范忠偉綜述,譚美云審校
(西南醫(yī)科大學(xué)附屬醫(yī)院骨與關(guān)節(jié)外科,四川瀘州 646000)
調(diào)控SDF-1/CXCR4軸在骨髓間充質(zhì)干細(xì)胞向心肌梗死部位歸巢中的研究現(xiàn)狀*
范忠偉綜述,譚美云審校
(西南醫(yī)科大學(xué)附屬醫(yī)院骨與關(guān)節(jié)外科,四川瀘州 646000)
骨髓間充質(zhì)干細(xì)胞;SDF-1/CXCR4軸;心肌梗死;細(xì)胞遷移
據(jù)統(tǒng)計(jì),我國(guó)每10萬(wàn)人中有近50人死于急性心肌梗死、近100人死于冠心病,傳統(tǒng)治療均不能撤底改善心功能,雖然異體心臟移植能夠徹底改善心功能,但供體來(lái)源非常有限而不能臨床廣泛應(yīng)用。心肌細(xì)胞具有不可再生性,缺血后心肌細(xì)胞的大量減少是導(dǎo)致心肌梗死后發(fā)生心衰的主要原因。利用骨髓間充質(zhì)干細(xì)胞 (bone marrow mesenchymal stem cells,BMSCs)修復(fù)受損心肌或者能夠促進(jìn)心肌細(xì)胞再生為心肌梗死的治療帶來(lái)了新希望。研究表明,BMSCs被動(dòng)員到并遷移到缺血的心肌后能夠通過(guò)釋放多種促進(jìn)缺血心肌組織再血管化的生長(zhǎng)因子和細(xì)胞因子,自身分化成為心肌樣細(xì)胞等多種途徑改善心功能。然而,心梗后能夠被動(dòng)員并最終順利歸巢到缺血心肌的BMSCs數(shù)量非常稀少,以至于對(duì)心功能的損害不能起到很好的彌補(bǔ)作用。基質(zhì)細(xì)胞衍生因子1(stromal cell derived factor-1,SDF-1)及其受體CXC趨化因子受體4(CXC chemokine receptor 4,CXCR4)所開(kāi)啟的信號(hào)傳導(dǎo)途徑成為了促進(jìn)BMSCs有效歸巢到缺血心肌的關(guān)鍵信號(hào)軸,大量研究顯示,BMSCs表面CXCR4表達(dá)的越多,SDF-1引導(dǎo)BMSCs向心肌梗死部位遷移的就越多,并且BMSCs可以隨SDF-1的濃度梯度向心肌梗死部位遷移[1-6]。
因此,對(duì)SDF-1/CXCR4信號(hào)軸的有效調(diào)控可能是促進(jìn)BMSCs大量歸巢到缺血心肌,進(jìn)而更有效改善心臟重構(gòu)和心功能的一個(gè)新的充滿希望的治療方法。
趨化因子是細(xì)胞分泌的具有趨化作用的一種小分子蛋白物質(zhì),是現(xiàn)今了解最細(xì)的細(xì)胞因子家族。根據(jù)其N端在前兩個(gè)半胱氨酸殘基中的位置,趨化因子被分為四種亞型,分別是 C,CC,CXC,和 CX3C?;|(zhì)細(xì)胞衍生因子 1-α((stromal cell derived factor-1α,SDF-1α),也被稱為趨化因子配體12(CXCL12),是唯一已知G蛋白受體的配體,該種G蛋白受體被稱為七次跨膜的趨化因子受體4(CXCR4),CXCR4含352個(gè)氨基酸殘基,編碼基因位于人染色體2q21,主要表達(dá)于單核細(xì)胞、中性粒細(xì)胞、淋巴細(xì)胞和激活的T細(xì)胞[7]。與其他可結(jié)合多種趨化因子的受體不同,CXCR4專一性地與SDF-1結(jié)合,介導(dǎo)許多的生理功能,包括細(xì)胞轉(zhuǎn)移、血管生成、胚胎發(fā)育以及細(xì)胞免疫等[8]。在成人骨髓中,SDF-1α/CXCR4信號(hào)軸還控制著造血干細(xì)胞歸巢的趨化性,腫瘤的侵襲與轉(zhuǎn)移也發(fā)揮著重要的作用[9]。最近研究顯示,SDF-1還可以同CXC趨化因子受體7(CXC chemokine receptor 7,CXCR7)結(jié)合,然而CXCR7被SDF-1激活后卻并未表現(xiàn)出對(duì)細(xì)胞的趨化作用[4]。
SDF-1作為C–X–C趨化因子亞科中的一員,于1996年首先從小鼠的骨髓間充質(zhì)細(xì)胞中分離出來(lái),已被報(bào)道有許多種組織表達(dá)有這種物質(zhì),包括骨髓、心臟、肝臟、腎臟、胸腺、脾臟、骨骼肌,大腦以及血小板[8,10]。通過(guò)對(duì)人和老鼠的SDF-1基因結(jié)構(gòu)分析,由于通過(guò)單個(gè)基因編碼以及由于可變剪接,導(dǎo)致了SDF-1α和SDF-1β兩種形式。后來(lái)Gleichmann等在成年大鼠的大腦、心臟及肺中發(fā)現(xiàn)了另一種剪接變體,被命名為SDF-1γ,并且該亞型在心臟中表達(dá)量最高。然而,SDF-1γ在心肌梗死的過(guò)程中的表達(dá)卻是保持不變的,反之,另外1種SDF-1α在心肌梗死的病理過(guò)程中卻扮演著極其重要的角色。后來(lái)又有研究者經(jīng)過(guò)RT-PCR分析,發(fā)現(xiàn)了人類還存在另外3種亞型,分別是SDF-1ε,SDF-1δ,SDF-1ζ,通過(guò)研究發(fā)現(xiàn),這些不同亞型的SDF-1在刺激細(xì)胞遷移的能力上是不同的[10,11]。
