亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        糖尿病腎病與細(xì)胞因子的相關(guān)性研究進(jìn)展

        2016-03-10 15:04:07劉雪峰張睿
        河北醫(yī)藥 2016年21期
        關(guān)鍵詞:系膜胞外基質(zhì)生長(zhǎng)因子

        劉雪峰 張睿

        ?

        糖尿病腎病與細(xì)胞因子的相關(guān)性研究進(jìn)展

        劉雪峰張睿

        糖尿病腎病(DN)為糖尿病常見(jiàn)并發(fā)癥之一,其病因大致分為遺傳因素、糖脂代謝紊亂、細(xì)胞因子、炎性反應(yīng)、微循環(huán)障礙等,多種病因可單獨(dú)或協(xié)同對(duì)腎小球、腎血管、腎小管、腎間質(zhì)產(chǎn)生損害,最終導(dǎo)致腎衰竭,細(xì)胞因子激活是其病變形成的直接原因,細(xì)胞因子間相互作用形成了糖尿病腎病細(xì)胞因子網(wǎng)絡(luò),主要包括腫瘤壞死因子(TNF-α)、轉(zhuǎn)化生長(zhǎng)因子(TGF-β)、白介素因子(IL-18、IL-6、IL-8)、胰島素樣生長(zhǎng)因子-1(IGF-1)、單核細(xì)胞趨化蛋白-1(MCP-1)、結(jié)締組織生長(zhǎng)因子(CTGF)、血管內(nèi)皮生長(zhǎng)因子(VEGF)、血小板衍生因子(PDGF-BB)等。對(duì)DN與細(xì)胞因子的相關(guān)性研究為DN治療提供了理論基礎(chǔ)支持,對(duì)DN做出早期診斷和治療提供了參考。

        細(xì)胞因子;糖尿病腎病

        糖尿病腎病(DN)是糖尿病最嚴(yán)重的并發(fā)癥之一,是導(dǎo)致1型糖尿病患者死亡的主要原因,而在2型糖尿病中危險(xiǎn)程度僅次于心腦的并發(fā)癥[1]。流行病學(xué)顯示1型糖尿病患糖尿病腎病的幾率為33%~40%,2型糖尿病患糖尿病腎病的幾率為20%左右[2]。1型和2型的糖尿病患者一旦出現(xiàn)蛋白尿,5年以后發(fā)生腎衰的患者超過(guò)50%,10年以后發(fā)生腎衰的患者超過(guò)80%[3]。Sun等[4]研究發(fā)現(xiàn)DN患者腎臟中有巨噬細(xì)胞的浸潤(rùn)之后,后續(xù)研究表明內(nèi)皮因子-1(ET-1)、腫瘤壞死因子(TNF-α)、白介素-6(IL-6)等因子可以加重糖尿病患者的腎臟損害,加速糖尿病腎病的進(jìn)程,逐漸證實(shí)了炎性因子介導(dǎo)DN的發(fā)生發(fā)展。炎性因子、生長(zhǎng)因子與趨化因子等眾多細(xì)胞因子通過(guò)各自的旁分泌、自分泌發(fā)揮功能,之間又具有協(xié)同與拮抗的作用。細(xì)胞因子是由免疫細(xì)胞和非免疫細(xì)胞經(jīng)刺激而合成的一類具有生物學(xué)活性的小分子蛋白質(zhì),包括炎性細(xì)胞因子、趨化因子、生長(zhǎng)因子等,在DN的發(fā)生發(fā)展過(guò)程中扮演重要角色[5]?,F(xiàn)將近年來(lái)學(xué)者對(duì)細(xì)胞因子造成DN腎臟組織損害機(jī)制的研究和進(jìn)展綜述如下。

        1 炎性細(xì)胞因子

        炎性細(xì)胞因子是參與各種炎性反應(yīng)的細(xì)胞因子,起主要作用的因子有腫瘤壞死因子(TNF-α)、轉(zhuǎn)化生長(zhǎng)因子(TGF-β)、白介素因子(IL-18、IL-6、IL-8)等。

