和α-Fe2O3等n型半導體光催化材料應用廣泛,普遍認為TiO2是最佳光催化劑[7]。
2TiO2及改性TiO2催化劑
制備TiO2納米光催化劑主要有溶膠-凝膠法、沉淀法、水熱/溶劑熱法、微乳液法和化學氣相沉積法等。制備的TiO2通常均為常規(guī)的TiO2半導體光催化劑,量子產(chǎn)率約4%,很難處理量大和濃度高的污染物,而且反應殘留的顆粒造成二次污染[8]。因此,需對TiO2光催化劑進行改性,改性方法主要有金屬離子摻雜、非金屬離子摻雜、共摻雜、半導體材料復合、貴金屬沉淀以及表面光敏化等[9]。
金屬離子摻雜主要是金屬離子嵌入晶格間隙或取代Ti4+,增加電子空穴的捕獲點位。文獻[10-12]采用不同過渡金屬離子進行TiO2摻雜,發(fā)現(xiàn)Fe3+、Mo2+、Ru2+、Re+和V3+的摻雜均能有效降低TiO2的禁帶寬度。此外,V、Co、Cr和Mn等金屬的摻雜也可有效降低TiO2的禁帶寬度,稀土金屬如La[13]、Y[14]等的摻雜也可改性TiO2。姜淑梅等[15]采用溶膠-凝膠法制備了不同Pt摻雜量的TiO2光催化劑,在可見光下對氮氧化物有明顯的降解效果,并能抑制NO2的產(chǎn)生,摻雜Pt物質(zhì)的量分數(shù)為0.4%時,光催化劑活性最佳。馮春波等[16]采用溶膠-凝膠法制備Au摻雜的TiO2納米光催化劑粉體,在n(Au3+)∶n(Ti4+)=0.005和500 ℃焙燒,太陽光光降解NPE-10,4 h后降解率達91.8%。
非金屬元素N、C、F、S和B等的摻雜也可窄化TiO2的禁帶寬度,TiO2的光催化活性主要受摻雜離子或摻雜元素種類、濃度和電子結構影響。Baeissa E S[17]研究發(fā)現(xiàn),摻雜S質(zhì)量分數(shù)0.3%的S-TiO2納米復合材料光催化性能穩(wěn)定,可有效催化氧化氰化物。
La和Fe共摻雜TiO2[13]、Sm和Ag共摻雜TiO2[18]、N和V共摻雜TiO2[19]、Zn和Si共摻雜TiO2[20]以及La和I共摻雜TiO2[21]改性效果顯著。李玲[21]采用La和I共摻雜TiO2光催化劑在模擬太陽光照下降解初始濃度為50 mg·L-1的活性艷藍19,在催化劑用量1.0 g·L-1和pH=3~7條件下,光照80 min,降解率達98.6%,TOC基本去除,改性效果顯著。
半導體復合也是TiO2改性的主要方式,曹玉輝等[22]用納米帶鈦酸作鈦源,通過離子交換-焙燒法制備系列AgX(X=Cl,Br,I)/TiO2復合納米材料,紫外可見吸收光譜表明,復合材料在可見光(400~470) nm有良好的吸收,AgBr/TiO2有相對較高的光催化活性,6 min內(nèi)對甲基橙的降解率為80%。異質(zhì)結結構的復合可見光光催化劑In2O3/TiO2氣相降解2-丙醇達P25型TiO2的6.3倍,液相降解1,4-二氯苯達P25型TiO2的8.7倍[23]。水熱法合成的納米TiO2-石墨烯[24]在紫外光下降解羅丹明B,降解率達98.69%。董源等[25]以CdCl2·2.5H2O,Na2S·9H2O和TiO2納米顆粒為原料,在微波反應器合成CdS/TiO2納米管復合光催化劑,摻雜CdS質(zhì)量分數(shù)為1.96%的復合光催化劑在可見光下分解純水制氫,產(chǎn)率為12.9 μmol·(h·g)-1,兩者物理混合檢測不到氫氣的產(chǎn)生。甄德帥等[26]采用溶膠-凝膠法制備Zn2+-SiO2-TiO2復合光納米催化劑,在可見光下對羅丹明B(5 mg·L-1)和剛果紅(10 mg·L-1)的降解率分別為90%和83%。董抒華[27]采用溶膠-凝膠法制備了不同La3+摻雜量的TiO2/SiO2復合光催化劑,將La3+-TiO2/SiO2前驅(qū)體在500 ℃焙燒2 h(La3+最佳摻雜物質(zhì)的量分數(shù)為4%),光降解亞甲基藍150 min,降解率為76%,相比未摻雜La3+的TiO2/SiO2降解率明顯提高。
光活性化合物通過物理吸附或化學吸附吸附在催化劑表面,即表面光敏化作用。表面光敏化使吸收波長范圍紅移,拓展光吸收波長至可見光區(qū)。光敏物質(zhì)在可見光照射下,電子激發(fā)躍遷到TiO2表面并注入導帶,誘發(fā)可見光光催化活性。在反應過程中,體系酸堿度未發(fā)生變化,TiO2不形成空穴[28]。目前,常用的有機光敏劑有花青素、喹啉、曙紅、葉綠酸、酞菁、熒光素和玫瑰紅等,但有機染料光敏劑易發(fā)生氧化還原反應而失活。因此,已有無機光敏劑、金屬有機配合物光敏劑以及復合光敏劑[29]的研究。Zou Weiwei等[30]將甲苯-2,4-二異氰酸酯和TiO2在甲苯中加熱回流得到表面改性的TiO2-甲苯-2,4-二異氰酸酯,該方法簡便易行,甲苯-2,4-二異氰酸酯在TiO2表面以—NHCOOTi—化學鍵合,具有較高的光穩(wěn)定性,可見光催化活性明顯優(yōu)于TiO2。
3非TiO2體系可見光光催化劑
新型可見光納米催化材料研究主要有鉍系半導體材料、ABO3和AB2O4型氧化物,但單一作用時光催化特性不顯著,可見光光催化劑主要有元素摻雜光催化劑、復合光催化劑和光敏化催化劑等。