BMSCs是一種具有多項(xiàng)分化潛能的細(xì)胞,它于1976年被Friedenstein等人首次提出來(lái),自那時(shí)起,BMSCs便成為了用于研究組織再生被研究得最為詳細(xì)的細(xì)胞[12]。比如將它用于研究心肌梗死、神經(jīng)系統(tǒng)的損傷、肺損傷、膀胱損傷、肝臟損傷、陰道損傷等??梢酝ㄟ^(guò)全骨髓貼壁培養(yǎng)法、密度梯度離心法、流式細(xì)胞儀分選法和免疫磁珠分選法而獲得BMSCs。由于全骨髓貼壁培養(yǎng)法較易掌握,并且培養(yǎng)的細(xì)胞污染機(jī)會(huì)少,細(xì)胞增殖快,因此是一種目前大多數(shù)人使用的方法[13]。目前主要是通過(guò)流式細(xì)胞計(jì)數(shù)儀檢測(cè)細(xì)胞表面標(biāo)志物來(lái)確定是否是BMSCs,由于BMSCs表達(dá)多種表面標(biāo)志物,比如CD29,CD71,CD44,CD90,CDl20A等,現(xiàn)在大多采用鑒定抗體CD29,CD44,CD90來(lái)鑒定擴(kuò)增的BMSCs[14]。
越來(lái)越多的證據(jù)表明,BMSCs在用于疾病心肌梗死以及之后的心力衰竭的細(xì)胞療法上是一種非常有前景的細(xì)胞,通過(guò)研究發(fā)現(xiàn),BMSCs主要是通過(guò)分化為心肌細(xì)胞、心肌血管再生、釋放出旁分泌因子、抗心律失常及增強(qiáng)心臟神經(jīng)等作用來(lái)達(dá)到細(xì)胞治療的效果[6]。
通過(guò)以往的研究,現(xiàn)在業(yè)界普遍認(rèn)為SDF-1通過(guò)與CXCR4結(jié)合介導(dǎo)細(xì)胞的遷移,因此,通過(guò)提高受損部位SDF-1的表達(dá)就可以促進(jìn)CXCR4陽(yáng)性細(xì)胞向受損部位的歸巢。經(jīng)過(guò)研究顯示有30種不同表達(dá)的基因參與了被SDF-1刺激的BMSCs,其中有11種參與了細(xì)胞的移動(dòng)[2]。另一個(gè)趨化因子受體CXCR7也顯示出對(duì)SDF-1有非常高的親和力,然而當(dāng)CXCR7被SDF-1激活后,并非有助于細(xì)胞的遷移[4]。許多證據(jù)表明,在動(dòng)物損傷模型上SDF-1α/CXCR4軸在BMSCs的歸巢上扮演著重要的角色[5,6],體內(nèi)高表達(dá)的CXCR4不僅有利于BMSCs的遷移,還有助于提高BMSCs的營(yíng)養(yǎng)作用效果。在小鼠急性心肌梗死模型上,通過(guò)局部灌注BMSCs,心肌細(xì)胞缺乏表達(dá)CXCR4組同心肌細(xì)胞高表達(dá)CXCR4組相比,前者心臟功能明顯沒(méi)有后者心臟功能恢復(fù)好,盡管二者平均增加的血管密度無(wú)明顯差異[1]。雖然受損局部表達(dá)的SDF-1與它的受體CXCR4對(duì)遷移細(xì)胞的歸巢起著關(guān)鍵性的作用,但是通過(guò)體外培養(yǎng)擴(kuò)增的BMSCs表達(dá)的CXCR4水平卻很低[15]。
3.1 提高CXCR4的表達(dá)
經(jīng)研究發(fā)現(xiàn),CXCR4的表達(dá)受多種因素的調(diào)節(jié),包括細(xì)胞因子、趨化因子、基質(zhì)細(xì)胞、粘附分子和蛋白水解酶。組織損傷和缺氧或應(yīng)激的相關(guān)轉(zhuǎn)錄因子會(huì)提高CXCR4的表達(dá),比如核因子-kB(nuclear factor-kB,NF-kB)[16]、缺氧誘導(dǎo)因子1α(hypoxia–inducible facter-1α,HIF-1α)[17]、糖皮質(zhì)激素、溶血卵磷脂[18]、轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor-? 1,TGF-β1)[19]、血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)[16]、干擾素α和幾種白介素(白介素2、白介素4和白介素7)[20]。因此在心臟處于應(yīng)激的條件下可能會(huì)上調(diào)CXCR4在干細(xì)胞中的表達(dá)。