李紫嫣 李鑫 周進茹 李磊口腔疾病研究國家重點實驗室 華西口腔醫(yī)院修復(fù)科(四川大學(xué)) 成都 610041
?
低強度脈沖超聲在牙周組織再生中的作用
李紫嫣 李鑫 周進茹 李磊
口腔疾病研究國家重點實驗室 華西口腔醫(yī)院修復(fù)科(四川大學(xué)) 成都 610041
[摘要]牙周病、根面齲以及頜面先天畸形和創(chuàng)傷等都會不同程度地導(dǎo)致牙槽骨、牙齦和牙周膜等牙周支持組織缺損。低強度脈沖超聲(LIPUS)的溫?zé)嵝?yīng)和機械刺激可促進成骨質(zhì)細胞、成牙本質(zhì)細胞和牙周膜細胞(PDLC)的生成和分化。PDLC可分化成中胚層細胞譜系,進而生成牙槽骨、牙骨質(zhì)和牙周膜等牙周組織。堿性磷酸酶(AKP)和骨鈣蛋白(OCN)為骨形成或骨分化的晚期標志物,經(jīng)LIPUS刺激過的PDLC,其AKP活性和OCN的表達皆提高。經(jīng)LIPUS刺激可減少正畸過程中牙根的吸收,促進修復(fù)牙根缺損的成牙骨質(zhì)細胞的增殖分化和礦化,促進牙周組織傷口愈合和血管生成的結(jié)締組織生長因子的表達,從而加速牙周軟組織的愈合。LIPUS刺激在牙周支持組織再生中為一種安全無創(chuàng)的治療手段,但其最佳刺激強度和治療時間尚需繼續(xù)探索。
[關(guān)鍵詞]低強度脈沖超聲;牙周組織;再生
牙周組織由牙齦、牙周膜、牙槽骨和牙骨質(zhì)組成,牙周病和根面齲以及頜面先天畸形和創(chuàng)傷等都會不同程度地導(dǎo)致牙槽骨、牙齦和牙周膜等支持組織缺損,牙周附著喪失并最終失牙[1]。目前,牙周組織再生的一些主流治療方法,包括牙周翻瓣術(shù)、牙周植骨術(shù)及引導(dǎo)組織再生術(shù)已較為成熟[2];然而,這些治療方法都是以手術(shù)這種有創(chuàng)的方式達到治療目的的。低強度脈沖超聲(lowintensity pulsed ultrasound,LIPUS)是一種頻率與能量都較低的超聲,美國食品和藥品管理局分別與1994年和2000年先后批準LIPUS作為一種安全、無創(chuàng)的方式用于促進骨折愈合和治療骨不連[3-5]。LIPUS在促進牙周細胞與組織的代謝中起著重要的作用,本文就其促進牙周組織再生的作用機制及研究現(xiàn)狀作一綜述。
LIPUS主要的作用機制包括溫?zé)嵝?yīng)和機械作用,其中機械作用包括空穴效應(yīng)、聲流現(xiàn)象等,LIPUS用于治療的強度在20~50 mW·cm-2范圍內(nèi)。LIPUS利用溫度升高刺激組織與細胞的轉(zhuǎn)化分化,在這個強度范圍內(nèi)溫度的上升幅度小于1 ℃,不會導(dǎo)致組織受損[6]。溫?zé)嵝?yīng)可通過影響基質(zhì)金屬蛋白酶-1和膠原酶等的活性來加快組織細胞代謝生長,使牙周組織缺損修復(fù)更為迅速[7]。在30~100 mW·cm-2強度范圍內(nèi)的LIPUS會產(chǎn)生機械能量,聲波壓力穿透組織,增加細胞通透性,進而增強微小血管機械壓力,加速骨折愈合[8]。在體外,LIPUS可刺激成骨細胞與成軟骨細胞進行合成代謝,例如產(chǎn)生生長因子和信號分子,促進成骨細胞的分化及產(chǎn)生細胞外基質(zhì),影響細胞支架與細胞外基質(zhì)的附著等[9]。雖然大量的研究證明了LIPUS促進骨修復(fù)再生的作用機制,但對于其復(fù)雜骨折愈合的作用機制研究者們尚不清楚,仍需進一步研究。
LIPUS促進成骨質(zhì)細胞、成牙本質(zhì)細胞和牙周膜細胞(periodontal ligament cell,PDLC)生成分化的作用[10],對于牙周組織愈合與再生是十分必要的。
2.1LIPUS與牙周膜及牙槽骨再生
PDLC來源于牙周膜,是具有異質(zhì)性的細胞群體,具有類似干細胞的自我更新與多向分化的能力[11-14]。與骨髓基質(zhì)細胞一樣,PDLC可分化成中胚層細胞譜系,進而生成牙槽骨、牙骨質(zhì)和牙周膜等牙周組織[15]。
堿性磷酸酶(alkaline phos-phatase,AKP)是一種水解酶,通常被認為是成骨分化的早期標志物。在堿性環(huán)境中,AKP可以水解有機磷酸鹽復(fù)合物酯鍵,在骨鈣化過程中起到重要的作用[16]。Hu等[17]發(fā)現(xiàn),經(jīng)LIPUS處理過的PDLC 其AKP活性較未經(jīng)處理組明顯提高。除了增加AKP活性,經(jīng)過LIPUS處理后的PDLC會釋放更多骨鈣蛋白(osteocalcin,OCN)并隨時間延長OCN的質(zhì)量濃度相應(yīng)增加。OCN屬于γ-羧谷氨酸包含蛋白類,是一種由成骨細胞分泌并在骨改建與骨礦化中起重要作用的非膠原蛋白[18],通常被認為是骨形成或骨分化晚期的標志物[19]。
許多研究發(fā)現(xiàn)在經(jīng)LIPUS治療后,成骨相關(guān)基因表達也有明顯改變,包括核心結(jié)合因子-α1 (core binding factor α1,CBFA1)和整聯(lián)蛋白(inte-grin,INT)等,這些發(fā)現(xiàn)有助于更好理解LIPUS促進PDLC成骨分化能力。