3.1鉍系可見光光催化劑
3.1.1Bi2O3可見光光催化劑
Bi2O3是p型半導體,主要有單斜α-Bi2O3晶型、四角β-Bi2O3晶型、體心立方γ-Bi2O3晶型和面心立方δ-Bi2O3晶型,其中,單斜α-Bi2O3熱力學結構相對穩(wěn)定,禁帶寬度為2.85 eV,具有較強的可見光催化活性,廣泛應用于有機物的光降解研究[31]。但因Bi2O3易發(fā)生光腐蝕,需對其進行改性。Bi2O3/TiO2和Bi2O3/Bi2WO6等復合光催化劑、V、Pb、Ag和Co等金屬摻雜以及量子點修飾的改性方式均有研究。肖國生等[32]制備了Ce摻雜Bi2O3光催化劑,提升了光催化活性。Zhang H等[33]制備了巰基乙酸修飾的水溶性的Bi2O3量子點,在光催化降解甲基橙時,表現(xiàn)出優(yōu)良的性能,反應30 min,甲基橙降解率大于80%,且在pH=3~11的較寬范圍均可使用,具有良好的穩(wěn)定性和分散性。相比于Bi2O3,Bi2S3具有更窄的禁帶寬度,易被可見光激發(fā)產(chǎn)生電子-空穴對[34-35],可見光響應好,應用潛力較大。
3.1.2BiVO4可見光光催化劑
n型半導體BiVO4具有單斜白鎢礦相、四方白鎢礦相和四方鋯石相晶型結構,其中,單斜白鎢礦相在紫外和可見光區(qū)均有吸收帶[36]。由于單一作用時效率較低,BiVO4顆粒細小易于流失且不易回收,因此,通過表面金屬沉積、半導體材料復合、元素摻雜及表面敏化等方法對BiVO4進行改性[36-37]。摻雜Cu質(zhì)量分數(shù)5.0%的Cu/BiVO4可見光照射濃度10 mg·L-1的亞甲基藍溶液,反應60 min,光降解率達100%[38]。晏威等[39]采用超聲法將磁基體Fe3O4和BiVO4復合,制備了固液易于分離的磁性可見光光催化劑Fe3O4/BiVO4,m(Fe3O4)∶m(BiVO4)=1∶5時,催化活性最高,反應5 h,對亞甲基藍的降解率由初始的72.5%提高到92.0%,且外加磁場時很容易分離和重新分散使用。陳海峰等[40]以含Bi(NO3)3·5H2O的稀硝酸溶液和NH4VO3水溶液為反應物,加入酞菁鈷超聲2 h,制備了酞菁鈷敏化光催化劑,反應70 min,甲基橙降解率接近100%。此外,MVO4(M=In,Y,Bi)的吸收性能預示了良好的光催化活性[41]。
3.1.3BiOX(X=F,Cl,Br,I)可見光光催化劑
鹵氧化鉍(BiOX,X=F,Cl,Br,I)作為一種新型的半導體材料,具有獨特的電子結構、良好的光學性能和催化性能,可以很好地響應可見光,且隨著鹵原子序數(shù)的增加,光催化活性逐漸增強[42]。用密度泛函數(shù)理論計算出BiOCl、BiOBr和BiOI的禁帶寬度分別為3.22 eV、2.64 eV和1.77 eV[43]。乙二醇溶劑熱法合成的多孔BiOI對羅丹明B的吸附能力達196.948 mg·g-1,其優(yōu)良的吸附能力對有機物降解的研究有重要價值[44]。張喜[6]采用低溫水浴加熱法制備了物質(zhì)的量分數(shù)各為50%的異質(zhì)結型BiOI/TiO2復合光催化劑,反應2 h,甲基橙降解率95%。
3.1.4鉍系復合可見光光催化劑
鉍系復合催化劑如BiPO4和Bi2WO6等在光降解有機污染物和光降解水方面具有潛在的應用價值。劉永紅等[45]采用共沉淀法,以Bi(NO3)3·5H2O、AgNO3和NaH2PO4為原料,350 ℃焙燒,制得BiPO4物質(zhì)的量分數(shù)為5%的BiPO4/Ag3PO4復合光催化劑,40 min內(nèi)可將200 mL濃度為12 mg·L-1的羅丹明B溶液完全降解。Cui Yumin等[46]采用沉積法制備了BiOI/Bi2WO6復合光催化劑,在可見光光催化降解甲基橙和苯酚時,相比于工業(yè)P25型TiO2和純Bi2WO6,BiOI質(zhì)量分數(shù)13.2%的BiOI/Bi2WO6光催化劑具有更高的可見光光催化性能,推測其高光催化活性是由于光生電子和空穴在二者界面的有效傳輸,且BiOI/Bi2WO6光催化劑經(jīng)過醇洗和干燥后可以多次重復使用。Seung Yong Chai等[47]制備的異質(zhì)結BiOCl/Bi2O3復合可見光光催化劑降解有機物比二者單獨作用時高10~50倍,n(BiOCl)∶n(Bi2O3)=85∶15的樣品表現(xiàn)出最高的可見光催化活性,在降解1,4-對苯二甲酸時,降解率是P25型TiO2的10.5倍,是BiVO4的3.6倍,而且合成方法簡單,對環(huán)境無害,規(guī)?;杀镜?。在BiOCl/Bi2O3表面負載WO3(摻雜W物質(zhì)的量分數(shù)0.6%)制備的復合可見光光催化劑降解1,4-對苯二甲酸,催化活性是BiOCl/Bi2O3復合可見光光催化劑的2.7倍[48]。此外,Bi2WO6具有較強的光穩(wěn)定性,不易發(fā)生光腐蝕。
3.2WO3可見光光催化劑