        1.1TNF-αTNF-α為多功能細(xì)胞因子,其聯(lián)合高糖可損壞腎臟系膜細(xì)胞,通過(guò)擾亂血管擴(kuò)張神經(jīng)及血管收縮神經(jīng)的平衡,導(dǎo)致腎臟血流動(dòng)力學(xué)異常,最嚴(yán)重的是TNF-α可增加胰島素抵抗,使血糖維持高值,增加并發(fā)癥的發(fā)生幾率及進(jìn)展速度[6,7]。TNF-α可使胰島素受體底物磷酸化受到抑制,并使外周組織對(duì)葡萄糖攝取減少,導(dǎo)致胰島素抵抗,脂肪分解受到刺激,從而胰島素受體底物激活,葡萄糖轉(zhuǎn)運(yùn)易位干擾[8,9]。TNF-α可引起腎小球上皮細(xì)胞和系膜細(xì)胞毒性,可能引起腎損害[10,11]。TNF-α隨著DN的病情進(jìn)展而升高,且TNF-α水平升高顯示發(fā)生DN的幾率增大[12],其可能機(jī)制為:與腎小管基膜增厚有關(guān);與足細(xì)胞數(shù)量減少和損傷有關(guān);促進(jìn)系膜細(xì)胞酶原激活物抑制劑1、纖維連接蛋白的表達(dá),使外基質(zhì)形成,并抑制其降解[13,14]。

        1.2IL-8IL-8可促使血管活性因子產(chǎn)生,引起血管收縮,導(dǎo)致血管內(nèi)皮損傷,血管通透性改變,產(chǎn)生蛋白尿,又可誘導(dǎo)其他炎性因子的產(chǎn)生及氧化反應(yīng)的發(fā)生,共同加速DN的進(jìn)展[15,16]。高血糖的環(huán)境又可促使IL-8的分泌增加,即使在DN早期也可發(fā)現(xiàn)IL-8的存在, IL-8水平升高與HbA1c有關(guān),且與糖尿病腎損害有一定關(guān)系[17]。

        1.3IL-6IL-6可通過(guò)促進(jìn)T、B細(xì)胞過(guò)度激活和增殖,加速細(xì)胞凋亡,促進(jìn)胰島B細(xì)胞破壞,加重病情,又可促進(jìn)腎臟系膜增殖,產(chǎn)生蛋白尿[18,19]。IL-6刺激系膜細(xì)胞,氧自由基生成,過(guò)氧化脂質(zhì)代謝產(chǎn)物增加,細(xì)胞內(nèi)膜和基膜損傷,產(chǎn)生蛋白尿,致使DN發(fā)生[20,21]。

        1.4IL-18IL-18促進(jìn)腎小球系膜細(xì)胞有絲分裂、增殖,產(chǎn)生、釋放細(xì)胞因子,加重炎性細(xì)胞在腎小球內(nèi)積聚,加速DN的進(jìn)程[22,23]。IL-18可使細(xì)胞外基質(zhì)蛋白分子合成增加,抑制基質(zhì)蛋白分子降解,引起腎小球纖維化或硬化[24]; IL-18促進(jìn)體內(nèi)其他炎性因子聚集和合成,加劇腎小球損傷[25]。

        1.5IL-17α有研究發(fā)現(xiàn)IL-17α可介導(dǎo)產(chǎn)生胰島素,加重糖尿病病情,還與腎間質(zhì)、腎小管的病變有關(guān)[26]。

        2 生長(zhǎng)因子、趨化因子

        2.1轉(zhuǎn)化生長(zhǎng)因子(TGF)TGF-β可促使腎小球肥大,刺激細(xì)胞外基質(zhì)合成,腎小球細(xì)胞外基質(zhì)合成增加,因介導(dǎo)足細(xì)胞損傷致腎小球硬化,導(dǎo)致蛋白尿形成[27]。TGF-β的過(guò)度產(chǎn)生還可促進(jìn)腎小管上皮-肌成纖維細(xì)胞轉(zhuǎn)分化引起腎間質(zhì)纖維化,加速DN的進(jìn)程[28]。TGF-β1可刺激細(xì)胞外基質(zhì)的大量分泌, 同時(shí)抑制基質(zhì)蛋白降解酶,促使腎組織硬化,加重DN。TGF-β1可直接誘導(dǎo)腎臟間質(zhì)纖維化;可誘導(dǎo)足細(xì)胞凋亡[29]。

