亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        孢子絲菌復(fù)合體的分子生物學研究進展

        2016-01-30 08:13:10趙秘密楊致邦
        中國人獸共患病學報 2016年6期
        關(guān)鍵詞:絲菌分子生物學孢子

        賀 羽,趙秘密,楊致邦,周 汛,3

        ?

        孢子絲菌復(fù)合體的分子生物學研究進展

        賀羽1,趙秘密1,楊致邦2,周汛1,3

        孢子絲菌是人獸共患性真菌,感染人或動物可引起孢子絲菌病。以往形態(tài)學鑒定認為申克孢子絲菌(Sporothrixschenckii,S.schenckii)為孢子絲菌病的唯一致病菌種,而近年來分子生物學研究發(fā)現(xiàn)該菌是6個菌種構(gòu)成的復(fù)合體,并且在基因鑒定、基因組學、發(fā)病機制等方面有了進一步研究,有利于理解孢子絲菌病的發(fā)生發(fā)展過程,對于早期診斷、確定治療方案及判斷預(yù)后至關(guān)重要。本文就孢子絲菌復(fù)合體的分子生物學研究進展進行綜述。

        孢子絲菌;基因鑒定;基因組;發(fā)病機制;分子生物學

        孢子絲菌是人獸共患性真菌,感染人或動物可引起皮膚、皮下組織及附近淋巴系統(tǒng)的慢性肉芽腫性病變,偶可經(jīng)血液、淋巴系統(tǒng)播散引起系統(tǒng)性損害[1],嚴重時可危及生命。孢子絲菌由美國人Shenk首次發(fā)現(xiàn),故被命名為申克孢子絲菌[2]。以往形態(tài)學鑒定認為申克孢子絲菌為孢子絲菌病的唯一致病菌種,而近年來分子生物學研究發(fā)現(xiàn)該菌是多個菌種構(gòu)成的復(fù)合體[3]。生物信息學的發(fā)展讓我們對孢子絲菌有了更多更新的認識,本文就近年來孢子絲菌復(fù)合體在基因鑒定、基因組學、發(fā)病機制方面的分子生物學研究進展進行綜述。

        1 基因鑒定

        1.1基因分型孢子絲菌的基因分型通?;趍tDNA限制性內(nèi)切酶HaeⅢ的限制性片段長度多態(tài)性(RFLP)分析,Lin等首次將不同地區(qū)S.schenckii菌株的mtDNA分成24種亞型,而后25到30種,以及31到32種亞型被相繼發(fā)現(xiàn)[4],并將32種亞型劃分為A、B 2個系統(tǒng)發(fā)育組,不同亞型其地理分布存在差異。研究者采用ITS-RELP分析將rDNA分為4個亞型[5],其中Ⅰ-Ⅲ型與A組一致,Ⅳ型與 B組一致。張振穎等采用RFLP 技術(shù)和Southern印跡法進行rDNA基因分型發(fā)現(xiàn)我國不同地區(qū)31株臨床孢子絲菌顯示出15種不同的DNA帶型(A-O),51.6%DNA模帶為A-C型,南方和北方菌株存在明顯差異,但不能明確基因型與臨床型別間的關(guān)系[6]。張萍等采用多聚酶鏈反應(yīng)隨機擴增多態(tài)性DNA法研究發(fā)現(xiàn)新疆申克孢子絲菌顯示出新基因型,與北京固定型孢子絲菌病致病菌存在種內(nèi)基因差異,而與北京、哈爾濱淋巴型孢子絲菌致病菌間未見種內(nèi)基因差異[7]。

