徐 婷,成央金
(湘潭大學 數(shù)學與計算科學學院,湖南 湘潭 411105)
有風險偏好的區(qū)間直覺模糊多屬性的意見集中排序法
徐 婷,成央金
(湘潭大學 數(shù)學與計算科學學院,湖南 湘潭 411105)
針對屬性值為區(qū)間直覺模糊數(shù)的多屬性群決策問題,考慮決策者風險偏好和屬性權重不完全確定的情況,提出一種新的意見集中排序法。首先根據(jù)定義的得分函數(shù)對決策矩陣中的評價值比較大小,進而對方案排成線性序;然后基于新的排序方法,建立模型獲得屬性權重值,并利用加權平均算子對方案集結,得到排序方案。最后,通過數(shù)值實例驗證該方法的可行性。
風險偏好;區(qū)間直覺模糊數(shù);多屬性決策;意見集中排序;得分函數(shù)
L. A. Zadeh[1]在1965年提出模糊集的概念后,模糊集理論就得到了許多專家學者的關注,并應用到各個領域。因為模糊集理論只考慮了決策者滿意和不滿意2種狀態(tài),而沒有考慮決策者的猶豫程度,所以隨著社會的發(fā)展,模糊集理論不能完全解決一些不確定的問題。1986年,K. T. Atanassov[2]提出了直覺模糊集理論,該理論對模糊集理論進行了拓展與延伸,并從隸屬度、非隸屬度和猶豫度3個方面同時考慮事物的不確定性,因此它能更加準確地表示決策者的不確定性。1989年,K. T. Atanassov等[3-4]進一步完善了直覺模糊集,提出區(qū)間直覺模糊集理論,并定義了區(qū)間直覺模糊集的基本運算法則。之后,一些專家學者對完善區(qū)間直覺模糊集理論作出了巨大的貢獻。徐澤水等[5-6]于2007年定義了區(qū)間直覺模糊數(shù)的加權幾何集成算子和區(qū)間直覺模糊加權平均算子。以上這些豐碩成果為研究決策問題奠定了基礎,其中文獻[7-8]對直覺模糊集理論及其應用作了系統(tǒng)的研究;文獻[9-15]研究了針對屬性值為區(qū)間直覺模糊數(shù)的多屬性決策問題;文獻[16-19]研究了屬性值為區(qū)間直覺模糊數(shù)且屬性權重未知的多屬性決策問題。
在他人研究的基礎上,為解決屬性權重不完全確定的決策者有風險偏好的區(qū)間直覺模糊的多屬性群決策問題,本文提出了一種新的方法:意見集中排序法,它包括評分法和Blin法。根據(jù)決策者的風險偏好值和定義的得分函數(shù)對屬性值為區(qū)間直覺模糊數(shù)進行排序,進而得到方案的線性序;然后分別采用評分法和Blin法建立多目標線性規(guī)劃模型,求解出屬性權重值并利用區(qū)間直覺模糊數(shù)加權平均算子獲得各方案的綜合屬性值,得到排序方案。
本章將簡要介紹直覺模糊集的概念、區(qū)間直覺模糊集的概念及其運算,含決策者風險偏好參數(shù)的得分函數(shù)等基礎知識。
K. T.Atanassov[2]首次對模糊集進行推廣,提出了直覺模糊集的概念,并給出以下定義。
利用區(qū)間直覺模糊數(shù)加權平均算子,對決策者的區(qū)間直覺模糊決策矩陣的屬性值進行集結,得到?jīng)Q策方案Ai(i=1, 2, …,n)關于屬性Cj(j=1, 2, …,m)的綜合屬性區(qū)間直覺模糊數(shù)
顯然,綜合屬性區(qū)間直覺模糊數(shù) 越大,它對應的方案Ai就越優(yōu)。如上所述,在屬性權重已知的情況下易知方案Ai的優(yōu)劣性。但在很多實際問題中,決策者往往只知道屬性權重的取值范圍,在這種情況下,需要事先確定屬性權重。下面介紹2種方法求解屬性權重值。
2.1 區(qū)間直覺模糊集中的評分法
由于Borda數(shù)越大,其對應的方案就越優(yōu),為了得到合理的權重向量,屬性權重向量W的選擇應該使加權Borda 數(shù)越大越好,為此建立如下多目標優(yōu)化模型:
為了求解上述多目標規(guī)劃,并考慮到所有目標函數(shù)是公平競爭的,沒有任何偏好關系。于是,把上述多目標規(guī)劃模型轉化為單目標規(guī)劃模型:
若屬性權重信息完全未知,則只需求解Model-2即可。如果屬性權重信息不完全確定,但已知取值范圍,則只需在Model-2的限制條件中添加屬性權重的取值范圍,即得到以下規(guī)劃模型:
根據(jù)Model-3求解出屬性權重W=(1,2, …,m)。
2.2 區(qū)間直覺模糊集中的Blin法
為了求解上述多目標規(guī)劃,并考慮到所有目標函數(shù)是公平競爭的,沒有任何偏好關系。于是把上述多目標規(guī)劃模型轉化為單目標規(guī)劃模型:
若屬性權重信息完全未知,則只需求解Model-5即可。如果屬性權重信息不完全確定,但已知取值范圍,則只需在Model-5的限制條件中添加屬性權重的取值范圍,即得到以下規(guī)劃模型:
根據(jù)Model-6求解出屬性權重W=(1,2, …,m)。
至此,得到2種有決策者風險偏好的區(qū)間直覺模糊數(shù)的多屬性決策方法,具體算法如下。
算法1
例1 考慮某風險投資公司選擇企業(yè)進行項目投資,設有3家企業(yè)A1,A2,A3被選取,3個評價屬性C1,C2,C3(分別為風險分析、社會經(jīng)濟政治影響分析、環(huán)境影響分析)。假設每家企業(yè)在各屬性下的評估信息經(jīng)過統(tǒng)計分析后,得到區(qū)間直覺模糊決策矩陣