        2.2胰島素樣生長(zhǎng)因子-1(IGF-1)IGF-1是腎臟正常生長(zhǎng)發(fā)育所需的一種重要生長(zhǎng)因子,具有促進(jìn)細(xì)胞增生、擴(kuò)張微血管、促進(jìn)細(xì)胞外基質(zhì)生成的作用,導(dǎo)致腎小球肥大、腎間質(zhì)化[30]。IGF-1在DN發(fā)生發(fā)展中主要作用機(jī)制為:促進(jìn)腎臟系膜細(xì)胞外基質(zhì)增多和細(xì)胞增生[31];刺激纖維鏈接蛋白、Ⅳ型膠原蛋白、層黏蛋白等細(xì)胞外基層蛋白合成[32];增加系膜細(xì)胞對(duì)葡萄糖攝取[33];IGF-1聚集與腎小球肥大有關(guān), 同時(shí)IGF-1刺激腎小球系膜細(xì)胞增生也可致腎小球肥大,IGF-1通過(guò)誘導(dǎo)腎臟緩激肽表達(dá),促進(jìn)NO產(chǎn)生[34]。另研究表明IGF-1可以損害足細(xì)胞,產(chǎn)生尿蛋白[35]。

        2.3血管內(nèi)皮生長(zhǎng)因子(VEGF)VEGF是一種高度特異性血管內(nèi)皮細(xì)胞生長(zhǎng)因子,實(shí)驗(yàn)研究表明VEGF可在糖尿病大鼠腎臟發(fā)生病變時(shí)在腎小球內(nèi)的表達(dá)上調(diào),增加腎臟新血管產(chǎn)生,參與糖尿病腎病早期病變,VEGF又稱為血管通透因子,使腎小球血管通透性增加,處于高濾過(guò)狀態(tài),加重糖尿病腎病蛋白尿的癥狀[36]。VEGF參與DN主要發(fā)病機(jī)制:促進(jìn)上皮細(xì)胞和成纖維細(xì)胞增生,使腎小管細(xì)胞和腎小球肥大;促進(jìn)腎小球基膜纖維化和增厚;刺激血管內(nèi)皮細(xì)胞增殖、分化, 增加血管內(nèi)皮細(xì)胞通透性,導(dǎo)致大量血漿蛋白滲出,促進(jìn)蛋白尿產(chǎn)生; 促進(jìn)膠原生成,致細(xì)胞外基質(zhì)增厚[37-39]。

        2.4結(jié)締組織生長(zhǎng)因子(CTGF)CTGF主要通過(guò)增加細(xì)胞外基質(zhì)及纖維原細(xì)胞,加速腎間質(zhì)纖維化[40];作為T(mén)GF-β的下游因子,還可介導(dǎo) TGF-β1促使腎小球細(xì)胞肥大、腎小管上皮細(xì)胞向肌成纖維細(xì)胞轉(zhuǎn)分化,加速腎臟損傷[41]。CTGF在DN中主要作用機(jī)制:與腎小管基膜增厚有關(guān);與足細(xì)胞數(shù)量減少和損傷有關(guān);通過(guò)上調(diào)系膜細(xì)胞纖維連接蛋白表達(dá),促進(jìn)系膜細(xì)胞外基質(zhì)形成,并抑制其降解[42,43]。

        2.5血小板衍生因子(PDGF-BB)PDGF-BB在腎臟中的作用主要包括誘導(dǎo)腎小球系膜細(xì)胞增生,使腎小球肥大,促進(jìn)細(xì)胞外基質(zhì)積聚使基底膜增生,進(jìn)而使腎小球基底膜的增厚,腎小球硬化,通透性增加,產(chǎn)生蛋白尿[44]。研究表明PDGF-BB還可誘導(dǎo)TGF-β及其受體的合成增多,使細(xì)胞外基質(zhì)合成增加,加速腎小球細(xì)胞增生、肥大[45]。