        1.2菌種鑒定及基因診斷通過保守序列包括CAL、ITS及β-tubulin基因變異分析發(fā)現(xiàn)孢子絲菌復(fù)合體包含6個菌種,包括巴西孢子絲菌(Sporothrixbrasiliensis,S.brasiliensis)、球形孢子絲菌(Sporothrixglobosa,S.globosa)、申克孢子絲菌等[3, 8-9],菌種不同其毒力、地理分布、藥物敏感性等存在差異。分子生物學技術(shù)的發(fā)展為準確而快速鑒定菌種提供了新方法,對于早期明確致病菌種類型以指導(dǎo)治療具有重要意義。利用通用引物T38的PCR指紋圖譜分析發(fā)現(xiàn)各隱含種顯示出不同電泳條帶,與利用CAL基因分析鑒定菌種的結(jié)果一致[10]。Rodrigues等運用CAL基因的PCR-RFLP分析實現(xiàn)了對孢子絲菌復(fù)合體各隱含種的基因鑒定[11],認為該方法準確、簡單且成本低,可用于常規(guī)的菌種分類。Oliveira等首次將基質(zhì)輔助激光解吸電離飛行時間質(zhì)譜術(shù)(MALDI-TOF-MS)用于鑒定孢子絲菌各隱含種,并指出通過蛋白質(zhì)譜分析可準確、快速鑒定6個菌種[12]。近期滾環(huán)擴增技術(shù)(RCA)被用于孢子絲菌不同菌種間的鑒定,研究表明其特異性和敏感性均較高[13]。孫田等利用聚合酶鏈反應(yīng)-酶聯(lián)免疫法(PCR-ELISA)篩選與孢子絲菌結(jié)合效率相對較高的探針,結(jié)果顯示探針U26852、U26866、U26866、M85053及AF117945均位于PCR擴增產(chǎn)物序列上,而U26852顯色最強,EI 值最高,由此推斷探針U26852的結(jié)合效率相對較高[14]。

        2 基因組學

        2.1結(jié)構(gòu)基因組學Tateishi等對8株日本臨床S.schenckii進行染色體核型分析顯示S.schenckii基因組全長約28 Mbp,包含6~8條染色體,每條長度為460到6 200 kb,而Torres-Guerrero對不同地理來源菌株進行研究發(fā)現(xiàn)其基因組全長約45 Mbp[15],這種差異可能由實驗菌株為不同隱含種或研究方法不同引起。近期Teixeira等通過比較基因組學研究發(fā)現(xiàn)S.schenckii和S.brasiliensis在基因組長度、轉(zhuǎn)座子、線粒體基因等方面存在差異[16]。前者基因組含17條染色體,全長32.3 Mb,后者含20條染色體,全長33.2 Mb;轉(zhuǎn)座子分別由0.34%和0.62%基因組構(gòu)成;線粒體基因組比較顯示編碼歸巢核酸內(nèi)切酶的內(nèi)含子只存在于巴西孢子絲菌。而雙向基因組對比顯示兩者染色體序列相似性高達97.5%;基因組進化分析發(fā)現(xiàn)兩個隱含種均大約在3.8~4.9萬年前開始分化,推斷為最近的一次物種形成事件;兩者基因組中與植物腐爛相關(guān)的多糖裂解酶基因缺乏表明孢子絲菌從植物致病性向動物致病性的進化演變。