CBFA1舊稱Runx2,是在成骨通路中十分重要的轉(zhuǎn)錄因子,能夠轉(zhuǎn)錄激活包括AKP、OCN、膠原蛋白1、骨橋蛋白及骨涎蛋白(bone sialoprotein,BSP)等多種成骨相關(guān)蛋白基因[20]。Yang等[21]發(fā)現(xiàn)經(jīng)LIPUS刺激后CBFA1 mRNA表達水平明顯提高,CBFA1是LIPUS刺激PDLC的目標因子。Li等[22]也發(fā)現(xiàn),LIPUS通過激活細胞外信號調(diào)節(jié)激酶1/2-Elkl促絲裂原激活蛋白激酶通路上調(diào)CBFA1的表達,進而促進PDLC成骨向分化。他們認為,LIPUS誘導(dǎo)的PDLC成骨分化與上調(diào)CBFA1有關(guān)。
INT是細胞表面受體的主要家族成員之一,介導(dǎo)細胞骨架與細胞外基質(zhì)的黏附并調(diào)節(jié)細胞信號級聯(lián)放大,在將機械刺激轉(zhuǎn)化成生化信號過程中發(fā)揮著作用[23]。其中,INT-β1在成骨細胞、成骨樣細胞及PDLC中有大量表達[24]。INT-B1在機械刺激下能促進牙周組織的重建。Ren等[25]認為,LIPUS誘導(dǎo)INT-B1介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路活化,也可能是導(dǎo)致PDLC成骨活性增強的重要機制。
2.2LIPUS與牙骨質(zhì)再生
牙骨質(zhì)主要起到維持牙列結(jié)構(gòu)穩(wěn)定與正常生理功能的作用。正畸治療的不良反應(yīng)之一就是牙骨質(zhì)吸收。在大部分正畸病例中,存在著從輕微的根尖吸收到整個牙體脫落等不同程度的牙骨質(zhì)吸收。El-Bialy等[26]發(fā)現(xiàn),LIPUS可減少正畸過程中牙根的吸收,其可能的作用機制是LIPUS促進具有修復(fù)牙根缺損的成牙骨質(zhì)細胞的增殖分化和礦化。
成牙骨質(zhì)細胞表現(xiàn)出許多與成骨細胞相同的特質(zhì),包括相似的分子性質(zhì)和促進礦化的能力[27]。過去的研究顯示,牙骨質(zhì)的合成代謝受機械刺激影響,在體內(nèi)機械刺激會增加成牙骨質(zhì)細胞表型標志物OCN和BSP的表達[28]。
Dalla-Bona等[29]在體外使用LIPUS刺激小鼠的成牙骨質(zhì)細胞發(fā)現(xiàn),LIPUS上調(diào)了與礦化代謝相關(guān)的一些基因表達。Rego等[30]發(fā)現(xiàn),LIPUS明顯上調(diào)COX2 mRNA的表達,增加的地諾前列酮(舊稱前列腺素E2)促進成牙骨質(zhì)細胞的分化,活化地諾前列酮受體EP2/EP4通路促進基質(zhì)礦化。Rego等[31]建立小鼠上頜第一磨牙部分脫出后即刻復(fù)位模型,給予21 d的LIPUS刺激,在評估LIPUS抑制牙根吸收的效果時發(fā)現(xiàn),LIPUS治療組牙根吸收面積明顯較對照組減??;在體外試驗中,LIPUS可通過減弱腫瘤壞死因子-α信號轉(zhuǎn)導(dǎo)通路來降低創(chuàng)傷引起的炎癥反應(yīng)程度。該研究表明,LIPUS作為一種治療手段,在增強牙周組織再生方面有著巨大的潛力。
2.3LIPUS與牙齦再生
LIPUS已用于諸多臨床種植中,旨在骨整合的過程中加速軟組織的愈合。Mostafa等[10]經(jīng)過連續(xù)3周每天5 min的LIPUS刺激,人牙齦成纖維細胞量明顯提高,LIPUS通過上調(diào)AKP活性和增加骨橋蛋白表達來激發(fā)人牙齦成纖維細胞成骨向分化的潛能。Ikai等[32]連續(xù)4周每天20 min進行LIPUS刺激,促進了牙齦上皮細胞的增殖,加速了翻瓣術(shù)后牙周傷口的愈合。LIPUS可通過增加促進牙周組織傷口愈合和血管生成的結(jié)締組織生長因子的表達來加速牙周軟組織愈合[33],但目前有關(guān)牙齦組織再生的研究甚少,其促進牙齦組織再生的具體機制需繼續(xù)研究。
LIPUS應(yīng)用于骨組織修復(fù)的療效已被廣泛的認同,但其作用于牙周組織再生的文獻尚為缺乏。根據(jù)目前的文獻數(shù)據(jù)表明,LIPUS作為一種安全無創(chuàng)的治療手段在牙周支持組織再生中有著廣闊的應(yīng)用前景;但其作為在牙周再生治療領(lǐng)域中的新方法,其作用于牙周組織再生的生物學(xué)機制,如何以最優(yōu)化的LIPUS強度及治療時間,如何達到最佳的細胞應(yīng)答與牙周修復(fù)效果仍在探索當中。
[1]Chen FM,Jin Y.Periodontal tissue engineering and regeneration: current approaches and expanding opportunities[J].Tissue Eng Part B Rev,2010,16 (2):219-255.
[2]Needleman IG,Worthington HV,Giedrys-Leeper E,et al.Guided tissue regeneration for periodontal infra-bony defects[J].Cochrane Database Syst Rev,2006(2):CD001724.