        2.6單核細(xì)胞趨化蛋白-1(MCP-1)MCP-1主要參與單核細(xì)胞及巨噬細(xì)胞的活化和浸潤(rùn),作為糖尿病腎病最重要的生物學(xué)標(biāo)志物,通過(guò)趨化巨噬細(xì)胞浸潤(rùn)腎小球及腎小管間質(zhì),引起糖尿病腎血管損傷及腎基質(zhì)纖維化,以及與體內(nèi)氧化應(yīng)激狀態(tài)相結(jié)合共同損傷腎組織[46]。MCP-1在DN患者中作用機(jī)制:高血糖刺激蛋白含量增高及MCP-1 mRNA高表達(dá);DN患者PDGF等細(xì)胞因子水平升高,MCP-1在腎內(nèi)皮細(xì)胞、系膜細(xì)胞的高表達(dá); DN患者存在血脂代謝紊亂,使低密度脂蛋白升高,刺激系膜細(xì)胞MCP-1 mRNA表達(dá)增高[47,48]。

        2.7肝細(xì)胞生長(zhǎng)因子(HGF)HGF作為一種抗纖維化、誘導(dǎo)和調(diào)節(jié)的因子,可對(duì)腎臟起保護(hù)作用, 防止腎纖維化。HGF與中期因子是一對(duì)抗損傷與損傷因子, DN早期HGF分泌增加, 抑制TGF-β產(chǎn)生,但隨中期因子增多,TGF-β占優(yōu)勢(shì),抑制HGF產(chǎn)生,抗纖維化作用減弱,導(dǎo)致DN發(fā)展[49]。HGF是一種強(qiáng)烈的有絲分裂原而作用于成熟肝細(xì)胞, 有促細(xì)胞遷移、 形態(tài)發(fā)生、有絲分裂等作用。早期高血糖時(shí), 細(xì)胞損傷引發(fā)機(jī)體發(fā)生防御反應(yīng), 使 HGF/c-met上調(diào),促進(jìn)細(xì)胞有絲分裂, 修復(fù)損傷細(xì) 胞;持續(xù)的高血糖,使細(xì)胞防御能力下降,逐漸降低HGF/c-met表達(dá),轉(zhuǎn)化TGF-β、CTGF增多,使ECM蛋白表達(dá)增多, 抑制降解, 致細(xì)胞肥大,最終引起腎纖維化[50]。

        3 其他

        3.1內(nèi)皮素(ET)ET有ET-1、ET-2、ET-3三種異構(gòu)肽,由內(nèi)皮細(xì)胞合成分泌。ET-1有強(qiáng)而持久的縮血管作用,并可促進(jìn)平滑肌增值作用。ET-1致DN的主要機(jī)制為:與TNF-α、PDGF-BB等因子對(duì)腎臟損害相關(guān);誘導(dǎo)TGF-β、血管緊張素轉(zhuǎn)換酶產(chǎn)生,使系膜增生、腎肥大管收縮及細(xì)胞外基質(zhì)堆積;抑制腎臟對(duì)水重吸收,使腎小球動(dòng)脈硬化,腎系膜增生,腎小球?yàn)V過(guò)率下降[51]。腎組織ET升高又通過(guò)多種機(jī)制加速DN的發(fā)展,形成惡性循環(huán)[52]。

        3.2核因子κB(NF-κB)NF-κB是一種核轉(zhuǎn)錄因子,調(diào)控細(xì)胞增殖分化、炎癥和免疫等過(guò)程,DN早期存在核因子B信號(hào)轉(zhuǎn)導(dǎo)途徑的激活和持續(xù)高表達(dá),NF-κB可促進(jìn)腎組織巨噬、單核細(xì)胞浸潤(rùn),使組織纖維化及炎癥,從而損傷腎間質(zhì)[53]。糖基化終末產(chǎn)物是DN的重要相關(guān)因子,其與相應(yīng)受體結(jié)合后能激活NF-κB,致細(xì)胞間黏附分子1 釋放,從而參與DN發(fā)生、發(fā)展[54]。