        2.2功能基因組學袁立燕等利用BLASTx等生物學軟件對S.schenckii的cDNA中編號為Locus-168-Contig-1的序列進行分析發(fā)現(xiàn)該基因與亞精胺合成酶基因同源,全長1 062 bp,可編碼291個氨基酸;編碼蛋白疏水性高,為非分泌型蛋白,無質(zhì)體、線粒體等定位序列及跨膜螺旋結(jié)構(gòu);并成功克隆全長編碼區(qū)基因和構(gòu)建重組表達質(zhì)粒[17]。采用同樣方法翻譯控制腫瘤蛋白(TCTP)的cDNA全長序列被獲得,其結(jié)構(gòu)及功能、潛在抗原表位被預(yù)測出,為進一步研究該蛋白生物學特性奠定了基礎(chǔ)[18]。通過RNA干擾技術(shù)將孢子絲菌鈣/鈣調(diào)蛋白激酶1基因表達抑制后菌株在35 ℃環(huán)境下生長抑制表明該基因與菌株耐熱性相關(guān);通過基因敲入,可表達綠色熒光蛋白(GFP)的孢子絲菌已成功構(gòu)建,為研究孢子絲菌蛋白質(zhì)組學和基因組學提供了新技術(shù)[19]。Rodriguez-Caban等通過RAN干擾和酵母雙雜交技術(shù)明確了HSP90與鈣/鈣調(diào)蛋白激酶1在孢子絲菌雙相轉(zhuǎn)換中的相互作用[20]。王曉慧等通過簡并PCR結(jié)合RACE技術(shù)成功克隆S.schenckii的未知過氧化氫酶基因并將其命名為Sscat,為深入研究該基因結(jié)構(gòu)及其功能、蛋白質(zhì)表達奠定了基礎(chǔ)[21]。

        3 發(fā)病機制

        孢子絲菌病的發(fā)病機制與病原體毒力和宿主免疫狀態(tài)密切相關(guān)。毒力和宿主免疫狀態(tài)的分子生物學研究能夠揭示疾病的發(fā)生發(fā)展過程,為孢子絲菌病治療提供新靶點。

        3.1病原體毒力孢子絲菌毒力主要與色素、黏附力及耐過氧化物能力等相關(guān)。孢子絲菌菌絲相和酵母相均可生成色素,包括1,8二羥基萘黑色素、真黑色素、膿褐素。研究發(fā)現(xiàn)分生孢子的黑化作用能夠抵抗吞噬細胞的吞噬[22],此外Madrid等分別用黑化和白化孢子絲菌感染小鼠發(fā)現(xiàn)前者僅在接種部位形成肉芽腫樣皮損,而后者形成多病灶性皮損,因此推斷色素可能與病原體播散相關(guān)[23]。孢子絲菌粘附素通過與纖連蛋白、層粘連蛋白和Ⅱ型膠原蛋白結(jié)合粘附宿主,兩個生長時相均可表達粘附素,但酵母相粘附細胞外基質(zhì)的能力更強[24]。Ruiz-Baca等首次通過二維凝膠電泳和免疫印跡法對S.schenckii的免疫原性蛋白進行檢測發(fā)現(xiàn)70 kDa糖蛋白(Gp70)是2個生長時相均存在的主要細胞壁抗原[25],而Gp60主要存在于酵母相[26]。研究顯示Gp70是重要的粘附素,參與病原體入侵宿主的過程。轉(zhuǎn)化生長因子β1可增加內(nèi)皮下細胞外基質(zhì)的暴露誘導(dǎo)孢子絲菌黏附內(nèi)皮單層而經(jīng)內(nèi)皮遷移,在免疫功能受損患者中易致播散型孢子絲菌病[27]。近期研究發(fā)現(xiàn)S.brasiliensis的耐過氧化物能力較S.schenckii更強[28],計算機模擬分析推斷這種差異可能與氧化應(yīng)激信號通路中類似AP-1的轉(zhuǎn)錄因子差異表達和Hog1基因突變有關(guān)。致病性相關(guān)蛋白的研究目前甚少,機體感染孢子絲菌6周后,孢子絲菌細胞壁的糖肽復(fù)合物能夠抑制宿主免疫反應(yīng),被認為與真菌致病性相關(guān)[19];從S.schenckii酵母相提取抗原過程中可水解人IgG的分泌蛋白被發(fā)現(xiàn),該蛋白可能參與孢子絲菌抗宿主的免疫反應(yīng)[29]。3.2宿主免疫狀態(tài)病原體入侵后機體迅速作出防御反應(yīng),包括固有免疫和特異性免疫,后者分為細胞免疫和體液免疫。補體系統(tǒng)可被孢子絲菌激活,特別是替代途徑激活后形成的膜攻擊復(fù)合物可溶解破壞真菌細胞壁[16]。研究發(fā)現(xiàn)酵母相細胞壁模式識別受體Toll樣受體4(TLR4)即CD284可促進促炎性細胞因子釋放和氧化物質(zhì)如NO的生成[30];Negrini等通過構(gòu)建感染孢子絲菌的TLR2缺陷小鼠進行研究發(fā)現(xiàn)巨噬細胞吞噬功能受損,并且促炎性細胞因子分泌水平明顯降低[31],可見TLRs在孢子絲菌固有免疫中扮演著重要角色[30-32]。參與細胞免疫的細胞包括巨噬細胞、樹突狀細胞、肥大細胞等。Uenotsuchi等運用流式細胞技術(shù)分析發(fā)現(xiàn)分離自皮膚的S.schenckii可快速激活單核細胞來源的樹突狀細胞(MoDCs)引起Th1細胞分泌大量IFN-γ參與反應(yīng),而分離自內(nèi)臟的S.schenckii僅激活少量MoDCs和Th1細胞,有絲分裂原激活蛋白激酶P38和c-Jun氨基末端激酶信號通路被認為參與該反應(yīng)過程[33]。研究發(fā)現(xiàn)孢子絲菌分生孢子可激活肥大細胞釋放大量TNF-α和IL-6,而復(fù)合物48/80可誘導(dǎo)加強分生孢子刺激肥大細胞釋放組胺,此外該細胞的功能消耗能夠顯著降低皮損程度[34]。Kajiwara等用孢子絲菌感染NADPH氧化酶和抗氧化酶缺陷的肉芽腫樣疾病(chronic granulomatous disease,CGD)小鼠進行研究發(fā)現(xiàn)CGD小鼠不能清除接種部位真菌導(dǎo)致系統(tǒng)播散而死亡,由此可見NADPH氧化酶缺乏可致孢子絲菌致命性的感染,同時免疫細胞產(chǎn)生的超氧陰離子及其代謝產(chǎn)物如活性氧、活性氮在抑制和殺滅真菌中起著重要作用[35-36]。感染孢子絲菌5到6周后,Th2細胞產(chǎn)生IL-4啟動機體體液免疫,體外實驗中抗神經(jīng)鞘糖脂類抗原的抗體可阻礙孢子絲菌的生長及分化[37]。Nascimento等研究發(fā)現(xiàn)感染孢子絲菌的小鼠可產(chǎn)生抗Gp70的特異性IgG3和IgG1抗體,可能與機體清除病原體有關(guān)[38],而近期研究認為被動免疫抗Gp70的抗體可保護小鼠免遭孢子絲菌感染[39]。