其中屬性權重的信息不完全確定,它的取值范圍為0.25≤1≤0.80,0.30≤2≤0.65,0.30≤3≤0.35,且1+2+3=1。而決策者屬于風險冒險型,取=1。試根據(jù)本文的2種方法選擇最佳企業(yè)進行投資。
針對屬性權重不完全確定,決策者有風險偏好,且屬性值為區(qū)間直覺模糊數(shù)的多屬性問題,提出了一種新的排序方法,該方法對模糊意見集中排序法進行延伸。對評分法給出了求解最大Borda數(shù)的多目標模型,對Blin法給出了求解最大優(yōu)屬度的多目標優(yōu)化模型,從而獲得相應的最優(yōu)權重。利用加權平均算子,對區(qū)間直覺模糊信息進行集結,根據(jù)得分函數(shù)對方案排序擇優(yōu)。針對屬性權重不完全確定的區(qū)間直覺模糊多屬性問題,實例說明了決策方法的可行性。
[1]ZADEH L A. Fuzzy Sets[J]. Information and Control,1965,8(3):338-353.
[2]ATANASSOV K T. Intuitionistic Fuzzy Sets[J]. Fuzzy Sets and Systems,1986,20(1):87-96.
[3]ATANASSOV K T,GARGOV G. Interval Valued Intuitionistic Fuzzy Sets[J]. Fuzzy Sets and Systems,1989,31(3):343-349.
[4]ATANASSOV K T. Operators over Interval-Valued Intuitionistic Fuzzy Sets[J]. Fuzzy Sets and Systems,1994,64(2):159-174.
[5]徐澤水. 區(qū)間直覺模糊信息的集成方法及其在決策中的應用[J]. 控制與決策,2007,22(2):215-219. XU Zeshui. Methods for Aggregating Interval-Valued Intuitionistic Fuzzy Information and Their Application to Decision Making[J]. Control and Decision,2007,22(2):215-219.
[6]徐澤水,陳 劍. 一種基于區(qū)間直覺判斷矩陣的群決策方法[J]. 系統(tǒng)工程理論與實踐,2007,27(4):126-133. XU Zeshui,Chen Jian. An Approach to Group Decision Making Based on Interval-Valued Intuitionistic Judgment Matrices[J]. Systems Engineering-Theory and Practice,2007,27(4):126-133.
[7]徐澤水. 直覺模糊信息集成理論及應用[M]. 北京:科學出版社,2008:1-44. XU Zeshui. Intuitionistic Fuzzy Information Aggregation:Theory and Application[M]. Beijing:Science Press,2008:1-44.
[8]何 霞,劉衛(wèi)鋒. 一種有方案偏好的直覺模糊多屬性決策方法[J]. 運籌與管理,2013,22(1):36-40. HE Xia,LIU Weifeng. An Intuitionistic Fuzzy Multi-Attribute Decision-Making Method with Preference on Alternatives[J]. Operations Research and Management Science,2013,22(1):36-40.
[9]王中興,黃 娜,黃 帥. 基于決策者風險偏好的區(qū)間直覺模糊數(shù)多屬性決策方法[J]. 廣西科學,2014,21(2):173-178. WANG Zhongxing,HUANG Na,HUANG Shuai. Multi-Criteria Decision-Making Method Based on Risk Attitude Under Interval-Valued Intuitionistic Fuzzy Environment[J]. Guangxi Science,2014,21(2):173-178.
[10]NAYAGAM V L G,SIVARAMAN G. Ranking of Interval-Valued Intuitionistic Fuzzy Sets[J]. Applied Soft Computing,2011,11(4):3368-3372.
[11]LIU B S,SHEN Y H,CHEN X H,et al. A Complex Multi-Attribute Large-Group PLS Decision-Making Method in theInterval-Valued Intuitionistic Fuzzy Environment[J]. Applied Mathematical Modelling,2014,38:4512-4527.