        DN是糖尿病主要并發(fā)癥之一,其發(fā)病機(jī)制復(fù)雜,細(xì)胞因子網(wǎng)絡(luò)調(diào)控在DN發(fā)生發(fā)展過(guò)程中起重要作用。細(xì)胞因子間相互影響,相互協(xié)調(diào)。在血流動(dòng)力學(xué)變化、晚期糖基化終末產(chǎn)物和高血糖等作用下,多種細(xì)胞因子分泌增加,細(xì)胞因子部分被激活,被激活的細(xì)胞因子又激活或抑制其他細(xì)胞因子,促進(jìn)成纖維細(xì)胞增殖,和ECM堆積,ET-1可收縮球后毛細(xì)血管床而影響球后微循環(huán),引起腎小管上皮細(xì)胞缺血,加重腎臟損害。如ET-1可誘導(dǎo)TGF-β產(chǎn)生,TGF-β誘導(dǎo)和激活VEGF又抑制了NF-κB的活性,并使血清HGF水平降低。TGF-β功能多樣, 在細(xì)胞因子網(wǎng)絡(luò)中起到了重要作用, 故被稱為細(xì)胞因子網(wǎng)絡(luò)的核心因子, 與其他各種細(xì)胞因子共同促進(jìn)D N的發(fā)生、發(fā)展。

        隨著細(xì)胞因子研究的不斷深入,為診斷和治療DN提供了新的方法和新靶點(diǎn)。如GTGF可為預(yù)防腎小球纖維化的重要指標(biāo),血清IL-18水平可作為診斷DN的重要手段,而抗內(nèi)皮素受體 A阻斷劑、TGF-β抗體等可作為潛在治療DN藥物。HGF等細(xì)胞因子也有可能為治療DN臨床研究的新思路。細(xì)胞因子在DN發(fā)病機(jī)制中具有重要作用,細(xì)胞因子網(wǎng)絡(luò)的相關(guān)研究為DN的預(yù)防和個(gè)體化藥物治療開(kāi)辟了新途徑,有利于阻止或延緩DN發(fā)生、發(fā)展,提高DN患者的生活質(zhì)量。

        1Kim BH,Lee ES,Choi R,et al.Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 fiabetic nephropathy.Yonsei Med J,2016,57:664-673.

        2Ziqiang X,Yunqiang H,Hongxing F,et al.Islet transplantation restores the damage of glomerulus filtration membrane in a rat model of streptozotocin-induced diabetic nephropathy.J Pak Med Assoc,2016,66:296-301.

        3Shimizu M,Furuichi K,Toyama T,et al.Serum autotaxin levels are associated with proteinuria and kidney lesions in japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy.Intern Med,2016,55:215-221.

        4Sun L,Kanwar YS.Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy.Kidney Int,2015,88:662-665.

        5Jacoby AS,Munkholm K,Vinberg M,et al.Cytokines, brain-derived neurotrophic factor and C-reactive protein in bipolar I disorder-Results from a prospective study.J Affect Disord,2016,197:167-174.

        6Gülü A,Erken HA,Erken G,et al.The effects of ozone therapy on caspase pathways,TNF-α,and HIF-1α in diabetic nephropathy.Int Urol Nephrol,2016,48:441-450.

        7Peng Y,Li LJ.TNF-α-308G/A polymorphism associated with TNF-α protein expression in patients with diabetic nephropathy.Int J Clin Exp Pathol,2015,8:3127-3131.

        8Dabhi B,Mistry KN.Oxidative stress and its association with TNF-α-308 G/C and IL-1α-889 C/T gene polymorphisms in patients with diabetes and diabetic nephropathy.Gene,2015,562:197-202.

        9Gupta S,Mehndiratta M,Kalra S,et al.Association of tumor necrosis factor (TNF) promoter polymorphisms with plasma TNF-α levels and susceptibility to diabetic nephropathy in North Indian population.J Diabetes Complications,2015,29:338-342.

        10Omote K,Gohda T,Murakoshi M,et al.Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice.Am J Physiol Renal Physiol,2014,306:1335-1347.

        11Zhao Y,Yang J,Zhang L,et al.Association between TNF-α -308G/A polymorphism and diabetic nephropathy risk: a meta-analysis.Int Urol Nephrol,2013,45:1653-1659.