[3]Romano CL,Romano D,Logoluso N.Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review[J].Ultrasound Med Biol,2009,35(4):529-536.
[4]Malizos KN,Hantes ME,Protopappas V,et al.Lowintensity pulsed ultrasound for bone healing: an overview[J].Injury,2006,37(Suppl 1):S56-S62.
[5]Azuma Y,Ito M,Harada Y,et al.Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus[J].J Bone Miner Res,2001,16(4):671-680.
[6]Chang WH,Sun JS,Chang SP,et al.Study of thermal effects of ultrasound stimulation on fracture healing [J].Bioelectromagnetics,2002,23(4):256-263.
[7]Welgus HG,Jeffrey JJ,Eisen AZ.Human skin fibroblast collagenase.Assessment of activation energy and deuterium isotope effect with collagenous substrates[J].J Biol Chem,1981,256(18):9516-9521.
[8]Rawool NM,Goldberg BB,F(xiàn)orsberg F,et al.Power Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound[J].J Ultrasound Med,2003,22(2):145-153.
[9]Claes L,Willie B.The enhancement of bone regeneration by ultrasound[J].Prog Biophys Mol Biol,2007,93(1/2/3):384-398.
[10]Mostafa NZ,Uluda? H,Dederich DN,et al.Anabolic effects of low-intensity pulsed ultrasound on human gingival fibroblasts[J].Arch Oral Biol,2009,54(8):743-748.
[11]Seo BM,Miura M,Gronthos S,et al.Investigation of multipotent postnatal stem cells from human periodontal ligament[J].Lancet,2004,364(9429):149-155.
[12]Lim K,Kim J,Seonwoo H,et al.In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bonederived mesenchymal stem cells for tooth tissue engineering[J].Biomed Res Int,2013:269724.
[13]Bains VK,Mohan R,Bains R.Application of ultrasound in periodontics: PartⅡ[J].J Indian Soc Periodontol,2008,12(3):55-61.
[14]Liu Y,Zheng Y,Ding G,et al.Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine[J].Stem Cells,2008,26(4):1065-1073.
[15]Washio K,Iwata T,Mizutani M,et al.Assessment of cell sheets derived from human periodontal ligament cells: a pre-clinical study[J].Cell Tissue Res,2010,341(3):397-404.
[16]Ciavarella S,Dammacco F,De Matteo M,et al.Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts[J].Stem Cells Dev,2009,18(8):1211-1220.
[17]Hu B,Zhang Y,Zhou J,et al.Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells[J].PLoS One,2014,9(4):e95168.