        4 結(jié) 語

        近年來隨著分子生物學的發(fā)展,對孢子絲菌有了更深入認識。生物學技術(shù)的運用在基因?qū)用嫔蠈崿F(xiàn)了對孢子絲菌的菌種鑒定,但因技術(shù)要求較高,僅限于實驗室研究,探索臨床快速鑒定菌種和早期診斷疾病的方法仍是目前研究熱點。孢子絲菌基因組DNA由30萬左右個堿基組成,確定各部位結(jié)構(gòu)及功能已經(jīng)成為未來研究方向和目標。同時明確發(fā)病機制,尋找新靶點在治療及預(yù)后判斷方面有重要指導(dǎo)意義。

        [1] Tellez MD, Batista-Duharte A, Portuondo D, et al.Sporothrixschenckiicomplex biology: environment and fungal pathogenicity[J]. Microbiology, 2014, 160(11): 2352-2365. DOI: 10.1099/mic.0.081794-0

        [2] Liu TT, Zhang K, Zhou X. Molecular identification ofSporothrixclinicalisolates in China[J]. J Zhejiang Univ Sci B, 2014, 15(1): 100-108. DOI: 10.1631/jzus.B1300136

        [3] Rodrigues AM, de Hoog GS, de Camargo ZP. Molecular diagnosis of pathogenicSporothrixspecies[J]. PLoS Negl Trop Dis, 2015, 9(12): 1-22. DOI: 10.1371/journal.pntd.000419

        [4] Ishizaki H, Kawasaki M, Anzawa K, et al. Mitochondrial DNA analysis ofSporothrixschenckiiin India, Thailand, Brazil, Colombia, Guatemala and Mexico[J]. Nihon Ishinkin Gakkai Zasshi, 2009, 50(1): 19-26.