        12Rakitianskaia IA,Riabov SI,Azanchevskaia SV,et al.Role of intrarenal product TNF-alpha in the development of glomerular and tubulointerstitial tissues changes in elderly patients with diabetic nephropathy.Adv Gerontol,2013,26:658-665.

        13Bolignano D.TNF-alpha receptors (TNFRS):the biomarkers of progressive diabetic nephropathy we were waiting for?G Ital Nefrol, 2012,29:262.

        14Fernández-Real JM,Vendrell J,García I,et al.Structural damage in diabetic nephropathy is associated with TNF-α system activity.Acta Diabetol,2012,49:301-305.

        15Khajehdehi P,Pakfetrat M,Javidnia K,et al.interleukin-8 levels in patients with overt type 2 diabetic nephropathy:a randomized,double-blind and placebo-controlled study. Scand J Urol Nephrol,2011,45:365-370.

        16Tashiro K,Koyanagi I,Saitoh A,et al.Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8),and renal injuries in patients with type 2 diabetic nephropathy.J Clin Lab Anal,2002,16:1-4.

        17Verhave JC,Bouchard J,et al.Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy:a prospective study.Diabetes Res Clin Pract,2013,101:333-340.

        18Karadeniz M,Erdogan M,Berdeli A,et al.Association of interleukin-6 -174 G>C promoter polymorphism with increased risk of type 2 diabetes mellitus patients with diabetic nephropathy in Turkey.Genet Test Mol Biomarkers,2014,18:62-65.

        19Shelbaya S,Amer H,Seddik S,et al.Study of the role of interleukin-6 and highly sensitive C-reactive protein in diabetic nephropathy in type 1 diabetic patients.Eur Rev Med Pharmacol Sci,2012,16:176-182.

        20Rakitianskaia IA,Riabov SI,Dubrova AG,et al.The role of IL-6 in the development of morphological changes in renal tissue in elderly patients with type 2 diabetes complicated by diabetic nephropathy.Adv Gerontol,2012,25:632-637.

        21Svensson MK,Eriksson JW.Change in the amount of body fat and IL-6 levels is related to altered insulin sensitivity in type 1 diabetes patients with or without diabetic nephropathy.Horm Metab Res,2011,43:209-215.

        22Elsherbiny NM,Al-Gayyar MM.The role of IL-18 in type 1 diabetic nephropathy: The problem and future treatment.Cytokine,2016,81:15-22.

        23Luo C,Li T,Zhang C,Chen Q,et al.Therapeutic effect of alprostadil in diabetic nephropathy: possible roles of angiopoietin-2 and IL-18.Cell Physiol Biochem,2014,34:916-928.

        24Elsherbiny NM,Abd El,Galil KH,et al.Reno-protective effect of NECA in diabetic nephropathy:implication of IL-18 and ICAM-1.Eur Cytokine Netw,2012,23:78-86.

        25Fujita T,Shimizu C,Fuke Y,et al.Serum interleukin-18 binding protein increases with behavior different from IL-18 in patients with diabetic nephropathy.Diabetes Res Clin Pract,2011,92:66-69.

        26Yu R,Bo H,Villani V,et al.Low-Dose IL-17 therapy prevents and reverses diabetic nephropathy,metabolic syndrome,and associated organ fibrosis.Kidney Blood Press Res,2016,41:55-69.

        27Al-Onazi AS,Al-Rasheed NM,Attia HA,et al.Ruboxistaurin attenuates diabetic nephropathy via modulation of TGF-β1/Smad and GRAP pathways.J Pharm Pharmacol,2016,68:219-232.

        28Xin C,Xia Z,Jiang C,et al.Xiaokeping mixture inhibits diabetic nephropathy in streptozotocin-induced rats through blocking TGF-β1/Smad7 signaling.Drug Des Devel Ther,2015,9:6269-6274.

        29Wang T,Chen SS,Chen R,et al.Reduced beta 2 glycoprotein I improve diabetic nephropathy via inhibiting TGF-β1-p38 MAPK pathway.Int J Clin Exp Med,2015,8:6852-6865.