研究者們已經(jīng)采取了許多方法提高CXCR4的表達(dá)從而提高心肌梗死的治療效果。比如,在動(dòng)物損傷模型中,用腺病毒、逆轉(zhuǎn)錄病毒和慢病毒來(lái)轉(zhuǎn)染CXCR4都提高了BMSCs的動(dòng)員和遷移[21]。陽(yáng)離子脂質(zhì)體可以作為另一種轉(zhuǎn)染基因的方式,用于代替用病毒作為載體的轉(zhuǎn)染方式,因?yàn)殛?yáng)離子脂質(zhì)體作為載體具有低毒、低免疫原性、費(fèi)用低以及相對(duì)較容易建立起核酸/脂質(zhì)體復(fù)合體,因此有利于大規(guī)模的臨床使用[22]。在小鼠急性心肌梗死模型中,通過(guò)丹參酮IIA和黃氏甲苷IV預(yù)處理的BMSCs,提高了BMSCs的歸巢能力,在體外實(shí)驗(yàn)中證實(shí)提高了CXCR4的表達(dá)[23]。在缺氧的條件下,高表達(dá)CXCR4的BMSCs釋放基質(zhì)金屬蛋白酶(matrix metalloproteinase-2,MMP-2和matrix metalloproteinase-9,MMP-9),該酶可以提高BMSCs穿過(guò)基底膜,提高干細(xì)胞到達(dá)受損心肌部位,減少受損后的瘢痕,從而提高心臟功能[24]。通過(guò)胰島素生長(zhǎng)因子 1(Insulin growth factor-1,IGF-1)預(yù)處理的BMSCs用于治療急性心肌梗死后,提高了BMSCs的遷移能力,心肌得到了明顯的修復(fù),其中主要參與的機(jī)制就是提高了CXCR4的表達(dá)[25]。通過(guò)加入糖原合酶激酶3β阻滯劑也能提高CXCR4的表達(dá),進(jìn)而提高BMSCs的遷移能力[26]。通過(guò)脂質(zhì)聚乙二醇將CXCR4合并重組到BMSCs的細(xì)胞膜上,也能提高BMSCs的遷移能力[5]。
3.2 提高SDF-1α的表達(dá)
心肌梗死后SDF-1α分泌的水平會(huì)增加,但這種高水平的SDF-1α卻是短暫的,維持的水平不會(huì)超過(guò)7 d[5,6],這是因?yàn)镾DF-1α?xí)欢幕拿窱V (dipeptidyl peptidase-IV,DDP-IV)滅活[27]。因此,通過(guò)使用DDP-IV阻止劑可以提高SDF-1α的水平,從而提高干細(xì)胞遷移到受損心肌的能力[28]。同樣還可以直接向受損區(qū)域注射SDF-1α以提高BMSCs的遷移,就如同通過(guò)腺病毒轉(zhuǎn)導(dǎo)或通過(guò)生物材料可控性的釋放提高SDF-1α的表達(dá)一樣,然而,通過(guò)加入CXCR4阻滯劑AMD3100后卻會(huì)阻止這種功效[4]。沖擊波或是超聲波治療也被證實(shí)可以提高SDF-1α的表達(dá)進(jìn)而提高BMSCs的遷移[29]。低剪切應(yīng)力也被證實(shí)可以提高BMSCs的遷移能力,其中的作用機(jī)制就是提高SDF-1的分泌和提高CXCR4的表達(dá)[30]。通過(guò)皮膚張力的機(jī)械牽拉也可以暫時(shí)的提高SDF-1α從而提高BMSCs在體內(nèi)或是體外的遷移能力,但是這種遷移能力會(huì)被AMD3100明顯阻斷,因此證實(shí)CXCR4受體在這個(gè)過(guò)程中起著重要的作用[31]。Qin Jiang等研究認(rèn)為,通過(guò)遠(yuǎn)程缺血處理后可以提高SDF-1α的表達(dá),進(jìn)而提高通過(guò)靜脈注射BMSCs在心肌的儲(chǔ)存量[2]。MacArthur等通過(guò)在心肌梗死部位直接注射SDF-1α的類似物后提高了梗死心臟的機(jī)械性能[32]。
3.3 SDF-1α/CXCR4與相關(guān)信號(hào)通路的關(guān)系
SDF-1α通過(guò)激活磷脂酰肌醇三激酶/蛋白激酶B(phosphoinositide 3-kinase/protein kinase B,PI3K/Akt)信號(hào)通路增加BMSCs的遷移[3],通過(guò)加入蛋白激酶C激動(dòng)劑后被證實(shí)是通過(guò)PI3K/Akt信號(hào)通路增加BMSCs的遷移[33]。低氧條件下也被證明可以通過(guò)PI3K/Akt信號(hào)通路增加BMSCs的遷移,并且這種遷移效果會(huì)被PI3K/Akt信號(hào)通路阻滯劑LY294002所阻斷[31]。Lin等認(rèn)為在心肌梗死之后,激活蛋白2α(protein kinase-2α,AP2α)通過(guò)Akt信號(hào)通路對(duì)一氧化碳(carbonic oxide,CO)引導(dǎo)SDF-1α的表達(dá)起著至關(guān)重要的作用[34]。