WO3禁帶寬度較低(Eg=2.7 eV),具有廉價、無毒、化學性質(zhì)穩(wěn)定和不易光污染等特點,且光照下使H2O產(chǎn)生O2[49],主要通過摻雜改性提高催化劑催化活性。趙娟等[50]采用固相燒結法制備了Y3+(質(zhì)量分數(shù)0.05%)摻雜的WO3光催化劑,光催化析氧速率可達161.3 μmol·(L·h)-1。劉華俊等[51]通過Tb3+摻雜WO3,使光催化劑光吸收波長范圍擴大,可見光區(qū)吸收強度增大,從而提高了可見光利用率。CuO(質(zhì)量分數(shù)0.33%)/WO3和Pt(質(zhì)量分數(shù)0.12%)/WO3光納米催化劑在可見光照射下降解有機化合物有較高效率[52]。Pt和Ti負載WO3比WO3或Pt單獨作用時的可見光催化活性高,在降解有機物方面具有更高的可見光催化活性[53],Pt/Au/WO3也有報道可見光下分解水[54]。
3.3ZnS可見光光催化劑
ZnS禁帶寬度較寬[Eg=(3.6~3.8) eV][55],量子尺寸效應表現(xiàn)出特異的光電催化性能,在光催化、電致發(fā)光和傳感器等諸多領域有廣泛的應用前景[56]。因其寬禁帶寬度,可見光下很難利用,可通過制備復合催化劑提高可見光利用率。Zhu Ting等[57]以模板結合的方法合成中空結構的ZnS-Cu1.8S納米片,可見光下顯示出良好的制氫能力,且多次循環(huán)使用后催化劑依然結構穩(wěn)定。肖亮[58]合成的多層花狀CuS/ZnS復合光催化劑產(chǎn)氫速率可達1 206.2 μmol·(L·h)-1,催化劑具有良好的穩(wěn)定性。Ag摻雜ZnS相比于ZnS具有更高的可見光光催化活性,在堿性條件下,可見光照射50 min,亞甲基藍降解率大于80%,對降解有機污染物提供了新的應用材料[59]。
3.4復合金屬半導體材料
復合金屬氧化物可見光響應催化材料主要有層狀(鈮酸鹽、鉭酸鹽和銻酸鹽)[60]、鈣鈦礦型、尖晶石型、軟鉍礦型、燒綠石型和白鎢礦型等。
鈣鈦礦型ABO3復合氧化物是重要的功能材料,但因量子產(chǎn)率和太陽能利用率較低[61],主要通過摻雜和負載方式對其進行改性[62],將高電負性的離子植入到鈣鈦礦結構八面體B位置和氧配體共價鍵合的金屬位,或用大尺寸離子取代鈣鈦礦結構十二面體A位置具有離子鍵性質(zhì)的空間填充位[60],制備鈣鈦礦型金屬氧化物。畢軍等[63]采用檸檬酸絡合制備的鈣鈦礦型光催化劑LaCoO3,對甲基橙(10 mg·L-1)降解率達93%。AB2O4是尖晶石型結構的復合氧化物,禁帶寬度較窄,能吸收可見光,可作為高效穩(wěn)定的可見光光催化劑。鄧海洋等[64]采用共沉淀法制備了磁性CoFe2O4,均勻負載在TiO2表面形成磁性集合體,焙燒時有利于制備高催化活性的光催化劑。燒綠石型結構的復合金屬氧化物在近幾年得到廣泛研究,Nd2Zr2O7和Sm2Zr2O7[65]、La2Ti2O7和Sm2Ti2O7[66]等添加到水溶液中,在可見光照射下可析出氫氣。
4可見光光催化劑的應用
在污水處理中,可見光光催化劑具有較強的氧化還原能力,可降解大多數(shù)有機物,最終轉化為CO2、H2O和簡單的無機物;也可氧化有毒無機物。陳金毅[67]采用釕摻雜的納米TiO2薄膜電極,建立了電助光催化處理污水的實驗體系。李曉紅等[68]制備的TiO2/SnO2復合光催化劑有效解決了有機磷農(nóng)藥廢水難降解的問題,80 min就可將較低濃度的敵敵畏廢水溶液完全降解,利于環(huán)境保護??椎澜Y構的TiO2負載型雜多酸H3PW12O40/TiO2在可見光及染料敏化作用下,對6種不同結構的水溶性染料具有良好的催化活性,且催化劑易于回收、分離和循環(huán)使用[69]。
在空氣處理領域,可見光光催化劑可氧化除去空氣中的氮氧化物、硫化物和各類臭氣,對甲醛和甲苯也有一定的降解作用。葉劍等[70]以新型SiO2為載體,制備了大孔徑TiO2/SiO2光催化劑,可有效吸附甲醛、氨和苯等小分子物質(zhì),提高了室內(nèi)空氣凈化效率。名古屋工業(yè)技術研究所使用TiO2光催化劑制成的凈化裝置,能夠有效去除焚燒爐中產(chǎn)生的二噁英[71]。索靜等[72]制備的負載型Cu-BiVO4復合光催化劑對初始濃度約80 mg·m-3的甲苯最高去除率達90%,為解決室內(nèi)裝修引起的空氣污染提供了新思路。
在新能源領域,利用半導體光催化劑,在可見光照射下光解水制氫是最為理想的氫能開發(fā)手段之一;利用光催化劑將CO2轉化為有價值的太陽能燃料是目前解決能源危機以及環(huán)境問題的最好方法之一[73]。Kato H等[74]研究了在可見光下光解水,Pt/SrTiO3:Rh作為產(chǎn)氫單元,BiVO4、WO3或Bi2MoO6等都可以作為產(chǎn)氧單元,F(xiàn)e2+/Fe3+氧化還原對是電子中間體,按物質(zhì)的量比2∶1產(chǎn)生氫和氧。據(jù)報道[73],氮摻雜介孔TiO2顯示出良好的吸收能力和催化活性,可見光與氣態(tài)水條件下,將CO2光還原成甲烷。
5結語與展望