        [5] Watanabe S, Kawasaki M, Mochizuki T, et al. RFLP analysis of the internal transcribed spacer regions ofSporothrixschenckii[J]. Nihon Ishinkin Gakkai Zasshi, 2004, 45(3): 165-175.

        [6] Zhang ZY, Liu XM, Yang GL, et al. Genotyping ofSporothrixschenckiiby analysis of ribosomal DNA regions[J]. Mycoses, 2006, 49(4): 305-310.

        [7] Zhang P, Palida ABLZ, Chen Y, et al. New genotype ofSporothrixschenckiiin Xinjiang[J]. J Clin Dermatol, 2011, 40(5):262-264. (in Chinese)

        張萍,帕麗達.阿布利孜,陳宴,等.發(fā)現(xiàn)于新疆的申克孢子絲菌新基因型[J].臨床皮膚科雜志, 2011, 40(5): 262-264.

        [8] Rodrigues AM, de Hoog S, de Camargo ZP. Emergence of pathogenicity in theSporothrixschenckiicomplex[J]. Med Mycol, 2013, 51(4): 405-412. DOI: 10.3109/13693786.2012.719648

        [9] Ottonelli SCD, Magagnin CM, Castrillon MR, et al. Antifungal susceptibilities and identification of species of theSporothrixschenckiicomplex isolated in Brazil[J]. Med Mycol, 2014, 52(1): 56-64. DOI: 10.3109/13693786.2013.818726

        [10] de Oliveira MM, Sampaio P, Almeida-Paes R, et al. Rapid identification ofSporothrixspecies by T3B fingerprinting[J]. J Clin Microbiol, 2012, 50(6): 2159-2162. DOI: 10.1093/femsle/fnv027

        [11] Rodrigues AM, de Hoog GS, de Camargo ZP. Genotyping species of theSporothrixschenckiicomplex by PCR-RFLP of calmodulin[J]. Diagn Microbiol Infect Dis, 2014, 78(4): 383-387. DOI: 10.1016/j.diagmicrobio.2014.01.004

        [12] Oliveira MM, Santos C, Sampaio P, et al. Development and optimization of a new MALDI-TOF protocol for identification of theSporothrixspecies complex[J]. Res Microbiol, 2015, 166(2): 102-110. DOI: 10.1128/JCM.00450-12

        [13] Rodrigues AM, Najafzadeh MJ, de Hoog GS, et al. Rapid identification of emerging human-pathogenicSporothrixspecies with rolling circle amplification[J]. Front Microbiol, 2015, 6(1385): 1-16. DOI: 10.3389/fmicb.2015.01385

        [14] Sun T, Liu XM, Zhang ZY. Screening of species-specific probes forSporothrixschenckiiby PCR-ELISA[J]. J Pract Dermatol, 2014, 7(6): 403-405. (in Chinese)

        孫田,劉曉明,張振穎.聚合酶鏈反應(yīng)-酶聯(lián)免疫法篩選孢子絲菌特異性探針[J].實用皮膚病學雜志, 2014, 7(6): 403-405.