在CXCR4基因改進(jìn)型的BMSCs中含磷的Akt以及激活的磷酸基變位酶蛋白激酶(phosphomitogen-activated protein kinase,MAPK)的水平達(dá)到最大值后會(huì)被加入的AMD3100恢復(fù)到基礎(chǔ)水平,經(jīng)過(guò)PI3K特殊阻滯劑LY294002和MAPK阻滯劑PD98059預(yù)處理的BMSCs后,表達(dá)CXCR4的BMSCs的遷移會(huì)顯著的減弱[35]。這有可能是 PI3K/Akt和MAPK/ERK(extracellular signal-regulated kinase,胞外信號(hào)調(diào)節(jié)激酶)兩個(gè)轉(zhuǎn)導(dǎo)路徑都參與了通過(guò)引導(dǎo)CXCR4的表達(dá)來(lái)提高BMSCs的遷移。
大量的研究表明,趨化因子是BMSCs用于治療心肌梗死的關(guān)鍵調(diào)節(jié)因素,其中,SDF-1是最重要的因子之一,SDF-1/CXCR4在調(diào)節(jié)BMSCs的移植、動(dòng)員、血管重建以及新生血管的形成方面是被廣泛接受的。本文總結(jié)了SDF-1與它的受體CXCR4一起構(gòu)成SDF-1/CXCR4系統(tǒng)并參與到BMSCs治療心肌梗死的修復(fù)過(guò)程中,并且SDF-1/CXCR4可以作為一個(gè)潛在的調(diào)控靶點(diǎn)來(lái)提高BMSCs治療心肌梗死的效果。雖然有大量的研究證明通過(guò)高表達(dá)或持續(xù)釋放SDF-1/CXCR4在BMSCs治療心肌梗死過(guò)程中,對(duì)BMSCs遷移到心肌以及對(duì)心臟血管的生成上和對(duì)心臟的保護(hù)方面表現(xiàn)出了積極的作用,但也有人研究證實(shí)SDF-1/CXCR4在心肌修復(fù)上的負(fù)面影響,比如,Chen等認(rèn)為通過(guò)腺病毒轉(zhuǎn)導(dǎo)提高CXCR4表達(dá)后,心肌的梗死面積有所擴(kuò)大,減弱了心臟功能,其原因是提高了炎性細(xì)胞的歸巢、增加了腫瘤壞死因子(tumor necrosis factor,TNF)α的表達(dá)進(jìn)而提高了心肌細(xì)胞的壞死[36]。目前關(guān)于提高SDF-1/CXCR4表達(dá)來(lái)引導(dǎo)BMSCs的遷移大多處于離體研究中,因此還需要額外的大規(guī)模的臨床前試驗(yàn)來(lái)闡明SDF-1/CXCR4軸在BMSCs治療心肌梗死中的病理生理學(xué)。
1.Dong F,Harvey J,F(xiàn)inan A,et al.Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction[J].Circulation,2012,126(3):314-324.
2.Jiang Q,Song P,Wang E,et al.Remote ischemic postconditioning enhances cell retention in the myocardium after intravenous administration of bone marrow mesenchymal stromal cells[J].J Mol Cell Cardiol,2013,56:1-7.
3.Malliaras K,Ibrahim A,Tseliou E,et al.Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction[J].EMBO Mol Med,2014,6(6): 760-777.
4.MacArthur JW,Jr,Purcell BP,Shudo Y,et al.Sustained release of engineered stromal cell-derived factor 1-alpha from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction[J].Circulation,2013,128(11 suppl 1):S79-86.
5.Won YW,Patel AN,Bull DA.Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient[J].Biomaterials,2014,35(21):5627-5635.