可見光光催化劑在能源和環(huán)境方面提供了新方向,但量子效率低,可見光吸收區(qū)域窄和回收難等問題普遍存在,改性光催化劑是目前研究的主要方向。TiO2體系的改性較為成熟,非TiO2體系光催化劑及其改性研究符合未來發(fā)展趨勢。制備組成調(diào)控、形貌可控、易于回收重復利用和高效可見光吸收率的新型可見光光催化劑將成為今后的發(fā)展方向。非TiO2體系光催化劑相比于TiO2體系,具有更為優(yōu)異的可見光光催化活性和更廣泛的應用前景,尤其改性后的非TiO2體系光催化劑對有機污染物可實現(xiàn)完全降解,可見光光催化劑在新能源開發(fā)領域應用仍處于起始階段,未來有望應用于水分解制氫和CO2光還原,實現(xiàn)新型能源的利用。
參考文獻:
[1]Fujishima A,Honda K.TiO2photoelectrochemistry and photocatalysis[J].Nature,1972,238:37-38.
[2]Carey J H,Lawrence J,Tosine H M.Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions[J].Bulletin of Environmental Contamination and Toxicology,1976,16:697-701.
[3]Roher G S,Henrich V E,Bonnell D A.Structure of the reduced TiO2(110) surfaced determined by scanning tunneling microscopy[J].Science,1990,250(4985):1239-1341.
[4]金超,秦瑤,楊金虎.新型非TiO2半導體光催化劑[J].化工進展,2014,26(213):225-233.
Jin Chao,Qin Yao,Yang Jinhu.Novel non-TiO2semiconductor photocatalysts[J].Progress in Chemistry,2014,26(213):225-233.
[5]龍明策,蔡俊,蔡偉明.設計新型可見光響應的半導體光催化劑[J].化工進展,2006,18(9):1065-1076.
Long Mingce,Cai Jun,Cai Weiming.Design of novel visible light responding semiconductor photocatalysts[J].Progress in Chemistry,2006,18(9):1065-1076.
[6]張喜.新型鹵氧化鉍BiOX(X=Cl、Br、I)光催化劑的合成、表征及催化劑性能研究[D].武漢:華中師范大學,2010.
Zhang Xi.Synthesis,characteration and photocatalytic activity of BiOX(X=CI,Br and I) photocatalysts[D].Wuhan:Central China Normal University,2010.
[7]殷巧巧,喬儒,童國秀.離子摻雜氧化鋅光納米功能材料的制備及其應用[J].化工進展,2014,26(10):1619-1632.
Yin Qiaoqiao,Qiao Ru,Tong Guoxiu.Preparation and photocatalytic application of ion-doped ZnO functional nanomaterials[J].Progress in Chemistry,2014,26(10):1619-1632.
[8]陳琳,楊蘇東,王傳義,等.二氧化鈦光催化材料及其改性技術及其改性技術研究進展[J].離子交換與吸附,2013,29(1):86-97.
Chen Lin,Yang Sudong,Wang Chuanyi,et al.Advances in preparation and modification of photocatalytic materials made from titanium dioxide[J].Ion Exchange and Adsorption, 2013,29(1):86-97.
[9]周江喜,覃愛苗,廖雷.含氧化合物可見光催化劑的研究進展[J].材料導報,2013,27(4):131-135.
Zhou Jiangxi,Qin Aimiao,Liao Lei.Progress in research on oxygenate visible-light photocatalysts[J].Materials Review,2013,27(4):131-135.
[10]Wang J Y,Liu Z H,Cai R X.A new role for Fe3+in TiO2hydrosol:accelerated photodegradation of dyes under visible light[J].Environment Science & Technology,2008,42(15):5759-5764.