        30Bach LA,Dean R,Youssef S,et al.Aminoguanidine ameliorates changes in the IGF system in experimental diabetic nephropathy.Nephrol Dial Transplant,2000,15:347-354.

        31Wang SN,Lapage J,Hirschberg R.Glomerular ultrafiltration of IGF-I may contribute to increased renal sodium retention in diabetic nephropathy.J Lab Clin Med,1999,134:154-160.

        32Lupia E,Elliot SJ,Lenz O,et al.IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy.Diabetes,1999,48:1638-1644.

        33Bazzaz JT,Amoli MM,Taheri Z,et al.TGF-β1 and IGF-I gene variations in type 1 diabetes microangiopathic complications.J Diabetes Metab Disord,2014,13:45.

        34Troib A,Landau D,Youngren JF,et al.The effects of type 1 IGF receptor inhibition in a mouse model of diabetic kidney disease.Growth Horm IGF Res,2011,21:285-291.

        35Levin-Iaina N,Iaina A,Raz I.The emerging role of NO and IGF-1 in early renal hypertrophy in STZ-induced diabetic rats. Diabetes Metab Res Rev,2011,27:235-243.

        36Huang H, Hu L, Lin J,et al.Effect of fosinopril on chemerin and VEGF expression in diabetic nephropathy rats. Int J Clin Exp Pathol,2015,8:11470-11474.

        37Carranza K, Veron D, Cercado A, et al.Cellular and molecular aspects of diabetic nephropathy; the role of VEGF-A.Nefrologia,2015,35:131-138.

        38Patel L, Thaker A.The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy. Ren Fail,2014,36:916-924.

        39Tufro A, Veron D.VEGF and podocytes in diabetic nephropathy. Semin Nephrol,2012,32:385-393.

        40Wang J, Duan L, Guo T,et al. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy. J Diabetes Complications,2016,30:406-414.

        41Koga K, Yokoi H, Mori K,et al.MicroRNA-26a inhibits TGF-β-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy. Diabetologia,2015,58:2169-2180.

        42Rooney B, O'Donovan H, Gaffney A,et al.CTGF/CCN2 activates canonical Wnt signalling in mesangial cells through LRP6: implications for the pathogenesis of diabetic nephropathy. FEBS Lett,2011,585:531-538.

        43Lin FL, Shen HC, Zhu B,et al.Effects of simvastatin on expression of CTGF and α-SMA in renal tubulointerstitium of rats with diabetic nephropathy. Zhejiang Da Xue Xue Bao Yi Xue Ban,2010,39:511-516.

        44Drela E, Kulwas A, Jundzi W,et al. VEGF-A and PDGF-BB-angiogenic factors and the stage of diabetic foot syndrome advancement. Endokrynol Pol,2014,65:306-312.

        45Wang QY, Guan QH, Chen FQ. The changes of platelet-derived growth factor-BB (PDGF-BB) in T2DM and its clinical significance for early diagnosis of diabetic nephropathy. Diabetes Res Clin Pract,2009,85:166-170.

        46Yi B, Hu X, Zhang H,et al. Nuclear NF-κB p65 in peripheral blood mononuclear cells correlates with urinary MCP-1, RANTES and the severity of type 2 diabetic nephropathy. PLoS One,2014,9:99633.

        47Tumlin JA, Galphin CM, Rovin BH. Advanced diabetic nephropathy with nephrotic range proteinuria: a pilot study of the long-term efficacy of subcutaneous ACTH gel on proteinuria, progression of CKD, and urinary levels of VEGF and MCP-1. J Diabetes Res,2013,48:9869.

        48Xu ZZ, Wang M, Wang YJ, et al.Effect of nitrotyrosine on renal expressions of NF-κB, MCP-1 and TGF-β1 in rats with diabetic nephropathy. Nan Fang Yi Ke Da Xue Xue Bao,2013,33:346-350.

        49Mizuno S, Nakamura T.Suppressions of chronic glomerular injuries and TGF-beta 1 production by HGF in attenuation of murine diabetic nephropathy. Am J Physiol Renal Physiol,2004,286:134-143.

        50Kagawa T, Takemura G, Kosai K, et al.Hepatocyte growth factor gene therapy slows down the progression of diabetic nephropathy in db/db mice. Nephron Physiol,2006,102:92-102.