6.Zamani M,Prabhakaran MP,Thian ES,et al.Controlled delivery of stromal derived factor-1alpha from poly lacticco-glycolic acid core-shell particles to recruit mesenchymal stem cells for cardiac regeneration[J].J Colloid Interface Sci,2015,451:144-152.
7.Bachelerie F,Ben-Baruch A,Burkhardt AM,et al.International Union of Basic and Clinical Pharmacology. [corrected].LXXXIX.Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors[J].Pharmacol Rev,2014,66(1):1-79.
8.Nagasawa T,Hirota S,Tachibana K,et al.Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1[J].Nature,1996,382(6592):635-638.
9.Wu D,Guo X,Su J,et al.CD138-negative myeloma cells regulate mechanical properties of bone marrow stromal cells through SDF-1/CXCR4/AKT signaling pathway[J].Biochim Biophys Acta,2015,1853(2):338-347.
10.Kucia M,Reca R,Miekus K,et al.Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms:pivotal role of the SDF-1-CXCR4 axis[J].Stem Cells,2005,23(7):879-894.
11.Gleichmann M,Gillen C,Czardybon M,et al.Cloning and characterization of SDF-1gamma,a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system[J].Eur J Neurosci,2000,12 (6):1857-1866.
12.Friedenstein AJ,Gorskaja JF,Kulagina NN.Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J].Exp Hematol,1976,4(5):267-274.
13.Neuhuber B,Swanger SA,Howard L,et al.Effects of plating density and culture time on bone marrow stromal cell characteristics[J].Exp Hematol,2008,36(9):1176-1185.
14.Song K,Huang M,Shi Q,et al.Cultivation and identification of rat bone marrow-derived mesenchymal stem cells[J].Mol Med Rep,2014,10(2):755-760.
15.Honczarenko M,Le Y,Swierkowski M,et al.Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors[J].Stem Cells,2006,24(4):1030-1041.
16.Libura J,Drukala J,Majka M,et al.CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion,chemotaxis,and adhesion[J].Blood,2002,100(7):2597-2606.
17.Ceradini DJ,Kulkarni AR,Callaghan MJ,et al.Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J].Nat Med,2004,10 (8):858-864.
18.Abbott JD,Huang Y,Liu D,et al.Stromal cell-derivedfactor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury[J].Circulation,2004,110(21):3300-3305.