[11]Klosek S,Raftery D.Visible light driven V-doped TiO2photocatalyst and its photooxidation of ethanol[J].The Journal of Physical Chemistry B,2001,105(14): 2815-2819.
[12]Serpone N,Lawless D,Disdier J,et al.Spectroscopic,photoconductivity,and photocatalytic studies of TiO2colloids:naked and with the lattice doped with Cr3+,Fe3+,and V5+cations[J].Langmuir,1994,10(3):643-652.
[13]徐世華,沈風雷.La摻雜對TiO2光催化劑的影響[J].稀土,2010,31(6):89-92.
Xu Shihua,Shen Fenglei.Effects of lanthanum on structure and photo absorption performance of TiO2photocatalyst[J].Chinese Rare Earths,2010,31(6):89-92.
[14]晏爽,江學良,蔡盛臻,等.釔摻雜改性二氧化鈦及其光催化性[J].武漢工程大學學報, 2010,32(12):65-68.
Yan Shuang,Jiang Xueliang,Cai Shengzhen,et al.Study on Y-doped TiO2nanoparicles and their photocatalytic properties[J].Journal of Wuhan Institute of Chemical Technology,2010,32(12):65-68.
[15]姜淑梅,胡蕓,韋朝海.可見光響應Pt摻雜納米TiO2的光催化氧化NOx性能[J].硅酸鹽學報,2012,31(42):327-332.
Jiang Shumei,Hu Yun,Wei Chaohai.Photocatalytic oxidation of nitrogen oxides over visible-light-responsive Pt-doped Nano-TiO2[J].Bulletin of the Chinese Ceramic Society,2012,31(42):327-332.
[16]馮春波,杜志平,趙永紅,等.Au改性納米TiO2材料對NPE-10光催化降解的活性[J].物理化學學報,2006,22(8):953-957.
Feng Chunbo,Du Zhiping,Zhao Yonghong,et al.Photocatalytic activity of Au modified Nano-TiO2for NPE-10 degradation[J].Acta Physico-Chimica Sinica,2006,22(8): 953-957.
[17]Baeissa E S.Synthesis and characterization of sulfur-titanium dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation[J].Chinese Journal of Catalysis,2015,36(5):698-703.
[18]王東升,廖云文,何平,等.雙摻雜二氧化鈦的制備及其在降解染料廢水中的應用[J].西華師范大學學報,2011,32(2):181-183.
Wang Dongsheng,Liao Yunwen,He Ping,et al.The Preparation of samarium、silver doping in TiO2and its application of degradation of aye waste water[J].Journal of China West Normal University,2011,32(2):181-183.
[19]劉麗麗,陳守剛,孫偉偉,等.氮釩共摻雜二氧化鈦的制備及光催化性能[J].現(xiàn)代化工,2011,31(1):137-139.
Liu Lili,Chen Shougang,Sun Weiwei,et al.Preparation and photocatalytic property of nitrogen/vanadium co-doped TiO2[J].Modern Chemical Industry,2011,31(1):137-139.
[20]康華.鋅和硅共摻雜二氧化鈦納米晶的光催化性能及其增強機制[J].工業(yè)催化,2011,19(8):32-35.
Kang Hua.Photo catalytic properties and improvement mechanism of Zn/Si-TiO2nanocrystalline[J].Industrial Catalysis,2011,19(8):32-35.
[21]李玲.新型可見光響應納米光催化劑的研制及應用[D].上海:東華大學,2011.
Ling Li.Study on the Preparation and application of novel nano-photocatalyst driven by visible light[D].Shanghai:Donghua University,2011.
[22]曹玉輝,李秋葉,邢陽陽,等.AgX-TiO2納米復合催化劑在可見光下的催化性能[J].材料保護,2014,47(5):122-125.
Cao Yuhui,Li Qiuye,Xing Yangyang,et al.Study of the photocatalytic activity of AgX/TiO2nanocomposites under visible light[J].Material Protection,2014,47(5):122-125.
[23]Ashok Kumar Chakraborty,Mesfin Abayneh Kebede.Efficient decomposition of organic pollutants over In2O3/TiO2nanocomposite photocatalyst under visible light irradiation[J]. Journal of Cluster Science,2012,23:247-257.
[24]張志軍,胡涓,陳整生,等.納米TiO2-石墨烯催化劑的水熱合成及其光催化性能[J].化工環(huán)保,2014,34(4):385-390.
Zhang Zhijun,Hu Juan,Chen Zhengsheng,et al.Hydrothermal synthesis of nano TiO2-graphene photocatalyst and its photocatalytic activity[J].Environmental Protection of Chemical Industry,2014,34(4):385-390.
[25]董源,蔣淇忠,楊開,等.微波法制備CdS-TiO2NT復合催化劑及其可見光下分解水制氫的性能[J].高校化學工程學報,2010,24(3):416-423.
Dong Yuan,Jiang Qizhong,Yang Kai,et al.Preparation of CdS-TiO2NT composite catalysts by microwave irradiation method and its phtocatalytic performance of splitting water to H2under visible light[J].Journal of Chemical Engineering of Chinese Universities,2010,24(3):416-423.
[26]甄德帥,李金龍,鄧啟剛,等.Zn2+-SiO2-TiO2三元復合催化劑的制備及其光催化降解性能[J].印染助劑,2012,29(17):6-10.