        51Lenoir O, Milon M, Virsolvy A, et al.Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J Am Soc Nephrol,2014,25:1050-1062.

        52Zanatta CM, Veronese FV, Loreto Mda S, et al.Endothelin-1 and endothelin a receptor immunoreactivity is increased in patients with diabetic nephropathy. Ren Fail,2012,34:308-315.

        53Ka SM, Yeh YC, Huang XR,et al.Kidney-targeting Smad7 gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear factor κB (NF-κB) signalling pathways, and improves diabetic nephropathy in mice. Diabetologia,2012,55:509-519.

        54Li L, Emmett N, Mann D,et al.Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-κB and transforming growth factor-β1/Smad3 in diabetic nephropathy. Exp Biol Med (Maywood),2010,235:383-391.

        10.3969/j.issn.1002-7386.2016.21.038·綜述與講座·

        項(xiàng)目來(lái)源:國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):81400812)

        054001河北省邢臺(tái)市第一醫(yī)院藥劑科(劉雪峰);河北醫(yī)科大學(xué)第一醫(yī)院科研中心(張睿)

        R 587.24

        A

        1002-7386(2016)21-3323-04

        2016-04-12)

        猜你喜歡
        系膜胞外基質(zhì)生長(zhǎng)因子
        白藜蘆醇改善高糖引起腎小球系膜細(xì)胞損傷的作用研究
        脫細(xì)胞外基質(zhì)制備與應(yīng)用的研究現(xiàn)狀
        關(guān)于經(jīng)絡(luò)是一種細(xì)胞外基質(zhì)通道的假說(shuō)
        腹腔鏡下直腸癌系膜全切除和盆腔自主神經(jīng)的關(guān)系
        鼠神經(jīng)生長(zhǎng)因子對(duì)2型糖尿病相關(guān)阿爾茨海默病的治療探索
        胃癌組織中成纖維細(xì)胞生長(zhǎng)因子19和成纖維細(xì)胞生長(zhǎng)因子受體4的表達(dá)及臨床意義
        腎小球系膜細(xì)胞與糖尿病腎病
        鼠神經(jīng)生長(zhǎng)因子修復(fù)周圍神經(jīng)損傷對(duì)斷掌再植術(shù)的影響
        水螅細(xì)胞外基質(zhì)及其在發(fā)生和再生中的作用
        轉(zhuǎn)化生長(zhǎng)因子β激活激酶-1在乳腺癌組織中的表達(dá)及臨床意義
        亚洲成a人片在线观看无码专区| 亚洲高清国产品国语在线观看| 国产人妖在线免费观看| 免费看黄片的视频在线观看| 免费看男女做羞羞的事网站| 免费男人下部进女人下部视频| 欧美成人精品福利在线视频| 偷拍视频这里只有精品| 极品粉嫩嫩模大尺度无码视频 | 中文字幕日韩人妻在线视频| 国产成人一区二区三区在线观看 | 亚洲avav天堂av在线网爱情| 一本一本久久a久久精品| 二区三区亚洲精品国产| av网站在线观看亚洲国产| 九色九九九老阿姨| 亚洲成人免费观看| 一区二区三区在线日本| 亚洲国产a∨无码中文777| 白又丰满大屁股bbbbb| 久久久久久99精品| 国产不卡在线播放一区二区三区| 无码专区亚洲综合另类| 在线观看国产精品日韩av| 国产精品香蕉网页在线播放| 男男亚洲av无一区二区三区久久 | 欧美黑人疯狂性受xxxxx喷水| 天堂av无码大芭蕉伊人av孕妇黑人 | 妇女bbbb插插插视频| 国产在视频线精品视频www666| 国产精品很黄很色很爽的网站| 情爱偷拍视频一区二区| av潮喷大喷水系列无码| 日韩成人精品日本亚洲| 成人大片免费在线观看视频| 国产精品99精品无码视亚 | 国产成人无码a区在线观看视频| 97中文字幕在线观看| 久久av一区二区三区黑人| 国产精品久久成人网站| 久久亚洲黄色|