        [15] Barros MB, de Almeida Paes R, Schubach AO.SporothrixschenckiiandSporotrichosis[J]. Clin Microbiol Rev, 2011, 24(4): 633-654. DOI: 10.1128/CMR.00007-11

        [16] Teixeira MM, de Almeida LG, Kubitschek-Barreira P, et al. Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii andSporothrixbrasiliensis[J]. BMC Genomics, 2014, 15(1): 943-965. DOI: 10.1186/1471-2164-15-943

        [17] Yuan LY, Huang HQ, Zhang J, et al. Bioinformatics analysis and molecular cloning of spermidine synthase gene fromSporothrixschenckii[J]. J Sun Yat-sen Univ (Med Sci), 2013, 34(6): 948-953. (in Chinese)

        袁立燕,黃懷球,張靜,等.申克孢子絲菌基因的生物信息學分析及分子克隆[J].中山大學學報(醫(yī)學科學版), 2013, 34(6): 948-953.

        [18] Huan HQ, Zhong Y, Zhao J, et al. Molecular structure analysis and function prediction onSporothrixschenckiitranslationally controlled tumor protein[J]. J Sun Yat-sen Univ (Med Sci), 2012, 33(4): 454-459. (in Chinese)

        黃懷球,鐘毅,趙靜,等.申克孢子絲菌翻譯控制腫瘤蛋白的結(jié)構(gòu)分析與功能預(yù)測[J].中山大學學報(醫(yī)學科學版), 2012, 33(4): 454-459.

        [19] Mora-Montes HM, Dantas Ada S, Trujillo-Esquivel E, et al. Current progress in the biology of theSporothrixschenckiicomplex following the genomic era[J]. FEMS Yeast Res, 2015, 15(6): 1-10. DOI: 10.1093/femsyr/fov065

        [20] Rodriguez-Caban J, Gonzalez-Velazquez W, Perez-Sanchez L, et al. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 inSporothrixschenckii: an RNAi and yeast two-hybrid study[J]. BMC Microbiol, 2011, 11(162): 1-16. DOI: 10.1186/1471-2180-11-162

        [21] Wang XY, Liu W, Li RY. Cloning a novel catalase gene ofSporothrixschenckiiwith degenerate PCR and RACE[J]. Chin J Mycol, 2011, 6(5): 271-275. (in Chinese)

        王曉慧,劉偉,李若瑜.簡并結(jié)合技術(shù)克隆申克孢子絲菌未知過氧化氫酶基因[J].中國真菌學雜志, 2011, 6(5):271-275.

        [22] Almeida-Paes R, Frases S, Araujo Gde S, et al. Biosynthesis and functions of melanoid pigment produced by species of theSporothrixcomplex in the presence of L-tyrosine[J]. Appl Environ Microbiol, 2012, 78(24): 8623-8630. DOI: 10.1128/AEM.02414-12

        [23] Madrid H, Cano J, Gene J, et al.Sporothrixglobosa, a pathogenic fungus with widespread geographical distribution[J]. Rev Iberoam Micol, 2009, 26(3): 218-222. DOI: 10.1016/j.riam.2009.02.005

        [24] Teixeira PA, de Castro RA, Nascimento RC, et al. Cell surface expression of adhesins for fibronectin correlates with virulence inSporothrixschenckii[J]. Microbiology, 2009, 155(Pt11): 3730-3738. DOI: 10.1099/mic.0.029439-0

        [25] Lopes-Bezerra LM.Sporothrixschenckiicell wall peptidorhamnomannans[J]. Front Microbiol, 2011, 2(243): 1-4. DOI: 10.3389/fmicb.2011.00243

        [26] Ruiz-Baca E, Hernandez-Mendoza G, Cuellar-Cruz M, et al. Detection of 2 immunoreactive antigens in the cell wall ofSporothrixbrasiliensisandSporothrixglobosa[J]. Diagn Microbiol Infect Dis, 2014, 79(3): 328-330. DOI: 10.1016/j.diagmicrobio.2014.02.020

        [27] Figueiredo CC, Deccache PM, Lopes-Bezerra LM, et al. TGF-beta1 induces transendothelial migration of the pathogenic fungusSporothrixschenckiiby a paracellular route involving extracellular matrix proteins[J]. Microbiology, 2007, 153(Pt 9): 2910-2921.