Zhen Deshuai,Li Jinlong,Deng Qigang,et al.Preparation and photocatalytic activity of ternary composite catalyst:Zn2+-SiO2-TiO2[J].Textile Auxiliaries,2012,29(17):6-10.
[27]董抒華.La3+-TiO2/SiO2復合納米粉催化降解亞甲基藍的研究[J].非金屬礦,2008,31(3):54-58.
Dong Shuhua.Study on photocatalyst degradation of methylene blue by La3+- TiO2/SiO2composite nanopowders[J].Non-Metallic Mines,2008,31(3):54-58.
[28]唐劍文,吳平霄,曾少雁,等.二氧化鈦可見光光催化劑研究進展[J].現(xiàn)代化工,2005,25(2):25-29.
Tang Jianwen,Wu Pingxiao,Zeng Shaoyan,et al.Research progress of titanium dioxide visible-light photocatalysts[J].Modern Chemical Industry,2005,25(2):25-29.
[29]張偉.TiO2光敏化研究進展[J].廣東化工,2009,36(11):94-98.
Zhang Wei.TiO2Photosensitization research progress[J].Guangdong Chemical Industry,2009,36(11): 94-98.
[30]Zou Weiwei,Zhang Jinlong,Chen Feng,et al.A simple approach for preparing a visible-light TiO2photocatalyst[J].Research on Chemical Intermediates,2009,35:717-726.
[31]黃生田,肖正華,鐘俊波,等.納米Bi2O3光催化降解有機物研究進展[J].四川理工學院學報,2013,26(3):6-11.
Huang Shengtian,Xiao Zhenghua,Zhong Junbo,et al.Developments of photocatalytic degradation of organic compounds by Bi2O3[J].Journal of University of Science and Engineering, 2013,26(3):6-11.
[32]肖國生,劉佳露,劉卓婧,等.Ce摻雜Bi2O3光催化劑的制備表征及其可見光催化性能[J].發(fā)光學報,2014,35(8):956-964.
Xiao Guosheng,Liu Jialu,Liu Zhuojing,et al.Preparation,characterization and visible-light-responsive photocatalytic activity of cerium- doped bismuth oxide[J].Chinese Journal of Luminescence,2014,35(8):956-964.
[33]Zhang H,Wu P,Li Y,et al.Preparation of bismuth oxide quantum dots and their photocatalytic activity in a homogeneous system[J].ChemCatChem,2010,(2):1115-1121.
[34]Kim H,Jin C,Park S,Lee W I,et al.Structure and optical properties of Bi2S3and Bi2O3nanostructures synthesized via thermal evaporation and thermal oxidation routes[J].Chemical Engineering Journal,2013,(215/216):151-156.
[35]He Rongan,Cao Shaowen,Zhou Peng.Recent advances in visible light Bi-based photocatalysts[J].Chinese Journal of Catalysis,2014,35(7):989-1007.
[36]李南南,何瑾馨.新型可見光催化劑BiVO4在環(huán)境治理中的研究進展[J].印染助劑,2012,29(2):6-9.
Li Nannan,He Jinxin.The research progress of novel visible light photocatalyst BiVO4in environmental treatment[J].Textile Auxiliaries,2012,29(2):6-9.
[37]Scott S Dunkle,Richard I Helmich,Keneth S Suslick.BiVO4as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis[J].The Journal of Physical Chemistry,2009,113:11980-11983.
[38]劉國聰,金真,張喜斌,等.Cu摻雜BiVO4微米片的水熱合成和光催化性能[J].無機材料學報,2013,28(3):287-295.
Liu Guocong,Jing Zhen,Zhang Xibing,et al.Hydrothermal synthesis and photocatalytic properties of Cu-doped BiVO4microsheets[J].Journal of Inorganic Materials,2013,28(3):287-295.
[39]晏威,王姣,朱毅,等.磁性可見光催化劑BiVO4/Fe3O4的制備及催化活性[J].無機化學學報,2011,27(2):287-292.
Yan Wei,Wang Jiao,Zhu Yi,et al.Preparation and photocatalytic properties of magnetically separable visible-light photocatalyst BiVO4/Fe3O4[J].Chinese Journal of Inorganic Chemistry,2011,27(2):287-292.
[40]陳海鋒,潘國祥,徐敏虹,等.酞菁鈷敏化BiVO4光催化劑的超聲化學法制備與光催化性能[C]∥第七屆中國功能材料及其應用學術會議論文集(第6分冊).長沙:中南大學,2010:115-117.
[41]Oshikiri M,auro Boero,Akiyuki Matsushita,et al.Water molecule adsorption properties on surfaces of MVO4(M=In,Y,Bi) photo-catalysts[J].Electroceram,2009,22:114-119.
[42]艾智慧,趙焜,張禮知.BiOX結構調(diào)控的可見光光催化劑機制[C]∥第十三屆全國太陽能光化學與光催化學術會議.武漢:中南民族大學,2012:61.
[43]王燕琴,瞿夢,馮紅武,等.鹵氧化鉍光催化劑的研究進展[J].化工進展,2014,33(3):660-668.
Wang Yanqin,Qu Meng,Feng Hongwu,et al.Research progress in bismuth oxyhalide compouds photocatalysts[J].Chemical Industry and Engineering Progress,2014,33(3):660-668.
[44]Zhang Bin,Ji Guangbin,Gondal M A,et al.Rapid adsorption properties of flower like BiBI nanoplates synthesized via a simple EG-assisted solvothermal process[J].Joural of Nanopaiticle Research,2013,15(7):1-9.