[18]Lee NK,Sowa H,Hinoi E,et al.Endocrine regulation of energy metabolism by the skeleton[J].Cell,2007,130(3):456-469.
[19]Bharadwaj S,Naidu AG,Betageri GV,et al.Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women[J].Osteoporos Int,2009,20(9):1603-1611.
[20]Eriksen EF.Cellular mechanisms of bone remodeling[J].Rev Endocr Metab Disord,2010,11(4):219-227.
[21]Yang Y,Yang Y,Li X,et al.Functional analysis of core binding factor a1 and its relationship with related genes expressed by human periodontal ligament cells exposed to mechanical stress[J].Eur J Orthod,2010,32(6):698-705.
[22]Li L,Han M,Li S,et al.Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway[J].DNA Cell Biol,2013,32(9):488-497.
[23]Juliano RL.Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins,cadherins,selectins,and immunoglobulin-superfamily members[J].Annu Rev Pharmacol Toxicol,2002,42:283-323.
[24]Palaiologou AA,Yukna RA,Moses R,et al.Gingival,dermal,and periodontal ligament fibroblasts express different extracellular matrix receptors[J].J Periodontol,2001,72(6):798-807.
[25]Ren L,Yang Z,Song J,et al.Involvement of p38 MAPK pathway in low intensity pulsed ultrasound induced osteogenic differentiation of human periodontal ligament cells[J].Ultrasonics,2013,53(3):686-690.
[26]El-Bialy T,El-Shamy I,Graber TM.Repair of orthodontically induced root resorption by ultrasound in humans[J].Am J Orthod Dentofacial Orthop,2004,126(2):186-193.
[27]Bosshardt DD.Are cementoblasts a subpopulation of osteoblasts or a unique phenotype[J].J Dent Res,2005,84(5):390-406.
[28]Pavlin D,Gluhak-Heinrich J.Effect of mechanical loading on periodontal cells[J].Crit Rev Oral Biol Med,2001,12(5):414-424.
[29]Dalla-Bona DA,Tanaka E,Inubushi T,et al.Cementoblast response to low- and high-intensity ultrasound[J].Arch Oral Biol,2008,53(4):318-323.
[30]Rego EB,Inubushi T,Kawazoe A,et al.Ultrasound stimulation induces PGE(2) synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway[J].Ultrasound Med Biol,2010,36 (6):907-915.
[31]Rego EB,Inubushi T,Miyauchi M,et al.Ultrasound stimulation attenuates root resorption of rat replanted molars and impairs tumor necrosis factor-α signaling in vitro[J].J Periodont Res,2011,46(6):648-654.
[32]Ikai H,Tamura T,Watanabe T,et al.Low-intensity pulsed ultrasound accelerates periodontal wound healing after flap surgery[J].J Periodont Res,2008,43(2):212-216.
[33]Shiraishi R,Masaki C,Toshinaga A,et al.The effects of low-intensity pulsed ultrasound exposure on gingival cells[J].J Periodontol,2011,82(10):1498-1503.
(本文采編王晴)
Effects of low-intensity pulsed ultrasound in periodontal tissue regeneration
Li Ziyan,Li Xin,Zhou Jinru,Li Lei.(State Key Laboratory of Oral Diseases,Dept.of Prosthodontics,West China Hospital of Stomatology,Sichuan University,Chengdu 610041,China)
[Abstract]Periodontal disease,root caries,maxillofacial deformity,and trauma will cause defects in periodontal supporting tissue,such as alveolar bone,gingiva,and periodontium.Low-intensity pulsed ultrasound(LIPUS) can generate hyperthermia and mechanical stimulation,which can promote the generation and differentiation of cementoblast,odontoblast,and periodontal ligament cell(PDLC).PDLC can differentiate into mesodermal lineages and subsequently generate alveolar bone,cementum,and periodontium.Alkaline phosphatase(AKP) and osteocalcin(OCN) are the advanced markers of osteogenesis and osteogenic differentiation.LIPUS-stimulated PDLC shows improved AKP activity and OCN expression.LIPUS can also decrease the root absorption during orthodontic treatment;accelerate the proliferation,differentiation,and mineralization of cementoblast,which can repair root defects;and improve the expression of connective tissue growth factor that can accelerate angiogenesis and healing of periodontal tissue.LIPUS,as a safe and non-invasive treatment,can be applied in periodontal tissue regeneration.However,further research should be conducted to determine the most suitable stimulation intensity and treatment time.
[Key words]low-intensity pulsed ultrasound;periodontium;regeneration
[收稿日期]2015-07-17;[修回日期]2016-01-28
[作者簡介]李紫嫣,碩士,Email:445821974@qq.com
[通信作者]李磊,副教授,博士,Email:geraldleelei@163.com
[中圖分類號]R 781.4
[文獻標志碼]A[doi] 10.7518/gjkq.2016.03.017