        [28] Ortega I, Soares FM, Vasconcelos AT, et al. Peroxide sensing and signaling in theSporothrixschenckiicomplex: an in silico analysis to uncover putative mechanisms regulating the Hog1 and AP-1 like signaling pathways[J]. Med Mycol, 2015, 53(1): 51-59. DOI: 10.1093/mmy/myu069

        [29] Da RD, Gezuele E, Calegari L, et al. Excretion-secretion products and proteases from liveSporothrixschenckiiyeast phase: immunological detection and cleavage of human IgG[J]. Rev Inst Med Trop Sao Paulo, 2009, 51(1): 1-7.

        [30] Sassa MF, Ferreira LS, Ribeiro LC, et al. Immune response againstSporothrixschenckiiin TLR-4-deficient mice[J]. Mycopathologia, 2012, 174(1): 21-30. DOI: 10.1007/s11046-012-9523-1

        [31] Negrini TC, Ferreira LS, Alegranci P, et al. Role of TLR-2 and fungal surface antigens on innate immune response againstSporothrixschenckii[J]. Immunol Invest, 2013, 42(1): 36-48. DOI: 10.3109/08820139.2012.719982

        [32] Guzman-Beltran S, Perez-Torres A, Coronel-Cruz C, et al. Phagocytic receptors on macrophages distinguish between differentSporothrixschenckiimorphotypes[J]. Microbes Infect, 2012, 14(12): 1093-1101. DOI: 10.1016/j.micinf.2012.06.001

        [33] Uenotsuchi T, Takeuchi S, Matsuda T, et al. Differential induction of Th1-prone immunity by human dendritic cells activated withSporothrixschenckiiof cutaneous and visceral origins to determine their different virulence[J]. Int Immunol, 2006, 18(12): 1637-1646.

        [34] Romo-Lozano Y, Hernandez-Hernandez F, Salinas E. Mast cell activation by conidia ofSporothrixschenckii: role in the severity of infection[J]. Scand J Immunol, 2012, 76(1): 11-20. DOI: 10.1111/j.1365-3083.2012.02706.x

        [35] Grimm MJ, Vethanayagam RR, Almyroudis NG, et al. Monocyte-and macrophage-targeted NADPH oxidase mediates antifungal host defense and regulation of acute inflammation in mice[J]. J Immunol, 2013, 190(8): 4175-4184. DOI: 10.4049/jimmunol.1202800

        [36] Kajiwara H, Saito M, Ohga S, et al. Impaired host defense againstSporothrixschenckiiin mice with chronic granulomatous disease[J]. Infect Immun, 2004, 72(9): 5073-5079.

        [37] Toledo MS, Tagliari L, Suzuki E, et al. Effect of anti-glycosphingolipid monoclonal antibodies in pathogenic fungal growth and differentiation. Characterization of monoclonal antibody MEST-3 directed to Manpalpha1->3Manpalpha1->2IPC[J]. BMC Microbiol, 2010, 10(47): 1-22. DOI: 10.1186/1471-2180-10-47

        [38] Nascimento RC, Almeida SR. Humoral immune response against soluble and fractionate antigens in experimental sporotrichosis[J]. FEMS Immunol Med Microbiol, 2005, 43(2): 241-247.

        [39] de Almeida JR, Kaihami GH, Jannuzzi GP, et al. Therapeutic vaccine using a monoclonal antibody against a 70-kDa glycoprotein in mice infected with highly virulentSporothrixschenckiiandSporothrixbrasiliensis[J]. Med Mycol, 2015, 53(1): 42-50. DOI: 10.1093/mmy/myu049

        Advances on molecular biology ofSporothrixcomplex

        HE Yu1, ZHAO Mi-mi1, YANG Zhi-bang2, ZHOU Xun1,3

        (1.DepartmentofDermatology,theFirstAffiliatedHospitalofChongqingMedicalUniversity,Chongqing400016,China;2.ExperimentalTeachingCenterforBasicMedicalPathogenBiologyandImmunologyLaboratoryofChongqingMedicalUniversity,Chongqing400016,China;3.DepartmentofDermatologyandCosmetology,ChongqingHospitalofTraditionalChineseMedicine,Chongqing400021,China)