[45]劉永紅,張馨,李大塘,等.BiPO4/Ag3PO4新型可見光催化劑的制備及其性能研究[J].湖南科技大學學報,2013,28(1):98-102.
Liu Yonhong,Zhang Xin,Li Datang,et al.A study on preparation of BiPO4/Ag3PO4novel visible light responsible photocatalysts and their photocatalytic performance[J].Journal of Hunan University of Science & Technology,2013,28(1):98-102.
[46]Cui Yumin,Hong Wenshan,Li Huiquan,et al.Photocatalytic degradation and mechanism of BiOI/Bi2WO6toward methyl orange and phenol[J].Chinese Journal of Inorganic Chemistry,2014,30(2):431-442.
[47]Seung Yong Chai,Yong Joo Kim,Myong Hak Jung,et al.Heterojunctioned BiOCl /Bi2O3, a new visible light photocatalyst[J].Journal of Catalysis,2009,262:144-149.
[48]Chakraborty A K,Rawal S B,Han S Y,et al.Enhancement of visible-light photocatalytic efficiency of BiOCl/Bi2O3by surface modification with WO3[J].Applied Catalysis A:General,2011,407(1/2):217-223.
[49]Gratian R B,Hironori A.The visible light induced photocatalytic activity of tungsten trioxide powder[J].Applied Catalysis A:General,2001,210:181-191.
[50]趙娟,劉士軍,李潔,等.釔摻雜WO3的制備及光催化分解水析氧活性[J].中國有色金屬學報,2008,18(2):330-336.
Zhao Juan,Liu Shijun,Li Jie,et al. Preparation and photocatalytic activity of O2evolution from water for Y3+doped WO3[J].The Chinese Journal of Nonferrous Metals,2008,18(2):330-336.
[51]劉華俊,彭天右,肖江蓉,等.Tb3+摻雜納米WO3的制備及其光催化性能[J].武漢大學學報,2005,51(4):397-401.
Liu Huajun,Peng Tianyou,Xiao Jiangrong,et al.Preparation and photocatalytic activity of nanoscale Tb3+-doped WO3[J].Journal of Wuhan Institute of Chemical Technology,2005,51(4):397-401.
[52]Widiyandari Hendri,Purwanto Agus,Balgis Ratna,et al.CuO/WO3and Pt/WO3nanocatalysts for efficient pollutant degradation using visible light irradiation[J].Chemical Engineering Journal,2012,180:323-329.
[53]Masanari Hashimoto,Takao Gunji,Arockiam John Jeevagan,et al.Photocatalytic activity of Pt3Ti/WO3photocatalyst under visible-light irradiation[J].ECS Transactions,2014,43(1):1632.
[54]Atsuhiro Tanaka,Keiji Hashimoto,Hiroshi Kominami.Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation[J].American Chemical Society,2014,138(2):586-589.
[55]李鑫,余長林,樊啟哲,等.溶劑熱制備球狀ZnS納米光催化劑及其光催化性能[J].有色金屬科學與工程,2012,6(3):21-27.
Li Xin,Yu Changlin,Fan Qizhe,et al.Solvothermal preparation spherical ZnS nano-photocatalyst and its photocatalytic activity[J].Nonferrous Metals Science and Engineering,2012,6(3):21-27.
[56]Yang H M,Huang C H,Su X H.Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles[J].Journal of Alloys and Compounds,2005,402:274-277.
[57]Zhu Ting,Nuo Peh Connor Kang,Hong Minghui,et al.Outside-in recrystallization of ZnS-Cu1.8S hollow spheres with interdispersed lattices for enhanced visible light solar hydrogen generation[J].Chemistry-A European Journal,2014,36:11505-11510.
[58]肖亮.CuS/ZnS納米材料的調(diào)控合成及其光催化性能的研究[D].杭州:浙江理工大學, 2013.
Xiao Liang.Controlled synthesis of CuS/ZnS composite and its photocatalytic property study[D].Hangzhou:Zhejiang Sci-Tech University,2013.
[59]Sivakumar P,Gaurav Kumar G K,Sivakumar P,et al.Synthesis and characterization of ZnS-Ag nanoballs and its application in photocatalytic dye degradation under visible light[J].Journal of Nanostructure in Chemistry,2014,4:107.
[60]黃蘇萍,肖奇.可見光響應金屬氧化物光催化劑的研究進展[J].材料導報,2009,23(7):28-33.
Huang Suping,Xiao Qi.Reseach progress in visible light responding metal oxide photocatalysts[J].Materials Review,2009,23(7):28-33.
[61]蔣勤,張守臣,王立秋,等.鈣鈦礦型光催化劑的制備及應用研究進展[J].化工進展,2006,25(2):136-140.
Jiang Qin,Zhang Shouchen,Wang Liqiu,et al.Preparation of perovskite photocatalysts and its applications progress[J].Chemical Industry and Engineering Progress,2006,25(2):136-140.
[62]陳婷,鄭惠丹,王品,等.鈣鈦礦型光催化劑的合成、改性摻雜與負載技術的研究進展[J].化學工程師,2008,155(8):17-21.
Chen Ting,Zheng Huidan,Wang Pin,et al.Progress of perovskite photocatalysts in synthesis,modification doping and loading technique[J].Chemical Engineer,2008,155(8):17-21.