[12]WAN S P,DONG J Y. A Possibility Degree Method for Interval-Valued Intuitionistic Fuzzy Multi-Attribute Group Decision Making[J]. Journal of Computer and SystemSciences,2014,80:237-256.
[13]NAYAGAM V L G,MURALIKRISHNAN S,SIVARAMAN G. Multi-Criteria Decision-Making Method Based on Interval-Valued Intuitionistic Fuzzy Sets[J]. Expert System with Applications,2011,38:1464-1467.
[14]譚吉玉,朱傳喜,張小芝,等. 基于TOPSIS的區(qū)間直覺模糊數(shù)排序法[J]. 控制與決策,2015,30(11):2014-2018. TAN Jiyu,ZHU Chuanxi,ZHANG Xiaozhi,et al. Ranking Method of Interval-Valued Intuitionistic Fuzzy Numbers Based on TOPSIS[J]. Control and Decision,2015,30(11):2014-2018.
[15]謝海斌,王中興,謝國榕,等. 基于新精確函數(shù)的區(qū)間直覺模糊多屬性決策方法[J]. 數(shù)學的實踐與認識,2012,44(22):182-188. XIE Haibin,WANG Zhongxing,XIE Guorong,et al. Multicriteria Fuzzy Decision-Making Method with Interval-Valued Intuitionistic Fuzzy Sets Based on a Novel Accuracy Function[J]. Mathematics in Practice and Theory,2012,42(22):182-188.
[16]謝婉瑩,成央金,楊 柳,等. 確定OWA算子權重的2個新模型[J]. 吉首大學學報(自然科學版),2015,36(6):14-17. XIE Wanying,CHENG Yangjin,YANG Liu,et al. Two New Models for Weight Determination of OWA Operatio [J]. Journal of Jishou University(Natural Sciences Edition),2015,36(6):14-17.
[17]陳志旺,楊 七,白 鋅,等. 基于灰色關聯(lián)求解權重未知的區(qū)間直覺模糊集多屬性群決策[J]. 模糊系統(tǒng)與數(shù)學,2015,29(6):64-75. CHEN Zhiwang,YANG Qi,BAI Xin,et al. Based on Grey Relational Analysis Method the Multiple Attribute Group Decision Making of Interval-Valued Intuitionistic Fuzzy Sets with Unknown Weights[J]. Fuzzy Systems and Mathematics,2015,29(6):64-75.
[18]YE J. Multiple Attribute Group Decision-Making Methods with Completely Unknown Weights in Intuitionistic Fuzzy Setting and Interval-Valued Intuitionistic Fuzzy Setting[J]. Group Decision and Negotiation,2013,22(2):173-188.
[19]XUE Y X,YOU J X,LAI X D,et al. An Interval-Valued Intuitionistic Fuzzy MABAC Approach for Material Selection with Incomplete Weight Information[J]. Applied Soft Computing,2016,38:703-713.
[20]QIU Z Y,DOSSKEY M G,KANG Y. Choosing Between Alternative Placement Strategies for Conservation Buffers Using Borda Count[J]. Landscape and Urban Planning,2016,153:66-73.
[21]金菊良,楊曉華,魏一鳴. 基于模糊優(yōu)先關系矩陣的系統(tǒng)評價方法[J]. 系統(tǒng)工程理論方法應用,2005,14(4):364-368. JIN Juliang,YANG Xiaohua,WEI Yiming. System Evaluation Method Based on Fuzzy Preferential Relation Matrix[J]. Systems Engineering-Theory Methodology Applications,2005,14(4):364-368.
(責任編輯:鄧光輝)
A Method of Attitudes Concentrated Order of Interval-Valued Intuitionistic Fuzzy Multiple Attributes with Risk Preference
XU Ting, CHENG Yangjin
(School of Mathematics and Computation Science,Xiangtan University,Xiangtan Hunan 411105,China)
In view of the fact that a multiple attribute group decision-making problem arises where attribute values are provided as interval-valued intuitionistic fuzzy numbers, a new met,hod of attitudes concentrated order has been proposed, taking into consideration the situations where the decision makers risk preferences and attribute weights are not completely determined. Firstly, a comparison has been made of the evaluation values in the decision matrix according to the defined score function, followed by an arrangement of the schemes in linear sequence. Secondly, the attribute weights can be obtained with a model built on the basis of this new ranking method, and an ultimate ordering scheme can be worked out by taking advantage of the weighted average operator to aggregate all the schemes. Finally, a numerical example is given to verify the feasibility of this method.
risk preference;interval-valued intuitionistic fuzzy number;multiple attribute decision making;attitudes concentrated order;score function
O223;C934
A
1673-9833(2016)06-0075-07
10.3969/j.issn.1673-9833.2016.06.014
2016-09-20
湖南省自然科學基金資助項目(14JJ2069)
徐 婷(1992-),女,湖南益陽人,湘潭大學碩士生,主要研究方向為不確定性優(yōu)化理論及其應用,E-mail:1448057666@qq.com