        Sporotrichosis is a polymorphic disease that affects both humans and animals worldwide caused by the fungal genusSporothrix. Sporotrichosis has been attributed to one single etiological agent,Sporothrixschencki, by morphological identification in the past decades. Recently, isolates received asSporothrixschenckiare regrouped with six cryptic species, and further research on molecular biology study on gene identification, genome and pathogenesis is helpful to understand the development and progression of Sporotrichosis, and has important significance on early diagnosis, treatment and prognosis. The present review will focus on recent advances on molecular biology ofSporothrixcomplex.

        Sporothrix; gene identification; genome; pathogenesis; molecular biology

        Supported by the National Natural Science Foundation of China (No. 31270062)

        Zhou Xun, Email: zhouxun123@sina.com

        周汛,Email:zhouxun123@sina.com

        1.重慶醫(yī)科大學附屬第一醫(yī)院皮膚科,重慶400016;2.重慶醫(yī)科大學基礎(chǔ)醫(yī)學院基礎(chǔ)醫(yī)學實驗教學中心病原生物學與免疫學實驗室,重慶400016;3.重慶市中醫(yī)院皮膚美容科,重慶400021

        R379

        A

        1002-2694(2016)06-0576-05

        2015-12-04;

        2016-02-15

        DOI:10.3969/j.issn.1002-2694.2016.06.013

        國家自然科學基金(No.31270062)資助

        猜你喜歡
        絲菌分子生物學孢子
        本科生分子生物學實驗技術(shù)教學改革初探
        鯽魚黏孢子蟲病的診斷與防治
        制作孢子印
        無所不在的小孢子
        ABO亞型Bel06的分子生物學鑒定
        成軍:從HCV入手,探索脂類代謝分子生物學新機制
        基于groEL基因序列鑒定丹毒絲菌屬菌種
        孢子絲菌病患者皮損中Toll 樣受體2 、4 及髓樣分化因子88的表達
        石頭里的孢子花粉
        生物進化(2014年2期)2014-04-16 04:36:34
        16株中國東北地區(qū)臨床孢子絲菌菌種分子生物分類學研究
        国产熟女一区二区三区不卡| 久久精品免视看国产盗摄| 久久av一区二区三区下 | 国语淫秽一区二区三区四区| 无码人妻丰满熟妇啪啪网站| 亚洲av有码在线天堂| 粉嫩小泬无遮挡久久久久久| 久久99精品综合国产女同| 国产精品99精品久久免费| 国产成人久久777777| 草莓视频在线观看无码免费| 高清国产国产精品三级国产av| 国产精品国产三级国产专播 | 在线看片免费人成视频电影 | 窄裙美女教师在线观看视频| 亚洲中文字幕乱码在线观看| 国产私人尤物无码不卡| 九九99无码精品视频在线观看| 久久99久久99精品免视看国产成人| 91久久香蕉国产熟女线看| 777米奇色狠狠俺去啦| 国产黄页网站在线观看免费视频 | 中文字幕爆乳julia女教师| 色婷婷久久免费网站| 天堂免费av在线播放| 日本高清视频永久网站www| 在线视频一区色| 冲田杏梨av天堂一区二区三区| 熟女人妻中文字幕av| 国产成人乱色伦区| 久久久久久久久久免免费精品| 五月激情四射开心久久久| 综合色区亚洲熟妇另类| 国产爽爽视频在线| 国产av在线观看91| 国产freesexvideos中国麻豆 | 最新亚洲无码网站| 久久亚洲中文字幕精品熟| 熟女性饥渴一区二区三区| 久久亚洲伊人| 国产福利不卡视频在线|