[63]畢軍,吳艷波,魏斌斌,等.鈣鈦礦型LaCoO3的制備及其光催化性能[J].大連交通大學學報,2014,35(4):78-81.
Bi Jun,Wu Yanbo,Wei Binbin,et al.Preparation of perovskite LaCoO3and its photocatalytic properties[J].Journal of Dalian Jiaotong University,2014,35(4):78-81.
[64]鄧海洋,王維清,張杰,等.尖晶石型CoFe2O4/TiO2磁性光催化劑的制備及其性能[J].化工新型材料,2013,41(8):129-131.
Deng Haiyang,Wang Weiqing,Zhang Jie,et al.Preparation and properties of spinel type magnetic CoFe2O4/TiO2photocatalysts[J].New Chemical Materials,2013,41(8):129-131.
[65]Uno M,Kosuga A.Photo electrochemical study of lanthanide zirconium oxides,Ln2Zr2O7(Ln=La,Ce,Nd and Sm)[J].J Alloys Compounds,2006,420(1/2):291.
[66]Uno M,Kosuga A,Okui M,et al.Photoelectrochemical study of lanthanide titanium oxides,Ln2Ti2O7(Ln=La,Sm,and Gd)[J].J Alloys Compounds,2005,400(1/2):270.
[67]陳金毅.納米光催化劑用于污水處理的研究[D].武漢:華中師范大學,2002.
Chen Jinyi.Study on treatment of wastewater by nanometer photocatalyst[D].Wuhan:Central China Normal University,2002.
[68]李曉紅,顏秀茹,張月萍,等.TiO2/SnO2復合光催化劑的制備及光催化降解敵敵畏[J].應用化學,2001,18(1):32-35.
Li Xiaohong,Yan Xiuru,Zhang Yueping,et al. Preparation of TiO2/SnO2and photocatalytic degradation of dichlorvos over it[J].Chinese Journal of Applied Chemistry,2001,18(1):32-35.
[69]李莉,郭伊荇,周萍,等.孔道結構H3PW12O40/TiO2的制備及其可見光光催化降解水溶性染料的性能[J].催化學報,2005,26(3):209-215.
Li Li,Guo Yixing,Zhou Ping,et al.Preparation of porous H3PW12O40/TiO2and its photocatalytic activity for degradation of aqueous dyes under visible-light[J].Chinese Journal of Catalysis, 2005,26(3):209-215.
[70]葉劍,張瑞豐,侯琳熙.大孔TiO2/SiO2光催化劑用于空氣凈化的性能研究[J].環(huán)境科學與技術,2011,34(8):30-38.
Ye Jian,Zhang Ruifeng,Hou Linxi.Performance study on a large-sized macro-porous TiO2/SiO2photocatalyst in air cleaning[J].Environmental Science & Technology,2011,34(8):30-38.
[71]楊麗莉,徐衛(wèi),褚浩然.焚燒煙氣中二噁英污染控制技術[J].廣東化工,2013,15 (40):123-124.
Yang Lili,Xu Wei,Chu Haoran.Pollution control and treatment technology on dioxins of flue gas from incinerator[J]. Guangdong Chemical Industry,2013,15(40):123-124.
[72]索靜,柳麗芬,楊鳳林.負載型Cu-BiVO4復合光催化劑的制備及可見光降解氣相甲苯[J].催化學報,2009,30(4):323-327.
Suo Jing,Liu Lifen,Yang Fenglin.Preparation of supported Cu-BiVO4photocatalyst and its application in oxidative removal of toluene in air[J].Chinese Journal of Catalysis,2009,30(4):323-327.
[73]Li Xin,Wen Jiuqing,Low Jingxiang,et al.Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2to solar fuel[J].Science China Material,2014,57:79-100.
[74]Kato H,Hori M,Konta R,et al.Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2and O2under visible light irradiation[J].Chemistry Letters,2004,33(10):1348-1349.
Research development in visible photocatalyst
LiChengxi,MengZuchao*,LiuXiang
(College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, Shaanxi, China)
Abstract:The advance in TiO2,modified TiO2photocatalysts and non-TiO2photocatalytic systems in visible light catalytic field was reviewed.The photocatalytic principle and the application direction of the photocatalysts were summarized.The main problems of visible light photocatalyst development such as low quantum efficiency and visible light utilization,and difficult recovery were described.It is pointed out that the main research direction is preparation of novel photocatalyst with controllable composition and morphology, easy recovery and high utilization ratio of visible light.
Key words:catalytic chemistry; visible light photocatalyst; modified TiO2; non-TiO2system; bismuth visible photocatalyst
收稿日期:2015-09-24
基金項目:陜西省自然科學基金(2013JQ2015)資助項目; 陜西省教育廳基金(2013JK0673)資助項目;國家級大學生創(chuàng)新創(chuàng)業(yè)訓練計劃(201210705041)資助項目;西安石油大學博士科研啟動基金(Ys29031618)資助項目
作者簡介:李成希,1991年生,男,甘肅省白銀市人,在讀碩士研究生,主要從事油田應用化學研究。
doi:10.3969/j.issn.1008-1143.2016.04.002 10.3969/j.issn.1008-1143.2016.04.002
中圖分類號:TQ034;O643.36
文獻標識碼:A
文章編號:1008-1143(2016)04-0007-09
通訊聯(lián)系人:孟祖超,1978年生,男,副教授,主要從事油田化學與電化學方面的科研工作。