19.Si XY,Li JJ,Yao T,et al.Transforming growth factorbeta1 in the microenvironment of ischemia reperfusioninjured kidney enhances the chemotaxis of mesenchymal stem cells to stromal cell-derived factor-1 through upregulation of surface chemokine(C-X-C motif)receptor 4[J]. Mol Med Rep,2014,9(5):1794-1798.
20.Tan W,Martin D,Gutkind JS.The Galpha13-Rho signaling axis is required for SDF-1-induced migration through CXCR4[J].J Biol Chem,2006,281(51):39542-29549.
21.Yu X,Chen D,Zhang Y,et al.Overexpression of CXCR4 in mesenchymal stem cells promotes migration,neuroprotection and angiogenesis in a rat model of stroke[J].J Neurol Sci,2012,316(1-2):141-149.
22.Madeira C,Mendes RD,Ribeiro SC,et al.Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy[J].J Biomed Biotechnol,2010,2010:735349.
23.Xie J,Wang H,Song T,et al.Tanshinone IIA and astragaloside IV promote the migration of mesenchymal stem cells by up-regulation of CXCR4[J].Protoplasma,2013,250(2):521-530.
24.Sullivan KE,Quinn KP,Tang KM,et al.Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells[J]. Stem Cell Res Ther,2014,5(1):14.
25.Guo J,Lin G,Bao C,et al.Insulin-like growth factor 1 improves the efficacy of mesenchymal stem cells transplantation in a rat model of myocardial infarction[J].J Biomed Sci,2008,15(1):89-97.
26.Kim YS,Noh MY,Kim JY,et al.Direct GSK-3beta inhibition enhances mesenchymal stromal cell migration by increasing expression of beta-PIX and CXCR4[J].Mol Neurobiol,2013,47(2):811-820.
27.Zaruba MM,Theiss HD,Vallaster M,et al.Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction[J].Cell Stem Cell,2009,4(4):313-323.
28.Theiss HD,Gross L,Vallaster M,et al.Antidiabetic gliptins in combination with G-CSF enhances myocardial function and survival after acute myocardial infarction[J]. Int J Cardiol,2013,168(4):3359-3369.
29.Li L,Wu S,Liu Z,et al.Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4:A Pilot Study[J].Stem Cells Int,2015,2015:691310.
30.Yuan L,Sakamoto N,Song G,Sato M.Low-level shear stress induces human mesenchymal stem cell migration through the SDF-1/CXCR4 axis via MAPK signaling pathways[J].Stem Cells Dev,2013,22(17):2384-2393.
31.Liu H,Xue W,Ge G,et al.Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs[J].Biochem Biophys Res Commun,2010,401(4):509-515.
32.MacArthur JW,Jr,Trubelja A,Shudo Y,et al.Mathematically engineered stromal cell-derived factor-1alpha stem cell cytokine analog enhances mechanical properties of infarcted myocardium[J].J Thorac Cardiovasc Surg,2013,145(1):278-284.
33.He H,Zhao ZH,Han FS,et al.Activation of protein kinase C epsilon enhanced movement ability and paracrine function of rat bone marrow mesenchymal stem cells partly at least independent of SDF-1/CXCR4 axis and PI3K/ AKT pathway[J].Int J Clin Exp Med,2015,8(1):188-202.
34.Lin HH,Chen YH,Chiang MT,et al.Activator protein-2alpha mediates carbon monoxide-induced stromal cell-derived factor-1alpha expression and vascularization in ischemic heart[J].Arterioscler Thromb Vasc Biol,2013,33 (4):785-794.
35.Liu N,Tian J,Cheng J,Zhang J.Migration of CXCR4 gene-modified bone marrow-derived mesenchymal stem cells to the acute injured kidney[J].J Cell Biochem,2013,114(12):2677-2689.
36.Chen J,Chemaly E,Liang L,et al.Effects of CXCR4 gene transfer on cardiac function after ischemia-reperfusion injury[J].Am J Pathol,2010,176(4):1705-1715.
(2015-11-17收稿)
R394.2
A
10.3969/j.issn.1000-2669.2016.03.027
*國(guó)家自然科學(xué)基金(31271049)
范忠偉(1989-),男,碩士研究生。
譚美云(1974-),男,醫(yī)學(xué)博士,副教授,E-mail:drtmy@126.com